Classificazione di un data set di proteine con Weka

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Classificazione di un data set di proteine con Weka"

Transcript

1 MODELLI PROBABILISTICI Classificazione di un data set di proteine con Weka SOFIA CIVIDINI

2 2 INTRODUZIONE Negli ultimi due decenni si è assistito ad un aumento esponenziale nella quantità dell informazione o dati che è stata immagazzinata in formato elettronico. Si è stimato che la quantità di informazione nel mondo raddoppi ogni venti mesi e che la grandezza ed il numero dei database aumentino in modo sempre più veloce. Questo fatto si deve soprattutto: all incremento del potere e della velocità di calcolo degli attuali computer alla possibilità che essi hanno acquisito di avere supporti molto grandi per immagazzinare e memorizzare anche notevoli quantità di dati all introduzione di nuove tecniche che si affiancano ai tradizionali metodi di analisi statistica e di data retrieval e che permettono di estrarre conoscenza, cioè informazioni significative (di valore), in seguito all esplorazione di questi enormi volumi di dati. L insieme di queste tecniche prende il nome di Knowledge Discovery in DataBases o Data Mining (anche se con il termine data mining sarebbe meglio considerare una tappa della Knowledge Discovery in DataBases). La Knowledge Discovery in DataBases integra vari campi di ricerca (statistica, pattern recognition, machine learning, ecc.) ed è un processo analitico che è stato progettato per esplorare dati ed estrarne conoscenza in termini di associazioni, patterns, regole o sequenze ripetute che sono nascoste nei dati stessi e che non sono note a priori. CLASSIFICAZIONE. La classificazione è forse la tecnica di Data Mining più comunemente applicata e viene utilizzata per analizzare grandi quantità di dati in modo automatico o semiautomatico ed estrarne conoscenza; in particolare la classificazione estrae conoscenza a livello di variabili categoriche o classi, mentre quando si hanno variabili numeriche o continue si parla di Previsione. Di solito, si ha a che fare con grandi quantità di dati (commerciali, finanziari, scientifici, clinici, ecc.) che possono anche essere: INCOMPLETI mancano delle osservazioni RUMOROSI ci sono dei valori anomali INCONSISTENTI esistono codici differenti per lo stesso item

3 3 RIDONDANTI presenza della medesima informazione Quindi, i dati prima di essere sottoposti a Classificazione devono prima subire una fase di PREPROCESSING che consiste di vari passaggi: Data Cleaning i dati originali che provengono da fonti differenti vengono ripuliti per eliminare rumore e trattare i casi di dati mancanti Relevance Analysis serve per individuare quegli attributi che non sono rilevanti per l analisi oppure che sono ridondanti Data Transformation in questa fase, i dati vengono generalizzati a livelli concettuali più elevati oppure trasformati in modo da assumere valori in determinati intervalli (normalizzazione). Esistono due tipi di classificazione e cioè: CLASSIFICAZIONE SUPERVISIONATA in questo tipo di approccio, il valore di Class Label di ogni tupla di dati (training sample) è noto. Si parla di Supervised Learning. CLASSIFICAZIONE NON-SUPERVISIONATA in questo altro tipo di approccio invece non si dispone di casi etichettati e non si conosce nemmeno quante sono le classi o categorie da apprendere. Si parla di Unsupervised learning o Clustering. Nell ambito della Classificazione Supervisionata, il processo di Data Classification viene diviso in due fasi: 1) LEARNING viene costruito un modello che descrive un determinato insieme di classi in seguito all analisi di tuple di dati secondo i loro attributi 2) CLASSIFICATION il modello costruito viene utilizzato per classificare nuovi casi Disponendo di un data set di cui è noto, per ogni tupla di dati, il valore della class label, si può dividere questo data set in modo che una parte venga utilizzata come Training Set nella fase di Learning e l altra parte venga invece utilizzata come Test Set per verificare l accuratezza del classificatore prima di passare alla fase di Classification con un data set nuovo. Infatti, utilizzare gli stessi dati sia nella fase di apprendimento che nella fase di verifica della performance di un classificatore è molto pericoloso, perché si rischia l overfitting, cioè di avere stime troppo ottimistiche riguardanti la sua prestazione a livello dei nuovi casi. Esistono dei metodi (basati sulla randomizzazione) per dividere il data set di partenza e per stimare così l accuratezza di un classificatore. Sono i seguenti:

4 4 Cross-validation con questa metodica, il data set viene diviso, in modo casuale, in k-folds, cioè in k sottoinsiemi che in maniera esclusiva vengono utilizzati come Test Set ; il ciclo viene quindi ripetuto k volte. L accuratezza complessiva viene ottenuta sommando il numero dei casi correttamente classificati nelle k iterazioni e dividendo questa somma per il numero dei casi dell insieme di dati iniziale. Esempio: se viene fatta una cross-validation a 10 folds, il data set viene diviso in 10 parti; 9 parti vengono usate come Training Set ed 1 parte come Test Set e tutto questo viene ripetuto per 10 volte con un fold diverso ogni volta. Hold Out in questo caso, il data set iniziale viene di solito diviso in modo tale che 2/3 di esso vengano usati come Training Set ed il resto come Test Set; la stima che si ottiene è di solito pessimistica in quanto viene utilizzata una porzione dei dati fissa per ottenere il classificatore. Esempio: si può utilizzare il 66% del data set come Training set ed il restante 34% come Test Set. Esistono anche schemi particolari che possono migliorare la performance di un classificatore unendo tra di loro più classificatori in modo da ottenerne uno composto. Questi sono: il Bagging combina le classificazioni predette da modelli multipli o dallo stesso tipo di modello per differenti learning data. il Boosting vengono assegnati dei pesi ad ogni Training Set e si apprendono i classificatori in sequenza; il Boosting genererà una sequenza di classificatori dove ogni classificatore consecutivo nella sequenza diventa un esperto nelle osservazioni da classificare che non sono state ben classificate da quelli precedenti ad esso; le classificazioni fatte dai diversi classificatori possono poi essere combinate per ricavare la miglior classificazione in assoluto. Un classificatore può essere valutato in base a diversi parametri: a. Accuratezza nella classificazione b. Velocità di costruzione c. Velocità di esecuzione d. Robustezza (accuratezza in presenza di rumore o dati mancanti)

