9.4 Modello massimamente piatto (Maximally Flat Design)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "9.4 Modello massimamente piatto (Maximally Flat Design)"

Transcript

1 9.4 Modello massimamente piatto (Maximally Flat Design) Nel capitolo 8, sono stati studiati i modello dei filtri IIR di Butterworth, che nei casi di passa-basso e passa-alto sono massimamente piatti alla frequenza 0 (in cc) e alla frequenza di Nyquist, ciò comporta che: le derivate di H'(ω) risultano nulle in ω=0 e in ω=π. Naturalmente, nel caso di: filtro passa-basso, H'(0)=1 e H'(π) =0, e nel caso di filtro passa-alto H'(0)=0 e H'(π) =1. M. Usai Circuiti digitali 9_3 1

2 Si è anche visto che i filtri di Butterworth passa-alto e passa-basso dello stesso ordine e con la stessa frequenza di taglio sono complementari di potenza e come nel caso in cui la frequenza di taglio sia in corrispondenza di ω c =π/ (metà banda), si ottiene una perfetta ricostruzione (non causale) di coppie di filtri QMF (quadrature-mirror filter) che sono di grande interesse nel progetto di banchi di filtri e onde. Risulta quindi possibile progettare bene filtri massimamente piatti FIR, e coppie di perfetta ricostruzione QMF. Inoltre i filtri FIR possono essere resi facilmente causali e quindi sono più adatti per applicazioni pratiche. M. Usai Circuiti digitali 9_3

3 In base a queste considerazioni è possibile definire una procedura per dimensionare filtri massimamente piatti Si definisce una funzione di autocorrelazione r(n)=h(n)*h(-n) per h(n) reale, la cui trasformata S(z) é: S(z)=H(z)H(z -1 ) (9.4.1) alla quale corrisponde lo spettro di potenza: S'(ω)= H'(ω). (9.4.) Come esempio si consideri il filtro passa-basso con il guadagno unitario, di primo ordine: H 1 (z)=(1+z -1 )/ (9.4.3) M. Usai Circuiti digitali 9_3 3

4 per esso la trasformata S(z) della funzione di autocorrelazione r(n)= : ( z + 1) ( ( ) 1 ) 1 1+ z (1 + z ) (1 + z ) (1 + z) S1( z) = H(z)H(z ) = = (1 + z+ z + z ) (1+ z+ z + 1) 1 ( 1 = = = z+ + z ) = z + z+ 1 1 = = (9.4.4) 4 z 4 z che ha un doppio zero in z=-1 e uno spettro di potenza massimamente piatto. La derivata prima di S 1 (ω) S 1 '(ω)=1/(1+cos ω)=cos ω/ (9.4.5) M. Usai Circuiti digitali 9_3 4

5 Cioè la derivata prima di S 1 '(ω) è nulla in ω =0 e anche per ω =π, ma la derivata seconda di S 1 non lo é.quindi S 1 '(ω) ha tangenza del primo ordine per ω = 0 e anche per ω=π. Chiaramente, questo è l'unico filtro FIR del primo ordine con H'(0)=1 e H'(π)=0, come si voleva. Il filtro H 1 (z) passa-basso e il filtro passa-alto associato H (z)=h 1 (-z) sono complementari di potenza e quindi formano una perfetta ricostruzione della coppia QMF. Ciò è facilmente dimostrabile infatti: H -1-1 (z)=(1-z )/, ed essendo S (z)=h(-z)h(-z ) (9.4.6) 1 1 z -z ( z-1) S (z)= (-z+-z )= - =- (9.4.7) 4 4 z 4 z 1 S '(ω)= (1-cosω)=sin ω/, (9.4.8) M. Usai Circuiti digitali 9_3 5

6 e quindi, dalla (9.4.4) e (9.4.7) S1( z) + S( z) = ( z+ + z ) + ( z+ z ) = 1 (9.4.9) 4 4 e poiché la condizione H (z)=h 1 (-z), è equivalente alla proprietà della perfetta ricostruzione PR (Perfect-Reconstruction), si ha che: essendo S ( ) H(z)H(z -1 ) S (z)=h(-z)h(-z -1 1 z = ) H 1 (z)h 1 (z -1 )+H 1 (-z)h 1 (-z -1 )=1 (9.4.10) Si noti che anche lo spettro-passa alto S '(ω) ha tangenti del primo ordine in ω=0 e ω=π. M. Usai Circuiti digitali 9_3 6

7 Per progettare filtri FIR di ordine alto con la proprietà di massimamente piatto, si utilizzano i polinomi di interpolazione di Hermite come originariamente proposti da Herrman [9], che sono anche chiamati filtri sharpening da Kaiser e da Hanning [93]. L'idea consiste nel trasformare gli spettri elementari S 1 '(ω) e/o S '(ω) che hanno tangenti del primo ordine per ω=0 e per ω= π in uno spettro passa-basso (o passa-alto) di ordine più alto per ω=0 e/o π. Per esempio poniamo che x rappresenti lo spettro passa-alto: x=s '(ω) (9.4.11) con lo spettro passa-basso complementare : 1-x=S 1 '(ω) (9.4.1). M. Usai Circuiti digitali 9_3 7

8 Il semplice polinomio x p con tangenza di ordine (p-1) per x=0 corrisponde allo spettro passa-alto [S '(ω) ] P con tangenza nella banda di attenuazione di ordine (p-1) per ω=0, perché x ω /4 per ω piccolo. Equivalentemente, [S '(ω) ] P ha p zeri per z=1, quindi la tangenza passa-banda di [S '(ω) ] P per ω=π è ancora del primo ordine. Allo stesso modo (1-x) q implica che lo spettro passa-basso [S 1 '(ω) ] q abbia tangenza nella banda di attenuazione di ordine (q-1) in ω=π, che corrisponde a q zeri in [S 1 '(ω) ] P per z = -1. M. Usai Circuiti digitali 9_3 8

9 Come prima quindi la tangente stop-banda del [S 1 '(ω) ] P per ω=0 è solamente del primo ordine. Chiaramente i termini passa-basso e passa-alto possono essere scambiati sostituendo i polinomi di potenza complementare (1-x p ) e 1-(1-x) q rispettivamente per x p e (1-x) q. Si noti nella espressione successiva che: 1-x p =(1-x)(1+x+x + +x p-1 ). (9.4.13) M. Usai Circuiti digitali 9_3 9

10 La classe generale dei polinomi di ordine (p+q-1) P pq (x) per i quali P pq (0)=1, con p,q 1, tangente di ordine (p-1) per x=0, e tangente di ordine (q-1) per x=1, sono i polinomi di interpolazione Hermitiani: Ppq ( x) = (1 x) k = Per esempio P 1q (x)=(1-x) q e usando la (9.4.13), P p1 (x)=1-x p. Il corrispondente spettro passa basso di ordine: S p 1 1 pq ( ω) 1 = k = 0 q p 1 0 q + k 1 x k (9.4.14)*** ha tangenti passa-basso di ordine (p-1) per ω=0 e tangenti di ordine (q-1) per ω=π, con p, q 1. S pq è definita nello stesso modo. k. q + k 1 k [ '1 ] q [ '1 S ( ω) S ( ω) ] (9.4.15) *** n = k n! k!( n k)! M. Usai Circuiti digitali 9_3 10

11 Si noti che S pq (z)e S pq (-z) sono complementari di potenza, cioè, S pq (z)= 1-S qp (-z). Il caso di p=q è particolare perché S pp (ω) è halfband ( con frequenza di taglio pari a π/ o ½ se la scala delle frequenza è normalizata), e S pp (z) e S pp (-z) sono complementari di potenza. In particolare S 11 (z) è semplicemente un halfband elementare dello spettro passa-basso S 1 (z) nella (9.4.4). Gli spettri massimamente piatti del sesto ordine S 13 (ω),s (ω) e S 31 (ω) sono illustrati in figura Figura 9.18 Risposte delle ampiezze al quadrato di filtri massimamente piatti FIR del sesto ordine M. Usai Circuiti digitali 9_3 11

12 Come per i filtri reali si hanno due possibilità per realizzarli. Si può implementare la trasformata stessa di ordine (p+q-1) come filtro (ritardando di (p+q-1) campioni per essere causale) con lo scopo di avere risposte lineari di fase. Questo è stato l intento originale di Hermann s. In quel caso, ovviamente, S pq (ω) corrisponde alla risposta in frequenza del filtro. Si noti che S pq (z) ha q zeri per z= -1 e (p-1) zeri (off) al di fuori del cerchio unitario in coppie reciproche. Alternativamente, si può scegliere l implementazione con fattore spettrale di ordine (p+q-1) H pq (z) di S pq (z), cioè: S pq = H pq ( z) H ( z) pq (9.4.16) come è stato fatto nel caso IIR Butterworth. M. Usai Circuiti digitali 9_3 1

13 Quindi la risposta in frequenza risultante H pq (ω) non può essere in generale a fase lineare. Specificamente, H pq (z) avrà q zeri per z = -1 e p = -1 al di fuori (off) del cerchio unitario. Per esempio, prendendo p-1 zeri di S pq (z) all interno del cerchio unitario, H pq (ω) sarà a fase minore, mentre se alterniamo zeri all interno e all esterno del cerchio unitario H pq (ω) si avrà approssimativamente fase lineare. Nel caso speciale di p=q, H pp (z) e H pp (-z) formano una coppia QMF-PR perché: H pp (z) H pp (z-1)+ H pp (-z) H pp (-z-1)=1. (9.4.17) I banchi di filtri relativi a questi filtri massimamente piatti (maximally flat) QMF sono le basi delle ben note onde Daubechies, che hanno una speciale proprietà Smoothness (regularity) dovuta ai p zeri di H pp (z) per z=-1. M. Usai Circuiti digitali 9_3 13

Elementi di teoria dei segnali /b

Elementi di teoria dei segnali /b Elementi di teoria dei segnali /b VERSIONE 29.4.01 Filtri e larghezza di banda dei canali Digitalizzazione e teorema del campionamento Capacità di canale e larghezza di banda Multiplexing e modulazioni

Dettagli

IL FILTRAGGIO DEL SEGNALE

IL FILTRAGGIO DEL SEGNALE CAPITOLO 4 IL FILTRAGGIO DEL SEGNALE 4.1 - SISTEMA LINEARE NON DISTORCENTE E un sistema lineare che restituisce in uscita una replica indistorta del segnale di entrata, intendendo x(t) y(t) = Ax(t-t 0

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Caratterizzazione dei segnali aleatori nel dominio della frequenza

Caratterizzazione dei segnali aleatori nel dominio della frequenza Capitolo 5 Caratterizzazione dei segnali aleatori nel dominio della frequenza 5. Introduzione In questo capitolo affrontiamo lo studio dei segnali aleatori nel dominio della frequenza. Prendiamo come esempio

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Complementi sui filtri

Complementi sui filtri Elaborazione numerica dei segnali Appendice ai capitoli 4 e 5 Complementi sui filtri Introduzione... Caratteristiche dei filtri ideali... Filtri passa-basso...4 Esempio...7 Filtri passa-alto...8 Filtri

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Acquisizione di segnali per l elaborazione digitale.

Acquisizione di segnali per l elaborazione digitale. Acquisizione di segnali per l elaborazione digitale. Il segnale generato dai trasduttori in genere non è idoneo per la diretta elaborazione da parte dell unità di governo che realizza un algoritmo di controllo,

Dettagli

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006 Prova scritta 16.02.2006 D. 1 Si derivi l espressione dei legami ingresso-uscita, nel dominio del tempo per le funzioni di correlazione nel caso di sistemi LTI e di segnali d ingresso SSL. Si utilizzi

Dettagli

Introduzione al Campionamento e

Introduzione al Campionamento e Introduzione al Campionamento e all analisi analisi in frequenza Presentazione basata sul Cap.V di Introduction of Engineering Experimentation, A.J.Wheeler, A.R.Ganj, Prentice Hall Campionamento L'utilizzo

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

DISPOSITIVI PER VHF e SUPERIORI

DISPOSITIVI PER VHF e SUPERIORI ARI Sezione di Parma Conversazioni del 1 Venerdì del Mese DISPOSITIVI PER VHF e SUPERIORI Venerdì, 1 marzo 2013, ore 21:15 Carlo, I4VIL FILTRO low pass per uso a 144 MHz Risposta del filtro (in rosso).

Dettagli

L A B O R A T O R I O D I I N F O R M A T I C A M U S I C A L E

L A B O R A T O R I O D I I N F O R M A T I C A M U S I C A L E L A B O R A T O R I O D I I N F O R M A T I C A M U S I C A L E MODULO 1: MANIPOLAZI ONE DEL SEGNALE AUDI O G.PRESTI - 17/03/2015 - LE ZI ON E 3 1. RISPOSTA IMPULSIVA E CONVOLUZIONE Una descrizione informale

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

FACSIMILE prova scritta intercorso 1 (per allenamento)

FACSIMILE prova scritta intercorso 1 (per allenamento) FACSIMILE prova scritta intercorso 1 (per allenamento) Laurea in Scienza e Ingegneria dei Materiali anno accademico -3 Istituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione:

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ingegneria Corso di rasmissione Numerica docente: Prof. Vito Pascazio 18 a Lezione: 13/1/4 19 a Lezione: 14/1/4 Sommario rasmissione di segnali PM numerici su

Dettagli

ENS - Prima prova in itinere del 07 Maggio 2010

ENS - Prima prova in itinere del 07 Maggio 2010 ENS - Prima prova in itinere del 07 Maggio 0 L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione globale. I calcoli devono

Dettagli

Segnali passa-banda ed equivalenti passa-basso

Segnali passa-banda ed equivalenti passa-basso Appendice C Segnali passa-banda ed equivalenti passa-basso C.1 Segnali deterministici Un segnale deterministico u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0, W, con 0 < W < f 0,

Dettagli

stabilità BIBO La stabilità di tipo BIBO di un sistema LTI impone che la risposta all impulso h(n) sia sommabile in modulo, vale a dire:

stabilità BIBO La stabilità di tipo BIBO di un sistema LTI impone che la risposta all impulso h(n) sia sommabile in modulo, vale a dire: ELABORAZIONE NUMERICA DEI SEGNALI AA. 2007-2008 sistemi LTI e trasformata eta Francesca Gasparini http://www.ivl.disco.unimib.it/teaching.html errore nelle slide della settimana scorsa!!!! R ( )... ( M

Dettagli

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A)

CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) CONVERSIONE ANALOGICA DIGITALE (ADC)(A/D) CONVERSIONE DIGITALE ANALOGICA (DAC)(D/A) ELABORAZIONE ANALOGICA O DIGITALE DEI SEGNALI ELABORAZIONE ANALOGICA ELABORAZIONE DIGITALE Vantaggi dell elaborazione

Dettagli

Analisi dei sistemi di controllo a segnali campionati

Analisi dei sistemi di controllo a segnali campionati Analisi dei sistemi di controllo a segnali campionati Sistemi di controllo (già analizzati) Tempo continuo (trasformata di Laplace / analisi in frequenza) C(s) controllore analogico impianto attuatori

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Filtri Digitali FIR e IIR

Filtri Digitali FIR e IIR Capitolo 8 Filtri Digitali FIR e IIR I filtri digitali che studiamo in questo capitolo sono particolari sistemi LTI causali a tempo discreto. Essi possono essere implementati e simulati su macchine digitali

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

2. la determinazione della funzione di trasferimento di un filtro soddisfacente le specifiche individuate;

2. la determinazione della funzione di trasferimento di un filtro soddisfacente le specifiche individuate; Capitolo 3 Filtri Analogici I filtri ideali sono caratterizzati da funzioni di trasferimento a modulo costante in banda passante, nullo in banda proibita e fase lineare. Poiché tali filtri non sono causali,

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

I Filtri - Tipi di risposte in frequenza

I Filtri - Tipi di risposte in frequenza I Filtri - Tipi di risposte in frequenza Sommario argomenti trattati Appunti di Elettronica - Pasquale Altieri - I Filtri - Tipi di risposte in frequenza... Risposta alla Butterworth... Risposta alla Bessel...

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Descrizione del funzionamento di un Lock-in Amplifier

Descrizione del funzionamento di un Lock-in Amplifier Descrizione del funzionamento di un Lock-in Amplifier S.C. 0 luglio 004 1 Propositi di un amplificatore Lock-in Il Lock-in Amplifier é uno strumento che permette di misurare l ampiezza V 0 di una tensione

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Capitolo 6: Algoritmi per la rilevazione del QRS ed il riconoscimento di aritmie

Capitolo 6: Algoritmi per la rilevazione del QRS ed il riconoscimento di aritmie Capitolo 6: Algoritmi per la rilevazione del QRS ed il riconoscimento di aritmie 6.1 Algoritmi per la rilevazione del complesso QRS Esistono varie classi di algoritmi di riconoscimento del QRS presenti

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono

Dettagli

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004 COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si

Dettagli

5 Amplificatori operazionali

5 Amplificatori operazionali 5 Amplificatori operazionali 5.1 Amplificatore operazionale: caratteristiche, ideale vs. reale - Di seguito simbolo e circuito equivalente di un amplificatore operazionale. Da notare che l amplificatore

Dettagli

Analisi dei segnali nel dominio della frequenza

Analisi dei segnali nel dominio della frequenza Laboratorio di Telecomunicazioni - a.a. 2010/2011 Lezione n. 7 Analisi dei segnali nel dominio della frequenza docente L.Verdoliva In questa lezione affrontiamo il problema dell analisi dei segnali tempo

Dettagli

Principi e Metodologie della Progettazione Meccanica

Principi e Metodologie della Progettazione Meccanica Principi e Metodologie della Progettazione Meccanica Corso del II anno della laurea magistrale in ingegneria meccanica ing. F. Campana Modellazione di superfici: introduzione Curve parametriche di Hermite

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA

UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA UNIVRSITÀ DGLI STUDI DI ROMA TOR VRGATA FAOLTÀ DI SINZ MATMATIH FISIH NATURALI orso di laurea in FISIA - orso di laurea in SINZ DI MATRIALI LAORATORIO 3: omplementi di teoria alle esperienze Modelli semplificati

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Elaborazione di segnali biologici

Elaborazione di segnali biologici Modulo 4 Elaborazione di segnali biologici Bioingegneria per fisioterapisti Univ.degli Studi di Siena Laurea Univ. in Fisioterapia Ing. A. Rossi Sistemi acquisizione dati Conversione da segnale Analogico

Dettagli

APPUNTI SUL FILTRO 1-POLO

APPUNTI SUL FILTRO 1-POLO APPUNTI SUL FILTRO 1-POLO CARMINE EMANUELE CELLA Sommario. Forma differenziale e simmetrica; funzione di trasferimento e risposta in frequenza; calcolo dei coefficienti mediante condizioni sull equazione

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Obiettivo: analisi e sintesi dei sistemi di controllo in retroazione in cui è presente un calcolatore digitale Il controllo digitale è ampiamente usato, grazie alla diffusione di microprocessori e microcalcolatori,

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Esperienza n. 8 Uso dell oscilloscopio analogico

Esperienza n. 8 Uso dell oscilloscopio analogico 1 L oscilloscopio consente di visualizzare forme d onda e più in generale è un dispositivo che visualizza una qualunque funzione di 2 variabili. Per fare ciò esse devono essere o essere trasformate in

Dettagli

ESEMPI APPLICATIVI DI VALUTAZIONE DELL INCERTEZZA NELLE MISURAZIONI ELETTRICHE

ESEMPI APPLICATIVI DI VALUTAZIONE DELL INCERTEZZA NELLE MISURAZIONI ELETTRICHE SISTEMA NAZIONALE PER L'ACCREDITAMENTO DI LABORATORI DT-000/ ESEMPI APPLICATIVI DI VALUTAZIONE DELL INCERTEZZA NELLE MISURAZIONI ELETTRICHE INDICE parte sezione pagina. Misurazione di una corrente continua

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondamenti di segnali Fondamenti e trasmissione TLC Proprieta della () LINEARITA : la della combinazione lineare (somma pesata) di due segnali e uguale alla

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli

Rette e curve, piani e superfici

Rette e curve, piani e superfici Rette e curve piani e superfici ) dicembre 2 Scopo di questo articolo è solo quello di proporre uno schema riepilogativo che metta in luce le caratteristiche essenziali delle equazioni di rette e curve

Dettagli

Elaborazione nel dominio della frequenza

Elaborazione nel dominio della frequenza Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza L.Verdoliva In questa esercitazione esamineremo la trasformata di Fourier discreta monodimensionale e bidimensionale.

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/45 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Appendice Circuiti con amplificatori operazionali

Appendice Circuiti con amplificatori operazionali Appendice Circuiti con amplificatori operazionali - Appendice Circuiti con amplificatori operazionali - L amplificatore operazionale Il componente ideale L amplificatore operazionale è un dispositivo che

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3)

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3) Università degli Studi di Padova - Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica A.A. 7-8 Laboratorio di Elaboraione di Dati, Segnali e Immagini Biomediche (Parte 3) Prof. Giovanni Sparacino

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

0.6 Filtro di smoothing Gaussiano

0.6 Filtro di smoothing Gaussiano 2 Figura 7: Filtro trapezoidale passa basso. In questo filtro l rappresenta la frequenza di taglio ed l, l rappresenta un intervallo della frequenza con variazione lineare di H, utile ad evitare le brusche

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

Elaborazione nel dominio della frequenza

Elaborazione nel dominio della frequenza Appunti di Elaborazione dei Segnali Multimediali a.a. 29/2 L.Verdoliva Il dominio della frequenza è un potente strumento per l analisi e l elaborazione delle immagini e permette di comprendere meglio il

Dettagli

STRUMENTAZIONE E MISURE ELETTRICHE. Condizionamento ed acquisizione del segnale

STRUMENTAZIONE E MISURE ELETTRICHE. Condizionamento ed acquisizione del segnale STRUMENTAZIONE E MISURE ELETTRICHE Condizionamento ed acquisizione del segnale Prof. Salvatore Nuccio salvatore.nuccio@unipa.it, tel.: 0916615270 1 Circuito di condizionamento Un sensore/trasduttore (S/T)

Dettagli

Informatica per la comunicazione" - lezione 7 -

Informatica per la comunicazione - lezione 7 - Informatica per la comunicazione - lezione 7 - Campionamento La codifica dei suoni si basa sulla codifica delle onde che li producono, a sua volta basata su una procedura chiamata campionamento.! Il campionamento

Dettagli

Indice 1 Amplificatori Operazionali.................................... 1 2 Circuiti con OpAmp... 51

Indice 1 Amplificatori Operazionali.................................... 1 2 Circuiti con OpAmp... 51 Indice Indice 1 Amplificatori Operazionali... 1 1.1. Stadi Amplificanti... 1 1.2. Amplificatori Differenziali... 2 1.3. Retroazione... 5 1.3.1 Invenzione della Retroazione... 5 1.3.2 Proprietà dei Circuiti

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

(25 min) Esercizio 1. 1a) Vedi libro e appunti del corso.

(25 min) Esercizio 1. 1a) Vedi libro e appunti del corso. (5 min) Esercizio 1 1) Con una scheda di acquisizione dati, con dinamica d ingresso bipolare, si devono misurare i seguenti segnali su un circuito: V 1 tensione di alimentazione di una connessione USB

Dettagli

Domanda e Offerta - Elasticità Dott. ssa Sabrina Pedrini

Domanda e Offerta - Elasticità Dott. ssa Sabrina Pedrini Microeconomia, Esercitazione 1 (19/02/2015) Domanda e Offerta - Elasticità Dott. ssa Sabrina Pedrini Domande a risposta multipla 1) Siamo di fronte a uno shock positivo di offerta se: a) in corrispondenza

Dettagli

Capitolo 5. La teoria della domanda. Soluzioni delle Domande di ripasso

Capitolo 5. La teoria della domanda. Soluzioni delle Domande di ripasso Capitolo 5 La teoria della domanda Soluzioni delle Domande di ripasso 1. La curva prezzo-consumo mostra l insieme dei panieri ottimi di due beni, diciamo X e Y, corrispondenti a diversi livelli del prezzo

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Elaborazione delle Immagini Digitali

Elaborazione delle Immagini Digitali Elaborazione delle Immagini Digitali Parte I Prof. Edoardo Ardizzone A.A. 2-22 La trasformata di Hotelling o di Karhunen-Loeve KLT discreta Questa trasformata detta anche analisi delle componenti principali

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE DI BARONISSI IND. TECNICO INDUSTRIALE INFORMATICA E TELECOMUNICAZIONI. Programmazione A. S. 2012-2013 ELETTRONICA

ISTITUTO ISTRUZIONE SUPERIORE DI BARONISSI IND. TECNICO INDUSTRIALE INFORMATICA E TELECOMUNICAZIONI. Programmazione A. S. 2012-2013 ELETTRONICA Classi quarte 1. Reti elettriche in a. c. Periodo: settembre/ottobre novembre/dicembre ore 60 1. La funzione sinusoidale. 2. Rappresentazione vettoriale della grandezze sinusoidali. 3. I componenti passivi

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Elaborazione nel dominio della frequenza Soluzioni

Elaborazione nel dominio della frequenza Soluzioni Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza Soluzioni 1 La trasformata discreta 1D Calcoliamo lo spettro di x(n) = R L (n) al variare di L = 2, 10, 20,

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

Analisi di Fourier e campionamento c

Analisi di Fourier e campionamento c Analisi di Fourier e campionamento c 6.3.1 Prefiltraggio Esistono diverse motivazioni che comportano la necessità di un prefiltraggio dei segnali. Quando i segnali sono a banda limitata l unica precauzione

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

1 - I segnali analogici e digitali

1 - I segnali analogici e digitali 1 1 - I segnali analogici e digitali Segnali analogici Un segnale analogico può essere rappresentato mediante una funzione del tempo che gode delle seguenti caratteristiche: 1) la funzione è definita per

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

DESCRIZIONE DI UN NUOVO METODO PER IL RECUPERO DEL SINCRONISMO DI CLOCK

DESCRIZIONE DI UN NUOVO METODO PER IL RECUPERO DEL SINCRONISMO DI CLOCK DESCRIZIONE DI UN NUOVO METODO PER IL RECUPERO DEL SINCRONISMO DI CLOCK Ezio Mazzola 1 Indice Introduzione... 3 Stima dell errore di fase del Clock... 3 Nuovo Algoritmo proposto... 6 Correzione dell HANG-UP...

Dettagli

Capitolo 8. La massimizzazione del profitto e l offerta concorrenziale. F. Barigozzi Microeconomia CLEC 1

Capitolo 8. La massimizzazione del profitto e l offerta concorrenziale. F. Barigozzi Microeconomia CLEC 1 Capitolo 8 La massimizzazione del profitto e l offerta concorrenziale F. Barigozzi Microeconomia CLEC 1 Argomenti trattati nel capitolo I mercati in concorrenza perfetta La massimizzazione del profitto

Dettagli

SOMMARIO LUCI PSICHEDELICHE LX 749 5AI TIEE 1993-94. IPSIA Moretto Brescia

SOMMARIO LUCI PSICHEDELICHE LX 749 5AI TIEE 1993-94. IPSIA Moretto Brescia SOMMARIO Introduzione... 2 Schema a Blocchi... 2 Blocco Alimentazione.... 2 Blocco Preamplificatore... 2 Blocco Filtri... 2 Blocco di Potenza... 3 Curve di risposta dei tre filtri... 4 Schema Elettrico...

Dettagli

Lab 4 Filtri con amplificatori operazionali

Lab 4 Filtri con amplificatori operazionali Aggiungendo alcuni condensatori e resistenze ad un semplice circuito con amplificatore operazionale (Op Amp) si possono ottenere molti circuiti analogici interessanti come filtri attivi, integratori e

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli