Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1"

Transcript

1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5

2 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati 4. Zri di un sistma a sgnali campionati 5. Guadagno di un sistma a sgnali campionati F. Prvidi - Controlli utomatici - Lz. 5 2

3 . Introduzion Lo schma a campionamnto dll uscita contin un sottosistma ibrido. w(t) w(k) + _ (k) y(k) R(z) u(k) D/ u(t) G(s) y(t) u(k) D/ u(t) G(s) y(t) y(k) Dal punto di vista I/O sso è prò un sistma a tmpo discrto. u(k) G(z) y(k) F. Prvidi - Controlli utomatici - Lz. 5 3

4 2. nalisi a tmpo discrto di sistmi ibridi L obittivo è analizzar il sgunt sistma ibrido, dfinndo qual rlazion intrcorr tra il suo ingrsso u(k) la sua uscita y(k) u(k) D/ u(t) Il sistma a tmpo continuo comprso tra i du convrtitori è compltamnt raggiungibil d ossrvabil d è dscritto dall sgunti quazioni: x& y G(s) y(t) ( t) x( t) + Bu( t) ( t) Cx( t) + Du( t) y(k) I convrtitori sono idali, priodici, oprano alla mdsima frqunza sono sincronizzati. In particolar, si utilizza uno ZOH pr la convrsion D/. Il movimnto dllo stato a partir dall istant inizial t é: x t t t t ξ x t + Bu ξ d t F. Prvidi - Controlli utomatici - Lz. 5 4 ( ) ( ) ( t) ( ) ( ) ξ

5 Si ponga ora t k tk+. Qual è l andamnto di u(t) in qusto intrvallo di tmpo? l tmpo t k l ingrsso al mantnitor è u k. L uscita dl mantnitor è quindi: Si ha quindi: x ( ) u ( ξ) u( k ) u ( k) pr ξ [ k, k + ] k + ( k + k ) ( k + ξ) ( k ) x( k ) + Bu( k ) dξ x + + k k + ( k + ξ) ( k ) x( k ) + Bdξ u( k ) k F. Prvidi - Controlli utomatici - Lz. 5 5

6 Si ponga η t ξ k + ξ k + k ( k + ξ) Bdξ dξ ξ ξ k k + dη η η η Bdη Si ha quindi, dfinndo x x x ( k) x( k ) + η ( k ) x( k ) + Bdη u( k ) ( k + ) x ( k) + B u ( k) F. Prvidi - Controlli utomatici - Lz. 5 6

7 Ricordando ch, pr fftto dl campionator, y ( k) y( k ) x y ( k +) x ( k) + B u ( k) ( k) Cx ( k) + Du ( k) B η Bdη Qusto sistma a tmpo discrto, dtto modllo stroboscopico o sistma a sgnali campionati, dscriv il comportamnto dl procsso di convrtitori ngli istanti di campionamnto. Esso non fornisc alcuna informazion sull andamnto dllo stato dll uscita dl procsso tra du istanti di campionamnto. L su matrici B dipndono dall matrici B dl procsso a tmpo continuo sarà intrssant studiar l loro proprità. F. Prvidi - Controlli utomatici - Lz. 5 7

8 Esmpio Si considri il sistma dscritto dalla sgunt quazion di stato: x& ( t) αx( t) + βu( t) Il sistma a sgnali campionati ad sso associato ha l sgunti matrici: α αη αη β β η β ( α B d ) α α L quazion di stato dl sistma a sgnali campionati è quindi: α β ( ) ( ) ( α x k x k ) + + u ( k) α F. Prvidi - Controlli utomatici - Lz. 5 8

9 3. utovalori di un sistma a sgnali campionati Campionando il sgunt sistma con priodo di campionamnto x y x& y ( t) x( t) + Bu( t) ( t) Cx( t) + Du( t) si ottin il sgunt sistma a tmpo discrto con B η Bdη ( k +) x ( k) + B u ( k) ( k) Cx ( k) + Du ( k) Qusto sistma dscriv il comportamnto dl sistma a tmpo continuo originario a tmpi multipli dl priodo di campionamnto. F. Prvidi - Controlli utomatici - Lz. 5 9

10 Qual è la rlazion tra gli autovalori di gli autovalori di? La rlazion implica ch all autovalor s i di corrisponda si l autovalor z di (pr tutti gli i,...,n) i Gli autovalori sguono quindi la trasformazion di campionamnto s z tra i punti dl piano complsso S dov è dfinita la variabil s d il piano complsso Z dov è dfinita la variabil z. La trasformazion di campionamnto non è biunivoca. F. Prvidi - Controlli utomatici - Lz. 5

11 orma C2D Il sistma a sgnali campionati (, B, C, D) ottnuto dal sistma a tmpo continuo (, B, C, D) pr convrsion D/ ZOH dll ingrsso campionamnto idal dll uscita, ntrambi con priodo, è compltamnt raggiungibil ossrvabil s solo s: Il sistma (, B, C, D) è compltamnt raggiungibil ossrvabil. d ogni coppia di autovalori distinti di corrispond, attravrso la trasformazion di campionamnto, una coppia di autovalori distinti di. Cioè, non sistono autovalori di s m, s n tali ch + 2 k intro F. Prvidi - Controlli utomatici - Lz. 5

12 Esmpio u(k) D/ u(t) G(s) y(t) y(k) G ( s) s B C B η Bdη dη [ η] G ( ) ( ) z C zi B ( zi ) z Intgrator a tmpo discrto F. Prvidi - Controlli utomatici - Lz. 5 2

13 Nota f ( t) sca( t) f(t) f ( k) f ( k) ( k) sca z z F( s) F ( z) s Campionando uno scalino a tmpo continuo si ottin uno scalino a tmpo discrto. u(k) G ( z) D/ u(t) G ( s) G(s) s y(t) y(k) G ( ) ( ) z C zi B ( zi ) Il sistma a sgnali campionati ottnuto da un intgrator a tmpo continuo è un intgrator a tmpo discrto. F. Prvidi - Controlli utomatici - Lz. 5 3 z

14 ttnzion a non incorrr in cattiv intrprtazioni. Infatti: sca(t) sca(k) è ugual a imp(t) G(s) ma è divrso da imp(k) G ( z) D/ u(t) ( ) G ( s) G(s) G s ( s) y(t) s y(k) sca(k) z z La funzion di trasfrimnto G z è la trasformata Z dlla risposta impulsiva dl sistma a sgnali campionati. Essa non coincid con la trasformata Z dl sgnal ch si ottin campionando la risposta impulsiva dl sistma a tmpo continuo dscritto da G s ( ) z F. Prvidi - Controlli utomatici - Lz. 5 4

15 F. Prvidi - Controlli utomatici - Lz. 5 5 Esmpio y(t) u(t) G(s) D/ u(k) y(k) ( ) 2 s s G η η Bd B η η η η d d 2 2 ( ) ( ) [ ] ( ) ( ) z z zi B zi C z G B [ ] C

16 Esmpio u(k) D/ u(t) G(s) y(t) y(k) G ( s) s a + a B C a a a B η Bdη [ ] aη aη a adη G z a ( ) ( ) ( a ) ( a z C zi B zi ) a F. Prvidi - Controlli utomatici - Lz. 5 6

17 4. Zri di un sistma a sgnali campionati Non c è una rgola gnral com pr i poli. In particolar, accad ch, pr fftto dl campionamnto, si abbiano più zri nl sistma a sgnali campionati ch non nl sistma a tmpo continuo di partnza (nascono gli zri di campionamnto). Pr la dtrminazion dgli zri di un sistma campionato ottnuto pr campionamnto di un sistma a tmpo continuo ci si affida alla sgunt rgola. F. Prvidi - Controlli utomatici - Lz. 5 7

18 Proposizion Sia vn m il grado rlativo di G(s), dov n è il numro di poli m è il numro di zri. llora, nl limit pr : gli m zri sguono la trasformazion di campionamnto; quando n m> nascono n m zri, dtti zri di campionamnto ch sono l radici dl polinomio riportato in tablla n m n m radici 2 z + ( z) 2 3 z + 4z +.268, z 3 + z 2 + z +.,, z 4 ( z) n m z + 66z + 26z +.43,.43, 2.322, 23.2 F. Prvidi - Controlli utomatici - Lz. 5 8

19 5. Guadagno di un sistma a sgnali campionati S G(s) è di tipo zro (g) risulta: S G(s) è di tipo g> risptta l ipotsi dl torma C2D, allora G ( z) è anch ssa di tipo g>. Inoltr, siano µ lim s µ z ( ) ( ) G G s g G( s) g ( z ) G ( z) lim g Si ha µ µ F. Prvidi - Controlli utomatici - Lz. 5 9

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE a. STRATEGIE PER IL RECUPERO DESTINATARI Il Rcupro sarà rivolto agli alunni ch prsntano ancora difficoltà nll adozion di

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Circolare n. 1 Prot. n. 758 Roma 29/01/2015

Circolare n. 1 Prot. n. 758 Roma 29/01/2015 Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico AZIONI ANALISI STRUTTURALE sistma STRUTTURA STATO I modlli mccanici possono suddividrsi in: MODELLI CONTINUI Forz Coazioni STRUTTURA = modllo mccanico IDEALIZZAZIONE DELLA STRUTTURA Posizion Vlocità Acclrazion

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

2.2 L analisi dei dati: valutazioni generali

2.2 L analisi dei dati: valutazioni generali 2.2 L analisi di dati: valutazioni gnrali Di sguito (figur 7-) vngono riportat l informazioni più intrssanti rilvat analizzando globalmnt la banca dati dll tichtt raccolt. Considrando ch l tichtta nutrizional

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.014-15 Prof. Silvia Strada Prima prova intermedia 8 Novembre 014 SOLUZIONE ESERCIZIO 1 punti: 8 su 3 Si consideri il sistema dinamico

Dettagli

PROTOCOLLO D INTESA. tra. Prefettura di Roma. Università di Roma La Sapienza. Università degli Studi di Roma Tor Vergata

PROTOCOLLO D INTESA. tra. Prefettura di Roma. Università di Roma La Sapienza. Università degli Studi di Roma Tor Vergata PROTOCOLLO D INTESA tra Prfttura di Roma Univrsità di Roma La Sapinza Univrsità dgli Studi di Roma Tor Vrgata Univrsità dgli Studi Roma Tr 1 PREMESSO ch con dcrto dl Prsidnt dl Consiglio di Ministri dl

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 Foglio n.10 Somma intrszion di sottospazi vttoriali prof. Cigliola Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

L infiltrometro a tensione per la determinazione della ritenzione idrica e della conducibilità idraulica. Angelo Basile

L infiltrometro a tensione per la determinazione della ritenzione idrica e della conducibilità idraulica. Angelo Basile L infiltromtro a tnsion pr la dtrminazion dlla ritnzion idrica dlla conducibilità idraulica Anglo Basil Mtodi pr misura contmporana di ritnzion conducibilità Campo Profilo istantano Infiltromtro a tnsion

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

x 1 = t + 2s x 2 = s x 4 = 0

x 1 = t + 2s x 2 = s x 4 = 0 Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 prof. Cigliola Foglio n.10 Somma intrszion di sottospazi vttoriali Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano

Palazzina di Caccia di Stupinigi, Fondazione Ordine Mauriziano , Fondazion Ordin Mauriziano LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2014 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Dalla primavra 2014 la palazzina di caccia offr

Dettagli

I CAMBIAMENTI DI STATO

I CAMBIAMENTI DI STATO I CAMBIAMENTI DI STATO Il passaggio a uno stato in cui l molcol hanno maggior librtà di movimnto richid nrgia prché occorr vincr l forz attrattiv ch tngono vicin l molcol Ni passaggi ad uno stato in cui

Dettagli

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO PRIMO BIENNIO/SECONDO BIENNIO ULTIMO ANNO In cornza con i critri di validazion dlla programmazion di ass (o

Dettagli

AGENZIA GOVERNATIVA REGIONALE OSSERVATORIO ECONOMICO CONGIUNTURA TURISTICA REGIONALE

AGENZIA GOVERNATIVA REGIONALE OSSERVATORIO ECONOMICO CONGIUNTURA TURISTICA REGIONALE CONGIUNTURA TURISTICA REGIONALE Turismo in Sardgna: stagion stiva 2010 in calo, ma il sttor albrghiro tin nonostant la crisi intrnazional (+1,2% l prsnz fra giugno sttmbr). Ngli ultimi msi si è assistito

Dettagli

ITALMOBILIARE SOCIETA PER AZIONI

ITALMOBILIARE SOCIETA PER AZIONI ITALMOBILIARE SOCIETA PER AZIONI COMUNICATO STAMPA Informazioni rlativ ai piani di stock option di ITALMOBILIARE S.p.A. ITALCEMENTI S.p.A. già sottoposti alla dcision di rispttivi organi comptnti antcdntmnt

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui 1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di

Dettagli

Il mercato elettrico dopo la liberalizzazione per i clienti domestici

Il mercato elettrico dopo la liberalizzazione per i clienti domestici Il mrcato lttrico dopo la libralizzazion pr i clinti domstici Paolo Cazzaniga Introduzion: struttura dl mrcato lttrico dlla tariffa Dal 1 luglio 2007 la libralizzazion dl mrcato lttrico è compltata: anch

Dettagli

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT.

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT. Coordinamnto tra l protzioni dlla rt MT dl Distributor la protzion gnral 1. PREMESSA. dgli Utnti MT. ll rti di distribuzion a mdia tnsion (MT), l unico organo di manovra automatico è l intrruttor di lina

Dettagli

Tra. di seguito le Parti

Tra. di seguito le Parti Protocollo di intsa SERVIRE CON LODE Tra il Politcnico di Torino C.F. n. 00518460019, con sd lgal in Torino, Corso Duca dgli Abruzzi, 24, rapprsntato dal Vic Rttor pr la Didattica Prof.ssa Anita Tabacco

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Si comunica che verrà attivato un corso coni figc, al raggiungimento del numero minimo di 35 iscritti, presso la delegazione di Milano.

Si comunica che verrà attivato un corso coni figc, al raggiungimento del numero minimo di 35 iscritti, presso la delegazione di Milano. 1) CORSI CONI FIGC STAGIONE 2011 2012 Bando Corso CONI FIGC MILANO Si comunica ch vrrà attivato un corso coni figc, al raggiungimnto dl numro minimo di 35 iscritti, prsso la dlgazion di Milano. Potranno

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

Deliberazione n. 246 del 10 aprile 2014

Deliberazione n. 246 del 10 aprile 2014 Dlibrazion n. 246 dl 10 april Dirttor Gnral Dr. Robrto Bollina Coadiuvato da: Giancarlo Bortolotti Dirttor Amministrativo Carlo Albrto Trsalvi Dirttor Sanitario Giuspp Giorgio Inì Dirttor Social Il prsnt

Dettagli

L Osservatorio ABI Costing Benchmark : i risultati del Rapporto ABI 2004 e le analisi di posizionamento

L Osservatorio ABI Costing Benchmark : i risultati del Rapporto ABI 2004 e le analisi di posizionamento L Ossrvatorio ABI Costg Bnchmark : i risultati dl Rapporto ABI 2004 l anisi posizionamnto Albrto Bstrri Roma, 11 novmbr 2004 Aumnta l fficacia l dll politich contnimnto di Vi Vi sono sono 9 9 classi classi

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI PROGRAMMAZIONE INDIVIDUALE PIANO DIDATTICO ANNUALE A.S. 2015/2016 Matria: Tcnologi Informatich Class (docnt) 1^ACH - Prof. Musumci

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga Provvdimnto di Prdisposizion dl Programma Annual dll'srcizio finanziario 2014 Il Dsga Visto Il Rgolamnto crnnt l istruzioni gnrali sulla gstion amministrativotabil dll Istituzioni scolastich Dcrto 01 Fbbraio

Dettagli

PRAMAC S.P.A. in liquidazione

PRAMAC S.P.A. in liquidazione PRAMAC S.P.A. in liquidazion RELAZIONE SULLA REMUNERAZIONE 2012 Rdatta ai snsi dll art. 123-tr dl D. Lgs. 24 fbbraio 1998 n. 58 (TUF), dll art. 84 quatr dl Rgolamnto Emittnti d in conformità allo schma

Dettagli

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015

LE PROPOSTE PER I CENTRI ESTIVI Palazzina di Caccia di Stupinigi ESTATE 2015 LE PROPOSTE PER I CENTRI ESTIVI ESTATE 2015 SPECIALE MOSTRA FRITZ. UN ELEFANTE A CORTE! 20 Maggio 13 sttmbr 2015 IN PALAZZINA: DIVERTIRSI IMPARANDO VISITE A TEMA E LABORATORI PER I CENTRI ESTIVI Anch nlla

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Statistica multivariata Donata Rodi 04/11/2016

Statistica multivariata Donata Rodi 04/11/2016 Statistica multivariata Donata Rodi 4//6 La rgrssion logistica Costruzion di un modllo ch intrprti la dipndnza di una variabil catgorial dicotomica da un insim di variabili splicativ Trasformazioni da

Dettagli

Università degli Studi di Firenze Dipartimento di Ingegneria Civile ed Ambientale

Università degli Studi di Firenze Dipartimento di Ingegneria Civile ed Ambientale Univrsità dgli Studi di Firnz Dipartimnto di Inggnria Civil d Ambintal TARIFFARIO DELLE PRESTAZIONI IN CONTO TERZI (Approvato dal Consiglio di Dipartimnto dl 24/01/2002) ATTIVITÀ E SERVIZI OFFERTI PROVE

Dettagli

Integrazione e Integratori delle Informazioni

Integrazione e Integratori delle Informazioni SC.S.I. A.S.O. Ordin Mauriziano Workshop intrrgional sui sistmi informativi pr la gstion la valutazion dll rti oncologich Torino 24-25 maggio 2007 Intgratori dll Andra Bo - A.S.O. Ordin Mauriziano - S.C.

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3.

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3. INDICE Torma di Cayly-Hamilton, forma canonica triangolazioni. Vrsion dl Maggio Argomnti sclti sulla triangolazion di matrici, il torma di Cayly-Hamilton sulla forma canonica dll matrici 3 3 pr i corsi

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

APPUNTI DI MACROECONOMIA

APPUNTI DI MACROECONOMIA Brtocco G., Kalajzić A. Mourad Agha G. Univrsità dgli Studi dll Insubria Dipartimnto di Economia Anno accadmico 2014-2015 APPUNTI DI MACROECONOMIA (Sconda part pp. 175-296) Il modllo IS-LM pr una conomia

Dettagli

Condensatore, Induttanza, Circuiti R-C, Trasformata di Laplace Indice

Condensatore, Induttanza, Circuiti R-C, Trasformata di Laplace Indice Prof. Pirluigi D mico ppunti di EETTONI lassi QUTE ondnsator, Induttanza, ircuiti, Trasformata di aplac Paga ISTITUTO TENIO INDUSTIE STTE «G. Marconi» Pontdra 587 53566/5539 Fax: 587 574 : iti@marconipontdra.it

Dettagli

CRITERI DI VALUTAZIONE

CRITERI DI VALUTAZIONE CRITERI DI VALUTAZIONE Poiché nl nostro prcorso si darà ampio spazio all mtodologi finalizzat a sviluppar l comptnz dgli allivi ( attravrso la dattica laboratorio, l sprinz in contsti applicativi, l analisi

Dettagli

1 Scheda di Adesione scaricabile sul sito www.fondazionecariplo.it/scuola21. ione relativo a una ipotetica. consapevoli.

1 Scheda di Adesione scaricabile sul sito www.fondazionecariplo.it/scuola21. ione relativo a una ipotetica. consapevoli. VERSO LA COSTRUZIONE CONDIVISA DEL PIANO DIDATTICO DI SCUOLA 21 s. Istituto Tcnico Commrcial L'obittivo dl prsnt documnto è qullo di smplificar la compilazion dl Piano Didattico di Scuola 21 ch è riportato

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

"PREMIO BEST PRACTICE PATRIMONI PUBBLICI 2010" MIMUV: Monitoraggio Interventi Manutenzione Urbana Venezia

PREMIO BEST PRACTICE PATRIMONI PUBBLICI 2010 MIMUV: Monitoraggio Interventi Manutenzione Urbana Venezia "PREMIO BEST PRACTICE PATRIMOI PUBBLICI 2010" MIMUV Monitoraggio Intrvnti Manutnzion Urbana Vnzia MIMUV: Monitoraggio Intrvnti Manutnzion Urbana Vnzia Contsto patrimonial quo ant "PREMIO BEST PRACTICE

Dettagli

INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE. Estensore TENNENINI MASSIMO. Responsabile del procedimento TENNENINI MASSIMO

INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE. Estensore TENNENINI MASSIMO. Responsabile del procedimento TENNENINI MASSIMO REGIONE LAZIO Dirzion Rgional: Ara: SVILUPPO ECONOMICO E ATTIVITA PRODUTTIVE INTERNAZIONALIZZ. E MARKETING TERRITORIALE DETERMINAZIONE N. G09834 dl 08/07/2014 Proposta n. 11437 dl 01/07/2014 Oggtto: Attuazion

Dettagli

ANALISI PROGRAMMA ANNUALE

ANALISI PROGRAMMA ANNUALE ANALISI PROGRAMMA ANNUALE VERBALE N. 2015/001 Prsso l'istituto I.I.S. "CASSATA - GATTAPONE" di GUBBIO, l'anno 2015 il giorno 12, dl ms di marzo, all or 11:00, si sono riuniti i Rvisori di Conti dll'ambito

Dettagli

PROCESSI DI CONSOLIDAZIONE

PROCESSI DI CONSOLIDAZIONE PROCESSI DI CONSOLIDAZIONE L applicazion di un carico su un trrno comporta l insorgr di sovrapprssion dll acqua intrstizial, la cui ntità varia da punto a punto all intrno dl volum individuato dal bulbo

Dettagli

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia ORGANO GOLD PIANO COMPENSI E Facil, E smplic. E caffè. Italia INDICE Indic INTRODUZIONE...2 PIANO COMPENSI...3 DEFINIZIONI ED ACRONIMI.4 COME DIVENTARE UN INCARICATO ALLE VENDITE OG...5 I SETTE MODI PER

Dettagli

Allegato D - ELENCO DEI COSTI - COMPUTO DEI SERVIZI E. Settore Tecnico DETERMINAZIONE DELL'IMPORTO D'APPALTO

Allegato D - ELENCO DEI COSTI - COMPUTO DEI SERVIZI E. Settore Tecnico DETERMINAZIONE DELL'IMPORTO D'APPALTO C I T T À DI SQUILLACE -Prov. di Catanzaro- (Piazza Municipio, 1 88069 SQUILLACE- tl. 0961/912040-fax 0961/914019) -mail:utsquillac@libro.it-partita I.V.A 00182160796) Sttor Tcnico PROGETTO DI IGIENE URBANA

Dettagli

SERVIZIO LUCE 3 - Criteri di sostenibilità

SERVIZIO LUCE 3 - Criteri di sostenibilità SERVIZIO LUCE 3 - Critri sostnibilità 1. Oggtto dll iniziativa La Convnzion ha com oggtto l attività acquisto dll nrgia lttrica, srcizio manutnzion dgli impianti illuminazion pubblica, nonché gli intrvnti

Dettagli

L evoluzione dei Servizi IT vista dalle due discipline di Project e Service Management

L evoluzione dei Servizi IT vista dalle due discipline di Project e Service Management Con il patrocinio di: Sponsorizzato da: Il Framwork ITIL gli Standard di PMI : possibili sinrgi Milano, Vnrdì, 11 Luglio 2008 L voluzion di Srvizi IT vista dall du disciplin di Projct Srvic Managmnt Christian

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN PIANO DI LAVORO DELLA DISCIPLINA: ESTIMO SPECIALE CLASSI: V, sz A CORSO: Costruzioni, Ambint, Trritorio AS 2015-2016 Moduli Libro Di Tsto Comptnz bas Abilità Conoscnz Disciplina Concorrnti Tmpi Critri,

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) :

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) : Ystudio Corsi lzioni d srcizi on lin di Matmatica, Statica Scinza dll costruzioni www.studio.it/sit. Dominio : Poichè la unzion è pari, lo studio vin itato al smipiano dll asciss positiv. Intrszion assi

Dettagli

Antenne e Telerilevamento. Esonero I ESONERO ( )

Antenne e Telerilevamento. Esonero I ESONERO ( ) I ESONERO (28.6.21) ESERCIZIO 1 (15 punti) Si considri un sistma ricvnt oprant alla frqunza di 13 GHz, composto da un antnna a parabola a polarizzazion linar con un rapporto fuoco-diamtro f/d=.3, illuminata

Dettagli

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani;

b) promuovere e diffondere la cultura della legalità e della cittadinanza responsabile fra i giovani; CONVENZIONE FRA IL COMUNE DI CASTEL MAGGIORE, L UNIONE RENO GALLIERA E I COMUNI DI ARGELATO, BENTIVOGLIO, SAN GIORGIO DI PIANO, SAN PIETRO IN CASALE, CASTELLO D ARGILE, PIEVE DI CENTO, GALLIERA, PER LA

Dettagli

Un test di decisione ortografica per i bambini di scuola elementare

Un test di decisione ortografica per i bambini di scuola elementare Un tst di dcision ortografica pr i bambini di scuola lmntar Andra Biancardi, Barbara Proni, Lilia Bonadiman 8 Convgno intrnazional Imparar: qusto è il problma San Marino, /9/ Caus di rrori ortografici

Dettagli