5 5 L Accuratezza di un classificatore rappresenta la percentuale di istanze classificate correttamente (cioè la cui classe predetta coincide con la classe reale) sul numero totale di istanze classificate. Esistono altri parametri che permettono di valutare un classificatore. Vediamoli in dettaglio negativo positivo a = negativo b = positivo Classe a: TP=565 FP=10 FN=330 Classe b: TP=841 FP=330 FN=10 La PRECISION è una misura di correttezza ed è uguale: Precision= True Positive/(True Positive + False positive) Esempio: precision classe negativa = 565/(565+10) = Più il numero dei FP è basso, maggiore è la Precision che si avvicina ad 1. La RECALL è una misura di completezza ed è uguale: Recall= True Positive/(True Positive + False Negative) Esempio: recall classe negativa = 565/( ) = Più il numero dei FN è basso, più la Recall si avvicina al massimo valore di 1. La F-MEASURE è uguale a: F-measure= 2*Recall*Precision/(Recall+Precision)

6 6 WEKA Weka è un open source software che è stato ideato dall Università di Waikato in Nuova Zelanda e rappresenta un estesa collezione di algoritmi di Machine Learning per lavori di Data Mining. Contiene strumenti per il pre-processing dei dati, per la classificazione e la regressione, per il clustering, per le regole di associazione e per la visualizzazione. Per il nostro lavoro di classificazione, abbiamo utilizzato per la maggior parte i classificatori presenti nella versione vecchia di Weka (3-2), mentre della versione più recente (3-4), abbiamo usato solo due classificatori e cioè JRip e AODE. Per analizzare il data set a disposizione, è stato usato l ambiente Explorer di Weka. Experimenter invece permette di mettere a confronto più modelli a partire da uno o più data set. Explorer possiede un set di pannelli, ognuno dei quali può essere adoperato per condurre un certo tipo di lavoro; questi sono elencati sotto: Figura 1; versione 3-2 Preprocess serve per importare e preparare i dati Classify serve per applicare ai dati gli algoritmi di classificazione o i modelli per la regressione (entrambi sono chiamati classifiers in Weka) Cluster serve per fare cluster analysis Associate serve per applicare algoritmi di apprendimento delle regole di associazione Select Attributes serve per selezionare sottogruppi di attributi per l analisi Visualize serve per visualizzare le proprietà grafiche dei dati Attraverso Open File nel pannello Preprocess, abbiamo caricato il nostro data set di proteine. Il file che era in un formato.xls è stato trasformato in.csv (comma separated values) affinchè potesse essere opportunamente riconosciuto da Weka, che a sua volta lo trasforma in formato.arff. Inoltre, abbiamo trasformato la classe da numerica in nominale per esigenze di software (come è spiegato

7 7 successivamente nella sezione risultati). Non è stato necessario sottoporre il data set a Preprocessing poiché non conteneva rumore o casi mancanti. Siamo nella sezione di Preprocess Figura 2 Questo è il nostro data set con 27 attributi, l ultimo dei quali rappresenta la classe. Il data set contiene 1746 istanze Come si può vedere dalla Figura 2, il data set ha 27 attributi di cui l ultimo rappresenta la classe e contiene 1746 istanze. Selezionando l attributo PROTEIN, nella finestra sulla destra si può notare che questa classe contiene due labels : negativo con 895 istanze e positivo con 851 istanze; la classe è di tipo nominale (Figura 3). Se invece selezioniamo un singolo attributo, per esempio Weight, nella finestra sulla destra ci appaiono le informazioni statistiche che lo riguardano come: minimo, massimo, media e deviazione standard (Figura 4).

8 8 Figura 3 Selezionando solamente l attributo Proteine, che corrisponde alla classe, si vede che esistono due Labels : negativo con 895 istanze e positivo con 851 istanze. Figura 4 Selezionando un attributo, a destra, si possono osservare le informazioni statistiche che lo riguardano come : massimo, minimo, media e deviazione standard.

9 9 Passiamo ora al pannello Classify. Weka possiede le implementazioni di tutte le principali tecniche di learning per la classificazione e per la regressione come: alberi di decisione, rule sets, classificatori Bayesiani, support vector machines, logistic and linear regression, multi-layer perceptron e metodi nearest-neighbour; contiene anche meta-classificatori per bagging e boosting. In questa sezione possiamo scegliere il tipo di classificatore da utilizzare, possiamo cambiarne eventualmente i parametri di default, applicare un certo tipo di filtro, scegliere il tipo di metodo con cui vogliamo valutare la performance del classificatore, ecc. (Figura 5). Nella sezione Classify, possiamo scegliere il tipo di classificatore, cambiarne eventualmente i paramentri di default, applicare o meno un filtro, scegliere il tipo di metodo con cui vogliamo valutare la performance del classificatore, ecc. Classificatore selezionato Questi parametri di default di IBk possono essere variati. Noi abbiamo cambiato il valore di KNN da 1 a 2, 5 e 12. Figura 5

10 10 Nella Figura 6, possiamo vedere il riquadro (Test options) dove scegliere il metodo per valutare la performance del classificatore precedentemente selezionato. Dopo avere fatto correre il programma per mezzo dell opzione Start, nella finestra grande a destra compare l output completo del classificatore con tutti i dettagli inerenti alla sua performance. In questo riquadro, si possono selezionare i metodi con cui si vuole valutare la performance del classificatore in esame. Noi abbiamo usato la Cross-validation e il Percentage split (detto anche Hold-out). Figura 6 In Weka, esiste anche un ulteriore opzione che permette di visualizzare gli alberi di decisione costruiti dai classificatori che si basano su questo tipo di algoritmo (Figura 7).

11 11 In Weka, esiste anche un opzione che dà la possibilità di visualizzare l albero di decisione costruito dal classificatore. Figura 7 COMMENTI AI RISULTATI WEKA Il data set che abbiamo analizzato è di proteine ed è costituito da 27 attributi per un totale di 1746 istanze complessive. I primi 26 attributi sono variabili che rappresentano delle caratteristiche strutturali o chimico-fisiche delle proteine in questione, mentre l ultimo attributo corrisponde alla Classe nella quale possiamo distinguere due labels class e cioè: -1 e +1. Per esigenze di software la classe è stata trasformata da numerica in nominale convertendo -1 in negativo e +1 in positivo. Inoltre, il file che contiene il data set è stato trasformato da file.xls a file.csv (comma separated values) che è un formato riconosciuto da Weka, il quale poi lo trasforma a sua volta in file.arff.

12 12 Per l analisi di classificazione sono stati utilizzati 18 classificatori presenti nella versione 3-2 di Weka e 2 classificatori presenti nella versione 3-4 di Weka che sono i seguenti: 1. ZeroR 2. DecisionStump 3. DecisionTable 4. HyperPipes 5. IB1 6. IBk 7. Id3 8. J48J48 9. J48Part 10. KernelDensity 11. K-Star 12. Naive Bayes Simple 13. Naive Bayes 14. OneR 15. Prism 16. AODE 17. JRip 18. VFI 19. ADTree 20. SMO Sono stati eseguiti 240 esperimenti in cui abbiamo analizzato la performance dei vari classificatori attraverso due metodi principali e cioè: Cross-validation Hold-out Per quanto riguarda la Cross-validation, abbiamo fatto per quasi tutti i classificatori tre esperimenti a 10 (valore di default), 6 e 3 folds, senza e con l applicazione di un filtro di discretizzazione. Per l Hold-out, abbiamo fatto tre esperimenti con un valore di training set pari al 66% (valore di default), all 80% e al 50% senza il filtro di discretizzazione, mentre con l applicazione del filtro abbiamo fatto solo un esperimento con il valore di default. Inoltre, abbiamo fatto prove con Cross-validation a 10 folds e Hold-out 66% aggiungendo il Bagging a quasi tutti i classificatori considerati per cercare di migliorarne la performance. Per DecisionStump, sono stati utilizzati anche due metaclassificatori per il Boosting e cioè AdaBoost e LogitBoost. Altri parametri sono stati variati rispetto a quelli di default anche per DecisionTable, IBk e NaiveBayes come verrà spiegato poi. Qui di seguito, riportiamo solo gli esperimenti che hanno dato i risultati migliori, mentre per gli output di tutti gli esperimenti fatti e i relativi

13 13 commenti si rimanda al file Risultati e commenti esperimenti eseguiti con Weka e alla Tabella riassuntiva. ZeroR Il Classificatore ZeroR assegna tutte le istanze alla classe di maggiore dimensione presente nel training-set senza mai considerare gli attributi di ciascuna istanza. Non ha molto senso usare questo schema per la classificazione, per cui gli esperimenti eseguiti con ZeroR ci servono solo come parametro di riferimento per la valutazione della performance dei classificatori considerati successivamente, nel senso che non si deve mai andare sotto il valore trovato con questo classificatore che dovrebbe rappresentare il peggior risultato possibile. Per questi motivi viene anche detto classificatore stupido. In tutti gli esperimenti eseguiti con ZeroR, questo classificatore assegna tutte le istanze del data set (n tot 1746) alla classe maggiormente rappresentata che nel nostro caso è quella negativa (-1) con 895 istanze contro le 851 della positiva (+1). La percentuale di istanze correttamente classificate da ZeroR è intorno al 51% circa. ZeroR cross-validation: 10 folds senza filtri Scheme: Test mode: weka.classifiers.zeror 10-fold cross-validation Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic 0 Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances negativo positivo a = negativo b = positivo

14 14 DecisionStump Questa è una classe per la costruzione e l uso di un semplice albero di decisione a un livello binario (alberi di decisione a un livello) con un ramo extra per i valori persi. Esso produce probabilità di classe. Fa fronte ai valori persi estendendo un terzo ramo dall albero, in altre parole, trattando il valore perso come un attributo separato. Di solito viene utilizzato insieme agli algoritmi di Boosting. La miglior performance che abbiamo ottenuto con DecisionStump (88% di istanze correttamente classificate) si è avuta utilizzando il metodo Hold-out 80% senza filtro di discretizzazione ed associando il classificatore LogitBoost per il boosting. Per gli altri esperimenti condotti con l uso di LogitBoost, la percentuale di istanze correttamente classificate si è mantenuta compresa tra circa l 85 e l 86%. Usando invece AdaBoost come algoritmo di boosting, abbiamo ottenuto delle percentuali di istanze classificate in modo corretto un po inferiori rispetto a LogitBoost e cioè in media intorno all 82%, tranne nel caso di Hold-out 50% senza filtro dove si è raggiunto il valore di 84.19%. Senza l uso degli algoritmi di boosting, i risultati ottenuti nei rimanenti esperimenti sono compresi tra circa l 80.50% e l 81.90%. In linea generale, DecisionStump tende a commettere più errori nel classificare le istanze della classe positiva. Non c è un equa ripartizione delle istanze non correttamente classificate tra le due classi negativa e positiva. Vedi il file Risultati e commenti esperimenti eseguiti con Weka e la Tabella riassuntiva. DecisionStump+LogitBoost Hold-out: 80 % senza filtri Scheme: weka.classifiers.logitboost -P 100 -I 10 -W weka.classifiers.decisionstump -- Test mode: split 80% train, remainder test Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances 350

15 negativo positivo a = negativo b = positivo DecisionStump+AdaBoost cross-validation: 10 folds senza filtri Scheme: weka.classifiers.adaboostm1 -P 100 -I 10 -S 1 -W weka.classifiers.decisionstump -- Test mode: 10-fold cross-validation Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances negativo positivo a = negativo b = positivo DecisionTable Classificatore che costruisce e usa una semplice tabella di decisione. Decision Table adopera il wrapper method per trovare un buon sotto-insieme di attributi da includere nella tabella. Questo è fatto usando la prima migliore ricerca. La migliore percentuale di classificazione ottenuta con DecisionTable si è avuta usando il metodo Hold-out senza filtro di discretizzazione e settando il parametro useibk come true; si è così avuto l 87.04% di istanze correttamente classificate. Anche le rimanenti performance sono state comunque abbastanza buone con percentuali comprese tra l 84,48% e l 86,60%. Anche la ripartizione delle istanze

16 16 non correttamente classificate è stata equa tra le due classi negativa e positiva, il che ci indica che il classificatore commette la stessa percentuale di errore nel classificare entrambi i due tipi di proteine. DecisionTable Hold-out: 66% con useibk=true Scheme: weka.classifiers.decisiontable -X 1 -S 5 -I Test mode: split 66% train, remainder test Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances negativo positivo a = negativo b = positivo HyperPipes Implementazione di un classificatore HyperPipes. Per ogni categoria si costruisce un HyperPipes che contiene tutti i punti di quella categoria (essenzialmente registra i legami degli attributi osservati per ciascuna categoria). Le istanze-test sono classificate in accordo con la categoria che più contiene l istanza. Non manipola classi numeriche o valori persi nei casi-test. E un algoritmo molto semplice, ma ha il vantaggio di essere estremamente veloce. HyperPipes non ha mai dati buone percentuali di classificazione in nessun esperimento condotto. I suoi risultati sono equiparabili a quelli del classificatore ZeroR e non raggiungono mai valori superiori a circa il 63% (ottenuto con l uso di Bagging e Hold-out 66% senza filtro). Anche la distribuzione delle istanze non correttamente classificate tra le due classi negativa e positiva è pessima.

17 17 HyperPipes +Bagging Hold-out: 66% senza filtro Scheme: weka.classifiers.bagging -S 1 -I 10 -P 100 -W weka.classifiers.hyperpipes -- Test mode: split 66% train, remainder test Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances negativo positivo a = negativo b = positivo IB1 Il classificatore IB1 usa una semplice misura di distanza per trovare l istanza di training più vicina all istanza di test che viene considerata. Se ci sono più istanze di training con la medesima distanza (che deve essere la minore possibile) dall istanza di test, viene presa l istanza di training che è stata trovata per prima. IB1 è una semplice implementazione dell algoritmo di Nearest Neighbour (NNA). La distanza tra due campioni Xi e Xj può essere misurata attraverso una funzione Euclidea. IB1, insieme ad IBk, ha dato la miglior performance di classificazione in assoluto tra tutti i classificatori presi in considerazione raggiungendo una percentuale di istanze correttamente classificate pari al 93.93% nell esperimento in cui è stata usata la Cross-validation a 10 folds senza filtro di discretizzazione. Anche il corrispondente esperimento con Bagging non ha migliorato ulteriormente questa percentuale che è rimasta tale. Le prestazioni di IB1 sono sempre state superiori all 87% in tutti gli esperimenti condotti. Ottima anche la distribuzione delle istanze non correttamente classificate tra le due classi negativa e positiva.

18 18 IB1 cross-validation: 10 folds senza filtro Scheme: Test mode: weka.classifiers.ib1 10-fold cross-validation Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances negativo positivo a = negativo b = positivo IBk E un classificatore K-Nearest Neighbour. Estende IB1 usando una misura di distanza per trovare le k-istanze di training più vicine all istanza-test considerata. Questo algoritmo non ha una fase di training, i records esempio sono semplicemente immagazzinati. Nella fase di testing, un record non classificato è comparato con tutti i records immagazzinati fino a che si trova quello più vicino. Il record nuovo viene assegnato alla stessa classe di quello più vicino. Un estensione di questo classificatore è di usare più di un nearest neighbour, cosicché la class label sia calcolata in dipendenza da parecchi neighbours. Anche IBk, come il precedente IB1, ha data la miglior performance in assoluto tra tutti i classificatori adoperati con una percentuale del 93.93% nell esperimento condotto con il metodo della Cross-validation a 10 folds senza filtro di discretizzazione; d altro canto, IBk e IB1 sono molto simili tra loro e nel nostro esperimento, eseguito con parametri di default, il valore di k è settato ad 1 come per IB1. Anche in questo caso la percentuale di errore commessa nel classificare le istanze sbagliate è equivalente per entrambe le categorie proteiche. Anche nei

19 19 restanti esperimenti le percentuali di classificazioni corrette si mantengono sempre superiori all 88.89%. Per questo classificatore, abbiamo provato a variare anche il valore dei k-nearest neighbour portandolo da 1 a 2, 5 e 12; la percentuale delle istanze correttamente classificate però è stata inferiore a quella dei corrispondenti esperimenti con i parametri di default (tra 88.89% e 91.81%). Anche in questo caso, l aggiunta del Bagging non ha migliorato il risultato. IBk cross-validation: 10 folds senza filtro Scheme: weka.classifiers.ibk -K 1 -W 0 Test mode: 10-fold cross-validation Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances negativo positivo a = negativo b = positivo Id3 E un classificatore che costruisce un albero di decisione. Riconosce solo attributi nominali. Quindi, è necessario applicare un filtro di discretizzazione per poterlo usare con il nostro data set in cui gli attributi sono numerici. Questo classificatore non ha mai dato una buona performance poiché non è mai riuscito a classificare tutte le istanze (circa il 5-7.4% delle istanze non sono mai state classificate).

20 20 Id3 cross-validation: 10 folds con filtro di discretizzazione Scheme: weka.classifiers.filteredclassifier -B weka.classifiers.id3 -F "weka.filters.discretizefilter -B 10 -R first-last" Test mode: 10-fold cross-validation Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % UnClassified Instances % Total Number of Instances negativo positivo a = negativo b = positivo J48J48 L idea di questo algoritmo è di formare un albero di decisione attraverso il frazionamento dei dataset in pezzettini sempre più piccoli. Poi si può decidere come classificare un record seguendo l albero finché si arriva all estremità, dove si trova quale classe abbiamo. Con questo classificatore abbiamo ottenuto delle performance di classificazione molto buone con percentuali di istanze correttamente classificate superiori in generale a circa l 83% e con una punta massima del 90.74% usando il metodo Hold-out senza filtro con Bagging (l aggiunta del Bagging migliora del 5.22% la performance di J48J48 rispetto allo equivalente esperimento che è stato eseguito senza). Considerando tutti gli esperimenti, la distribuzione delle istanze non classificate in maniera corretta è abbastanza equa tra le due classi negativa e positiva.

21 21 J48J48+Bagging Hold-out: 66 % senza filtro Scheme: weka.classifiers.bagging -S 1 -I 10 -P 100 -W weka.classifiers.j48.j C M 2 Test mode: split 66% train, remainder test Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances negativo positivo a = negativo b = positivo J48PART Classe per generare una PART decision list. Induce regole if-then per le istanze di training date. PART ottiene regole da alberi di decisione costruiti parzialmente. La performance di J48Part è stata molto buona in quasi tutte le prove con un valore minimo di istanze correttamente classificate pari all 82.76% ed un valore massimo pari al 93.77%, che si è avuto con il metodo Hold-out 66% senza filtro e con Bagging. Buona anche la ripartizione tra le due classi delle istanze non correttamente classificate. J48Part+Bagging Hold-out: 66 % senza filtro Scheme: weka.classifiers.bagging -S 1 -I 10 -P 100 -W weka.classifiers.j48.part -- -C M 2 Test mode: split 66% train, remainder test Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error

22 22 Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances negativo positivo a = negativo b = positivo KernelDensity E un classificatore kernel density molto semplice. KernelDensity è un ottimo classificatore perché in tutti gli esperimenti considerati ha sempre dato percentuali di classificazione superiori al 90.74% con anche un ottima distribuzione delle istanze non classificate correttamente tra le due classi proteiche negativa e positiva. La performance migliore si è ottenuta con il metodo della Cross-validation a 10 folds senza filtro di discretizzazione, dove si è raggiunta una percentuale del 93.64% di istanze correttamente classificate. Il Bagging non è stato applicato perché la classificazione diventava molto costosa in termini di tempo. KernelDensity cross-validation: 10 folds senza filtro Scheme: weka.classifiers.kerneldensity Test mode: 10-fold cross-validation Correctly Classified Instances % Incorrectly Classified Instances % Kappa statistic Mean absolute error Root mean squared error Relative absolute error % Root relative squared error % Total Number of Instances negativo positivo

Modelli probabilistici

Modelli probabilistici Modelli probabilistici Davide Cittaro e Marco Stefani Master bioinformatica 2003 Introduzione L obiettivo di presente lavoro è la classificazione di un insieme di proteine, definite da 27 valori numerici,

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e

Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e Alberi di decisione Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e lanciarlo con i parametri di default.

Dettagli

Ricerca di outlier. Ricerca di Anomalie/Outlier

Ricerca di outlier. Ricerca di Anomalie/Outlier Ricerca di outlier Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna Ricerca di Anomalie/Outlier Cosa sono gli outlier? L insieme di dati che sono considerevolmente differenti dalla

Dettagli

PROGRAMMA SVOLTO NELLA SESSIONE N.

PROGRAMMA SVOLTO NELLA SESSIONE N. Università C. Cattaneo Liuc, Corso di Statistica, Sessione n. 1, 2014 Laboratorio Excel Sessione n. 1 Venerdì 031014 Gruppo PZ Lunedì 061014 Gruppo AD Martedì 071014 Gruppo EO PROGRAMMA SVOLTO NELLA SESSIONE

Dettagli

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it Automazione Industriale (scheduling+mms) scheduling+mms adacher@dia.uniroma3.it Introduzione Sistemi e Modelli Lo studio e l analisi di sistemi tramite una rappresentazione astratta o una sua formalizzazione

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro,

EXCEL PER WINDOWS95. sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area di lavoro, detta foglio di lavoro, EXCEL PER WINDOWS95 1.Introduzione ai fogli elettronici I fogli elettronici sono delle applicazioni che permettono di sfruttare le potenzialità di calcolo dei personal computer. Essi si basano su un area

Dettagli

Database. Si ringrazia Marco Bertini per le slides

Database. Si ringrazia Marco Bertini per le slides Database Si ringrazia Marco Bertini per le slides Obiettivo Concetti base dati e informazioni cos è un database terminologia Modelli organizzativi flat file database relazionali Principi e linee guida

Dettagli

Mining Positive and Negative Association Rules:

Mining Positive and Negative Association Rules: Mining Positive and Negative Association Rules: An Approach for Confined Rules Alessandro Boca Alessandro Cislaghi Premesse Le regole di associazione positive considerano solo gli item coinvolti in una

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Capitolo 3. L applicazione Java Diagrammi ER. 3.1 La finestra iniziale, il menu e la barra pulsanti

Capitolo 3. L applicazione Java Diagrammi ER. 3.1 La finestra iniziale, il menu e la barra pulsanti Capitolo 3 L applicazione Java Diagrammi ER Dopo le fasi di analisi, progettazione ed implementazione il software è stato compilato ed ora è pronto all uso; in questo capitolo mostreremo passo passo tutta

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) LABORATORIO EXCEL

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

Alessandro Pellegrini

Alessandro Pellegrini Esercitazione sulle Rappresentazioni Numeriche Esistono 1 tipi di persone al mondo: quelli che conoscono il codice binario e quelli che non lo conoscono Alessandro Pellegrini Cosa studiare prima Conversione

Dettagli

Analisi della performance temporale della rete

Analisi della performance temporale della rete Analisi della performance temporale della rete In questo documento viene analizzato l andamento nel tempo della performance della rete di promotori. Alcune indicazioni per la lettura di questo documento:

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

A intervalli regolari ogni router manda la sua tabella a tutti i vicini, e riceve quelle dei vicini.

A intervalli regolari ogni router manda la sua tabella a tutti i vicini, e riceve quelle dei vicini. Algoritmi di routing dinamici (pag.89) UdA2_L5 Nelle moderne reti si usano algoritmi dinamici, che si adattano automaticamente ai cambiamenti della rete. Questi algoritmi non sono eseguiti solo all'avvio

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

Programma Gestione Presenze Manuale autorizzatore. Versione 1.0 25/08/2010. Area Sistemi Informatici - Università di Pisa

Programma Gestione Presenze Manuale autorizzatore. Versione 1.0 25/08/2010. Area Sistemi Informatici - Università di Pisa - Università di Pisa Programma Gestione Presenze Manuale autorizzatore Versione 1.0 25/08/2010 Email: service@adm.unipi.it 1 1 Sommario - Università di Pisa 1 SOMMARIO... 2 2 ACCESSO AL PROGRAMMA... 3

Dettagli

per immagini guida avanzata Uso delle tabelle e dei grafici Pivot Geometra Luigi Amato Guida Avanzata per immagini excel 2000 1

per immagini guida avanzata Uso delle tabelle e dei grafici Pivot Geometra Luigi Amato Guida Avanzata per immagini excel 2000 1 Uso delle tabelle e dei grafici Pivot Geometra Luigi Amato Guida Avanzata per immagini excel 2000 1 Una tabella Pivot usa dati a due dimensioni per creare una tabella a tre dimensioni, cioè una tabella

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Organizzazione degli archivi

Organizzazione degli archivi COSA E UN DATA-BASE (DB)? è l insieme di dati relativo ad un sistema informativo COSA CARATTERIZZA UN DB? la struttura dei dati le relazioni fra i dati I REQUISITI DI UN DB SONO: la ridondanza minima i

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

VALORE DELLE MERCI SEQUESTRATE

VALORE DELLE MERCI SEQUESTRATE La contraffazione in cifre: NUOVA METODOLOGIA PER LA STIMA DEL VALORE DELLE MERCI SEQUESTRATE Roma, Giugno 2013 Giugno 2013-1 Il valore economico dei sequestri In questo Focus si approfondiscono alcune

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Progettaz. e sviluppo Data Base

Progettaz. e sviluppo Data Base Progettaz. e sviluppo Data Base! Progettazione Basi Dati: Metodologie e modelli!modello Entita -Relazione Progettazione Base Dati Introduzione alla Progettazione: Il ciclo di vita di un Sist. Informativo

Dettagli

Funzioni in C. Violetta Lonati

Funzioni in C. Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica Funzioni - in breve: Funzioni Definizione di funzioni

Dettagli

Esercizi su. Funzioni

Esercizi su. Funzioni Esercizi su Funzioni ๒ Varie Tracce extra Sul sito del corso ๓ Esercizi funz_max.cc funz_fattoriale.cc ๔ Documentazione Il codice va documentato (commentato) Leggibilità Riduzione degli errori Manutenibilità

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

SISTEMI INFORMATIVI AVANZATI -2010/2011 1. Introduzione

SISTEMI INFORMATIVI AVANZATI -2010/2011 1. Introduzione SISTEMI INFORMATIVI AVANZATI -2010/2011 1 Introduzione In queste dispense, dopo aver riportato una sintesi del concetto di Dipendenza Funzionale e di Normalizzazione estratti dal libro Progetto di Basi

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Università degli Studi di Ferrara - A.A. 2014/15 Dott. Valerio Muzzioli ORDINAMENTO DEI DATI

Università degli Studi di Ferrara - A.A. 2014/15 Dott. Valerio Muzzioli ORDINAMENTO DEI DATI ORDINAMENTO DEI DATI Quando si ordina un elenco (ovvero una serie di righe contenenti dati correlati), le righe sono ridisposte in base al contenuto di una colonna specificata. Distinguiamo due tipi di

Dettagli

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale Esperienze di Apprendimento Automatico per il corso di lippi@dsi.unifi.it Dipartimento Sistemi e Informatica Università di Firenze Dipartimento Ingegneria dell Informazione Università di Siena Introduzione

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

5-1 FILE: CREAZIONE NUOVO DOCUMENTO

5-1 FILE: CREAZIONE NUOVO DOCUMENTO Capittol lo 5 File 5-1 FILE: CREAZIONE NUOVO DOCUMENTO In Word è possibile creare documenti completamente nuovi oppure risparmiare tempo utilizzando autocomposizioni o modelli, che consentono di creare

Dettagli

Il riduttore di focale utilizzato è il riduttore-correttore Celestron f/ 6.3.

Il riduttore di focale utilizzato è il riduttore-correttore Celestron f/ 6.3. LE FOCALI DEL C8 Di Giovanni Falcicchia Settembre 2010 Premessa (a cura del Telescope Doctor). Il Celestron C8 è uno Schmidt-Cassegrain, ovvero un telescopio composto da uno specchio primario concavo sferico

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Indagini statistiche attraverso i social networks

Indagini statistiche attraverso i social networks Indagini statistiche attraverso i social networks Agostino Di Ciaccio Dipartimento di Scienze Statistiche Università degli Studi di Roma "La Sapienza" SAS Campus 2012 1 Diffusione dei social networks Secondo

Dettagli

C4.5 Algorithms for Machine Learning

C4.5 Algorithms for Machine Learning C4.5 Algorithms for Machine Learning C4.5 Algorithms for Machine Learning Apprendimento di alberi decisionali c4.5 [Qui93b,Qui96] Evoluzione di ID3, altro sistema del medesimo autore, J.R. Quinlan Ispirato

Dettagli

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE DESCRIZIONE DEI DATI DA ESAMINARE Sono stati raccolti i dati sul peso del polmone di topi normali e affetti da una patologia simile

Dettagli

e-dva - eni-depth Velocity Analysis

e-dva - eni-depth Velocity Analysis Lo scopo dell Analisi di Velocità di Migrazione (MVA) è quello di ottenere un modello della velocità nel sottosuolo che abbia dei tempi di riflessione compatibili con quelli osservati nei dati. Ciò significa

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Volume GESTFLORA. Gestione aziende agricole e floricole. Guidaall uso del software

Volume GESTFLORA. Gestione aziende agricole e floricole. Guidaall uso del software Volume GESTFLORA Gestione aziende agricole e floricole Guidaall uso del software GESTIONE AZIENDE AGRICOLE E FLORICOLE Guida all uso del software GestFlora Ver. 2.00 Inter-Ware Srl Viadegli Innocenti,

Dettagli

Guida all uso di Java Diagrammi ER

Guida all uso di Java Diagrammi ER Guida all uso di Java Diagrammi ER Ver. 1.1 Alessandro Ballini 16/5/2004 Questa guida ha lo scopo di mostrare gli aspetti fondamentali dell utilizzo dell applicazione Java Diagrammi ER. Inizieremo con

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Librerie digitali. Video. Gestione di video. Caratteristiche dei video. Video. Metadati associati ai video. Metadati associati ai video

Librerie digitali. Video. Gestione di video. Caratteristiche dei video. Video. Metadati associati ai video. Metadati associati ai video Video Librerie digitali Gestione di video Ogni filmato è composto da più parti Video Audio Gestito come visto in precedenza Trascrizione del testo, identificazione di informazioni di interesse Testo Utile

Dettagli

ALLEGATO 1 Analisi delle serie storiche pluviometriche delle stazioni di Torre del Lago e di Viareggio.

ALLEGATO 1 Analisi delle serie storiche pluviometriche delle stazioni di Torre del Lago e di Viareggio. ALLEGATO 1 Analisi delle serie storiche pluviometriche delle stazioni di Torre del Lago e di Viareggio. Per una migliore caratterizzazione del bacino idrologico dell area di studio, sono state acquisite

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

PROCEDURA INVENTARIO DI MAGAZZINO di FINE ESERCIZIO (dalla versione 3.2.0)

PROCEDURA INVENTARIO DI MAGAZZINO di FINE ESERCIZIO (dalla versione 3.2.0) PROCEDURA INVENTARIO DI MAGAZZINO di FINE ESERCIZIO (dalla versione 3.2.0) (Da effettuare non prima del 01/01/2011) Le istruzioni si basano su un azienda che ha circa 1000 articoli, che utilizza l ultimo

Dettagli

Strutturazione logica dei dati: i file

Strutturazione logica dei dati: i file Strutturazione logica dei dati: i file Informazioni più complesse possono essere composte a partire da informazioni elementari Esempio di una banca: supponiamo di voler mantenere all'interno di un computer

Dettagli

Come creare il test di Yasso tramite l applicazione Training Center

Come creare il test di Yasso tramite l applicazione Training Center Come creare il test di Yasso tramite l applicazione Training Center A differenza degli altri test pubblicati da Garmin, il test di Yasso necessita di un approfondimento. Il test di Yasso è un test molto

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli

Riconoscimento e Recupero dell'informazione per Bioinformatica

Riconoscimento e Recupero dell'informazione per Bioinformatica Riconoscimento e Recupero dell'informazione per Bioinformatica LAB. 8 PRTools (2) Pietro Lovato Corso di Laurea in Bioinformatica Dip. di Informatica Università di Verona A.A. 2015/2016 Ripasso: validazione

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.

Dettagli

Uno standard per il processo KDD

Uno standard per il processo KDD Uno standard per il processo KDD Il modello CRISP-DM (Cross Industry Standard Process for Data Mining) è un prodotto neutrale definito da un consorzio di numerose società per la standardizzazione del processo

Dettagli

Mon Ami 3000 Varianti articolo Gestione di varianti articoli

Mon Ami 3000 Varianti articolo Gestione di varianti articoli Prerequisiti Mon Ami 3000 Varianti articolo Gestione di varianti articoli L opzione Varianti articolo è disponibile per le versioni Azienda Light e Azienda Pro e include tre funzionalità distinte: 1. Gestione

Dettagli

Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario

Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario Progetto ASTREA WP2: Sistema informativo per il monitoraggio del sistema giudiziario Nell ambito di questa attività è in fase di realizzazione un applicativo che metterà a disposizione dei policy makers,

Dettagli

La Metodologia adottata nel Corso

La Metodologia adottata nel Corso La Metodologia adottata nel Corso 1 Mission Statement + Glossario + Lista Funzionalià 3 Descrizione 6 Funzionalità 2 Schema 4 Schema 5 concettuale Logico EA Relazionale Codice Transazioni In PL/SQL Schema

Dettagli

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995).

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). ANALISI DI UNA SERIE TEMPORALE Analisi statistica elementare Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). Si puo' osservare una media di circa 26 C e una deviazione

Dettagli

IL COLLAUDO DI ACCETTAZIONE

IL COLLAUDO DI ACCETTAZIONE IL COLLAUDO DI ACCETTAZIONE Il collaudo di accettazione 1 Popolazione Campione Dati MISURA Processo Lotto Campione DATI CAMPIONAMENTO INTERVENTO MISURA Lotto Campione DATI CAMPIONAMENTO INTERVENTO Il collaudo

Dettagli

Plate Locator Riconoscimento Automatico di Targhe

Plate Locator Riconoscimento Automatico di Targhe Progetto per Laboratorio di Informatica 3 - Rimotti Daniele, Santinelli Gabriele Plate Locator Riconoscimento Automatico di Targhe Il programma plate_locator.m prende come input: l immagine della targa

Dettagli

LUdeS Informatica 2 EXCEL. Seconda parte AA 2013/2014

LUdeS Informatica 2 EXCEL. Seconda parte AA 2013/2014 LUdeS Informatica 2 EXCEL Seconda parte AA 2013/2014 STAMPA Quando si esegue il comando FILE STAMPA, Excel manda alla stampante tutte le celle del foglio di lavoro corrente che hanno un contenuto. Il numero

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Polli e conigli. problemi Piano cartesiano. Numeri e algoritmi Sistemi e loro. geometrica. Relazioni e funzioni Linguaggio naturale e

Polli e conigli. problemi Piano cartesiano. Numeri e algoritmi Sistemi e loro. geometrica. Relazioni e funzioni Linguaggio naturale e Polli e conigli Livello scolare: primo biennio Abilità Interessate Calcolo di base - sistemi Risolvere per via grafica e algebrica problemi che si formalizzano con equazioni. Analizzare semplici testi

Dettagli

Il calcolo letterale per risolvere problemi e per dimostrare

Il calcolo letterale per risolvere problemi e per dimostrare Il calcolo letterale per risolvere problemi e per dimostrare (si prevedono circa 25 ore di lavoro in classe) Nome e cognome dei componenti del gruppo che svolge le attività di gruppo di questa lezione

Dettagli

Sistema operativo. Sommario. Sistema operativo...1 Browser...1. Convenzioni adottate

Sistema operativo. Sommario. Sistema operativo...1 Browser...1. Convenzioni adottate MODULO BASE Quanto segue deve essere rispettato se si vuole che le immagini presentate nei vari moduli corrispondano, con buona probabilità, a quanto apparirà nello schermo del proprio computer nel momento

Dettagli

MAGAZZINO FISCALE (agg. alla rel. 3.4.1)

MAGAZZINO FISCALE (agg. alla rel. 3.4.1) MAGAZZINO FISCALE (agg. alla rel. 3.4.1) Per ottenere valori corretti nell inventario al LIFO o FIFO è necessario andare in Magazzino Fiscale ed elaborare i dati dell anno che ci serve valorizzare. Bisogna

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE INTRODUZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Introduzione alla simulazione Una simulazione è l imitazione

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Regressione logistica. Strumenti quantitativi per la gestione

Regressione logistica. Strumenti quantitativi per la gestione Regressione logistica Strumenti quantitativi per la gestione Emanuele Taufer file:///c:/users/emanuele.taufer/dropbox/3%20sqg/classes/4a_rlg.html#(1) 1/25 Metodi di classificazione I metodi usati per analizzare

Dettagli

PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO

PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO PROGETTO INDAGINE DI OPINIONE SUL PROCESSO DI FUSIONE DEI COMUNI NEL PRIMIERO L indagine si è svolta nel periodo dal 26 agosto al 16 settembre 2014 con l obiettivo di conoscere l opinione dei residenti

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

Soluzione dell esercizio del 12 Febbraio 2004

Soluzione dell esercizio del 12 Febbraio 2004 Soluzione dell esercizio del 12/2/2004 1 Soluzione dell esercizio del 12 Febbraio 2004 1. Casi d uso I casi d uso sono riportati in Figura 1. Figura 1: Diagramma dei casi d uso. 2. Modello concettuale

Dettagli

Laboratorio di Pedagogia Sperimentale. Indice

Laboratorio di Pedagogia Sperimentale. Indice INSEGNAMENTO DI LABORATORIO DI PEDAGOGIA SPERIMENTALE LEZIONE III INTRODUZIONE ALLA RICERCA SPERIMENTALE (PARTE III) PROF. VINCENZO BONAZZA Indice 1 L ipotesi -----------------------------------------------------------

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Più processori uguale più velocità?

Più processori uguale più velocità? Più processori uguale più velocità? e un processore impiega per eseguire un programma un tempo T, un sistema formato da P processori dello stesso tipo esegue lo stesso programma in un tempo TP T / P? In

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Nell esempio verrà mostrato come creare un semplice documento in Excel per calcolare in modo automatico la rata di un mutuo a tasso fisso conoscendo

Nell esempio verrà mostrato come creare un semplice documento in Excel per calcolare in modo automatico la rata di un mutuo a tasso fisso conoscendo Nell esempio verrà mostrato come creare un semplice documento in Excel per calcolare in modo automatico la rata di un mutuo a tasso fisso conoscendo - la durata del mutuo in anni - l importo del mutuo

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli