1.La valutazione della qualità delle previsioni meteorologiche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1.La valutazione della qualità delle previsioni meteorologiche"

Transcript

1 Davide Maspero Università Bocconi Departimento di Finanza 1.La valutazione della qualità delle previsioni meteorologiche Martedì 26 gennaio Mercoledì 27 gennaio 2010

2 La verifica delle previsioni meteorologiche Ragioni per effettuare verifiche della qualità delle previsioni Ragioni scientifiche: migliorare i modelli previsionali, rilevare bias nei modelli o nell attività previsionale dei metereologi Ragioni economiche: in questo caso la valutazione è legata all utente esposto al rischio meteorologico Ragioni amministrative: incentivazione, assegnazione fondi, nuova strumentazione, paragone tra strutture diverse Problema comune ad altre discipline: Medicina: valutazione del potere diagnostico o discriminante di analisi Finanza: aspetto fondamentale sia nelle scelte macroeconomiche sia nelle scelte di investimento individuali

3 Problematiche generali nell attività di verifica Definizione degli eventi Come sono definiti gli eventi oggetto di previsione? Osservabilità degli eventi Dove sono posizionate le stazioni che rilevano gli eventi rispetto al territorio coperto dalla previsione? Cambiamenti nei dati disponibili per le verifiche Es: introduzione di nuove stazioni o di nuovi strumenti o di nuove metodologie di acquisizione ed elaborazione dei dati

4 La tipologia di previsione impatta sulle modalità di verifica Vasta gamma di tipologie previsionali Previsioni binarie o in categorie multiple Previsioni deterministiche o probabilistiche Previsioni qualitative e quantitative Sono state sviluppate numerose misure di verifica della qualità previsionale specifiche per le diverse tipologie previsionali E possibile ipotizzare uno schema generale di riferimento?

5 La distribuzione congiunta di probabilità delle previsioni e degli eventi Ogni attività di verifica della qualità previsionale è legata allo studio della distribuzione congiunta di probabilità delle previsioni e degli eventi p(f,x) E una distribuzione empirica ex-post della previsione e dell evento realizzato. Può essere interpretata come un approssimazione della vera distribuzione teorica che ci piacerebbe conoscere. Esempi di possibile distribuzione congiunta: A. Binaria: pioggia/non pioggia B. Discreta: probabilità di pioggia per quantili/pioggia C. Continua: temperatura massima prevista/realizzata

6 Una buona previsione La previsione perfetta negli esempi A e B è quella in cui le frequenze relative sono positive solo per le coppie p(1,1) e p(0,0). Nel caso C le osservazioni giacciono solo sulla diagonale del diagramma (f,x) Realisticamente ci accontentiamo di avere alte frequenze relative per le coppie (f,x) in cui f è vicino a x e basse frequenze per le coppie in cui f è lontano da x.

7 Una cattiva previsione La previsione perfettamente cattiva è quella in cui le frequenze relative sono positive solo per p(0,1) e p(1,0) Questa peraltro è una previsione facilmente ricalibrabile in una previsione perfetta E peggio avere una previsione in cui la colonna di frequenze relative p(f,1) è uguale a quella p(f,0). In questo caso la previsione è statisticamente indipendente dalla realizzazione dell evento e non ha alcun contenuto informativo

8 Fattorizzazioni della distribuzione congiunta Ogni distribuzione congiunta può essere scomposta nel prodotto di una distribuzione condizionata e di una distribuzione marginale Nel caso in esame, dato che abbiamo solo due variabili (la previsione e l evento) le scomposizioni possibili sono due: p(f,x) = p(x f)p(f) calibration-refinement p(f,x) = p(f x)p(x) likelihood-base rate Ciascuna delle due scomposizioni fornisce informazioni sulla qualità della previsione

9 La scomposizione calibration-refinement p(f,x) = p(x f)p(f) P(x f)= distribuzione degli eventi data la previsione P(f) = distribuzione marginale delle previsioni Nel caso binario esistono due distribuzioni condizionali e vorremmo alte frequenze relative per p(x=1 f=1) e p(x=0 f=0) Nel caso probabilistico discreto abbiamo tante distribuzioni condizionali quante sono le categorie e vorremmo che fosse p(x=1 f) = f Nel caso continuo la condizione di calibrazione è che E(x f) = f Se p(x f) = p(x) la previsione non contiene informazioni sull evento

10 La scomposizione likelihood-base rate p(f,x) = p(f x)p(x) P(f x)= distribuzione delle previsioni dato l evento (likelihood, verosimiglianza) P(x) = distribuzione marginale degli eventi (base rate, dato climatologico). Non dipende dalle previsioni Nel caso binario vorremmo alte frequenze relative per p(f=1 x=1) e p(f=0 x=0) Nel caso discreto abbiamo tante distribuzioni condizionali quanti sono gli eventi (2 nell esempio B). Vorremmo alte frequenze per valori di f elevati quando x = 1 e alte frequenze per valori di f bassi quando x = 0 Se p(f x) = p(f) l evento non contiene informazioni sulla previsione (dato l evento non sappiamo nulla di più su quale previsione lo abbia preceduto)

11 La scomposizione calibration-refinement

12 La scomposizione likelihood-base rate

13 Le scomposizioni e il teorema di Bayes Dato che deve essere: P(x f)p(f) = p(f x)p(x) Si può scrivere: P(x f)=p(f x)p(x)/p(f) Il significato di questa scomposizione è che il dato climatologico p(x) (distribuzione a priori) viene aggiornato tramite la verosimiglianza p(f x) standardizzata per p(f) per ottenere una probabilità a posteriori p(x f)

14 Esempio La probabilità che piova dato che la probabilità di pioggia prevista è 20% è pari al 15,13%. Questo dato può essere calcolato anche come la probabilità non condizionale di pioggia (24,93%) moltiplicata per la probabilità che la previsione sia 20% posto che piova (12,68%) e diviso per la probabilità non condizionale di una previsione pari al 20% (20,89%). In questo caso il rapporto tra la probabilità che la previsione sia 20% posto che piova e la probabilità non condizionale di una previsione pari al 20% (20,89%) è pari a 0,6069 Come paragone, la probabilità che piova dato che la probabilità prevista è 80% è pari al 74,47%. Ovviamente la probabilità non condizionale di pioggia è la stessa (24,93%), ma il rapporto citato sopra p(f x)/p(f) è molto maggiore e pari a 2,896 = (8,66%/2,90%)

15 Le problematiche nella percezione delle probabilità condizionali Esempio dei tre prigionieri (o delle tre porte, o dei tre bussolotti ) Noto come problema di Monty Hall Proviamo a usare il teorema di Bayes P(AC BI) = P(BI AC)*P(AC)/P(BI) P(AC GBI) =P(GBI AC)*P(AC)/P(GBI) Problema delle tre carte: RR,BR,BB P(RR R)=P(R RR)*P(RR)/P(R)

16 Esempi di applicazioni specifiche delle scomposizioni della distribuzione congiunta: il caso binario

17 Esempi di applicazioni specifiche delle scomposizioni della distribuzione congiunta: il caso binario E sorprendente quante misure di qualità della previsione possano essere costruite in uno schema così semplice: Percentuale di previsioni corrette (PC)=( )/2803 = 96,61% = p(f=x) 1-PC = MSE Hit rate (H) = 28/(28+23) = 54,90% = p(f=1 x=1) (sensitivity) False alarm rate (F) = 72/( ) = 2,616% = p(f=1 x=0). In medicina si usa (1- F) = 2680/( )= 97,384% (specificity). Errore di tipo 1 nella teoria delle ipotesi False alarm ratio (FAR) = 72/(28+72) = 72% = p(x=0 f=1) Heidke/Doolitle Skill Score (HSS) ha range [-1,1] (PC-E)/(1-E) = (96,61%-94,73%)/(1-94,73%) = 0,3567 E = [p(x=1)p(f=1)+p(x=0)p(f=0)] = 0,018*0,036+0,982*0,964= 0,9473 E = proporzione di previsioni corrette se previsioni e eventi fossero indipendenti Peirce Skill Score (PSS) = H-F = (28* *72)/[(28+23)*( )] = 52,28% Ha range [-1,1]

18 Esempi di applicazioni specifiche delle scomposizioni della distribuzione congiunta: il caso binario (segue) Critical Succes Index (CSI) = 28/( ) = 22,76% (Threat score) Ha range [0,1]. Utile quando la previsione di rifiuto corretto è molto facile Gilbert s skill score (GSS). E uguale al CSI corretto per il numero di previsioni corrette dell evento R che si sarebbero registrate per effetto del caso R = (28+72)(28+23)/2803 = 1,819 GSS = (28-1,819)/(28-1, ) = 21,60% GSS =HSS/(2-HSS) Yule s Q (Odds ratio skill score) = (28* *23)/(28* *23)=0,9594 Legato all odds ratio OR usato in medicina (28*2860)/(72*23)=48,35 Q = (OR-1)/(OR+1) Quasi tutte queste misure erano state scoperte e utilizzate già nell 800 a seguito del dibattito sugli studi di Finley

19 Esempi di applicazioni specifiche delle scomposizioni della distribuzione congiunta: previsioni probabilistiche In questo caso è comune utilizzare misure statistiche che legano p(x f) a f. 1,00 0,90 0,80 0,70 0,60 p(x f) 0,50 p(x f) 0,40 0,30 0,20 0,10 0,00 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 f

20 Esempi di applicazioni specifiche delle scomposizioni della distribuzione congiunta: previsioni probabilistiche

21 Esempi di applicazioni specifiche delle scomposizioni della distribuzione congiunta: il caso continuo In questo caso le probabilità condizionali sono meno utilizzate e si ricorre prevalentemente a misure statistiche tradizionali e a rappresentazioni grafiche

22 La previsione di eventi estremi: il contributo del risk management finanziario Enorme sviluppo del risk management negli anni 90 e in particolare del risk management finanziario legato alla misura nota come VaR VaR = misura della perdita di un portafoglio che non verrà ecceduta su un dato orizzonte temporale solitamente giornaliero - con un dato livello di confidenza, tipicamente 95% o 99% Il VaR è un percentile basso della distribuzione di probabilità dei profitti e delle perdite di un portafoglio Analogo meteo: qual è quella precipitazione in mm che si stima non verrà ecceduta nelle prossime 24h se non in un 1% o 5% di casi Sviluppo di test statistici per misurare la qualità delle stime di VaR Precisione incondizionata (calibrazione) e condizionale (reattività)

23 Precisione incondizionata e condizionale Precisione incondizionata (N3+N4)/N = (1-LC) Precisione condizionale N3/(N1+N3) = = N4/(N2+N4) La probabilità di un eccezione dopo un eccezione deve essere uguale a quella di un eccezione dopo una non eccezione Eccezione: L < VAR

24 Reattività degli indicatori di rischio Actual P&L Stime VaR out-ofsample VaR, con time horizon di 1 mese e livello di confid. 95% per il JPM Gvt. Italy. Log-rendimenti giornalieri dall 1/1/1990 al 5/5/2000. Rolling window di 18 mesi. Standard Variance-Covariance model Bootstrapping (BAGV model)

25 Davide Maspero Università Bocconi Departimento di Finanza 2. Valutazione economica delle previsioni e gestione del rischio meteorologico Martedì 26 gennaio Mercoledì 27 gennaio 2010

26 Il legame tra qualità delle previsioni e valore economico Schema costo/danno (cost/loss): considera il costo di proteggersi da eventi avversi e il danno procurato in caso di non copertura e verificarsi dell evento (con C<L) Tornado No Tornado Protezione C C Non protezione L 0 Se immaginiamo di agire sulla base della previsione ci proteggeremo quando la previsione è tornado e non ci proteggeremo quando la previsione è non tornado. Se la previsione fosse perfetta il costo atteso sarebbe pari a C*p(x=1)=C*p(f=1)= sc dove s è la probabilità climatologica dell evento. La imperfezione della previsione aumenta il costo atteso a C*p(x=1,f=1)+C*p(x=0,f=1)+L*p(f=0,x=1) In assenza di previsioni il costo atteso è sl se non ci si copre mai e C se ci si copre sempre. Se C<sL conviene coprirsi, altrimenti no. Ipotizzando razionalità il costo atteso è min(c,sl)

27 Il legame tra qualità delle previsioni e valore economico Il vantaggio economico della previsione consiste nel ridurre il costo atteso E(f) sotto il livello di assenza di previsione E(nf). Il vantaggio viene rapportato al vantaggio massimo ottenibile E(pf), dato dalla perfetta previsione V= [E(nf)-E(f)]/[E(nf)-E(pf)] Confrontando previsioni diverse con diverse p(f,x) possiamo scegliere quella che minimizza il costo atteso La scelta dipenderà dal valore relativo di C e L. Alti rapporti C/L renderanno più onerosa la copertura e quindi molto penalizzanti alti valori di p(x=0,f=1). Al contrario bassi valori di C/L renderanno più onerosi alti valori di p(x=1,f=0)

28 Il legame con le previsioni probabilistiche Se la previsione binaria discende da una previsione probabilistica il previsore deve scegliere una soglia sopra la quale dichiara di prevedere l evento Soglie basse riducono p(x=1,f=0) ma aumentano p(x=0,f=1). Saranno quindi penalizzanti quando C/L è alto. Al contrario soglie alte di probabilità aumentano p(x=1,f=0) ma riducono p(x=0,f=1). Saranno penalizzanti quando C/L è basso Quindi se C/L è basso è meglio avere una soglia bassa; se C/L è alto è meglio avere una soglia alta. Pb: utenti diversi hanno diversi rapporti C/L, ma se il previsore è uno solo la previsione binaria sarà unica. Meglio sarebbe in questo caso avere a disposizione la previsione probabilistica Pb di soggettività della valutazione economica

29 La decisione basata sul valore atteso: un framework corretto? Una possibile scelta, ma non l unica Molto diffusa nella letteratura meteorologica In finanza non viene solitamente considerata, perché la si ritiene non coerente con le scelte comportamentali degli investitori Fin dagli anni 50 si è imposto un paradigma alternativo

30 Un paradigma alternativo: l utilità attesa Paradosso di San Pietroburgo Sviluppato ed esposto da Daniel Bernoulli agli inizi del 700 Mostra l insufficienza del rendimento atteso nel classificare gli eventi Gli individui effettuano le loro scelte in regime di incertezza basandosi sull utilità associata agli eventi Quando un evento è aleatorio viene valutato sulla base della utilità media che genera, vale a dire la somma delle utilità associate ai possibili eventi ponderate per le rispettive probabilità di accadimento.

31 Investimenti e stati del mondo Il problema delle decisioni in condizioni di incertezza nasce dalla circostanza che alcune scelte sono migliori in alcuni stati del mondo e altre sono migliori in altri stati.

32 Assiomi della teoria dell utilità Completezza : A>B, A=B oppure A<B Transitività: se A>B e B>C allora A>C Continuità: se A>B>C c è una p tale che pa+(1-p)c = B Indipendenza: se A>B allora pa + (1-p)C > pb + (1-p)C

33 Il paradosso di Allais

34 Il paradosso di Allais (segue)

35 Utilità attesa della ricchezza e utilità della ricchezza attesa In linea generale l utilità attesa della ricchezza sarà diversa dall utilità del valore atteso della ricchezza

36 Avversione al rischio E l ipotesi alla base dell intera teoria della finanza dagli anni 50 in poi

37 Una rappresentazione grafica

38 Neutralità al rischio

39 Preferenza per il rischio

40 Funzioni di utilità: utilità lineare e quadratica

41 Funzioni di utilità: utilità esponenziale negativa e logaritmica

42 La stima dei parametri di una funzione di utilità

43 La stima dei parametri di una funzione di utilità

44 Avversione al rischio e scelte di copertura Un individuo avverso al rischio potrà avere interesse a coprire il rischio meteorologico, perché questa scelta può aumentare la sua utilità attesa Anche in questo caso migliori previsioni porteranno a maggiore utilità, ma non è detto che il ranking delle previsioni sia lo stesso determinato dal criterio del valore atteso, anche a parità di cost/loss ratio

45 La gestione del rischio meteorologico: il contributo della finanza Due esigenze diverse Copertura di eventi molto dannosi o catastrofali (bassa probabilità, alto rischio) Esempi: grandine, alluvioni, nevicate intense, uragani Copertura di una variabilità ordinaria delle condizioni meteorologiche (alta probabilità, basso rischio) Esempi: stagione più calda o fredda della media, stagione più o meno piovosa della media, weekend più o meno soleggiati della media Interessa una grande varietà di utenti: produttori e distributori di energia, operatori del turismo, del settore alimentare, parchi tematici

46 La copertura di eventi ad alto rischio: l assicurazione e la teoria dell utilità Esempio con utilità logaritmica U =ln(w) Un agricoltore si aspetta di incassare 20 dalla vendita di mele ma sa che una grandinata (p=10%) potrebbe danneggiare il raccolto e ridurne il valore a 6. Il valore atteso del raccolto è 18,6. Il premio assicurativo equo dal punto di vista attuariale è 1,4. Quanto in più è disposto a pagare l agricoltore? Ln(20-1,4-x) = 0,9*ln(20)+0,10*ln(6) Ln(18,6-x) = 2,8753 = ln(17,73) L agricoltore è pronto a pagare un extra premio fino a 0,87 oltre a quello equo attuariale pur di evitare l aleatorietà

47 I weather derivatives: origini del mercato Il mercato dei derivati meteo nasce nel contesto della liberalizzazione del settore energetico degli Stati Uniti La variabilità nelle condizioni atmosferiche è stata sempre riconosciuta come uno dei fattori più rilevanti per il consumo di energia, tuttavia gli effetti delle imprevedibili condizioni meteorologiche stagionali erano stati in precedenza assorbiti e gestiti all'interno di un mercato regolamentato, in condizioni di monopolio Con la liberalizzazione, i vari partecipanti al processo di produzione, marketing e fornitura di energia alle famiglie e alle imprese statunitensi si sono ritrovati ad affrontare le condizioni meteorologiche come un rischio nuovo e significativo per la loro redditività

48 I weather derivatives: origini del mercato I primi contratti furono trattati come transazioni over-the- counter negoziate privatamente e furono strutturati per proteggersi dalle differenze di temperatura rispetto alle medie storiche in regioni specifiche per le stagioni invernali o estive Al di là delle ovvie applicazioni iniziali dei derivati sul tempo per la copertura dei rischi legati al consumo di energia, il mercato si è ampliato per affrontare una vasta gamma di rischi legati al tempo incontrati da numerosi altri settori industriali La stima dell US Department of Commerce indica che più di 1000 miliardi di USD di attività economica statunitense è esposta ai rischi del tempo, e le operazioni nel corso degli ultimi anni hanno fornito protezione dal tempo per le imprese in diversi settori come spettacolo, commercio al dettaglio, agricoltura e costruzioni

49 I settori sensibili alle condizioni meteo

50 I nuovi partecipanti Compagnie di assicurazione Investment banks Trader professionali di hedge funds o commodities Aziende del settore energetico

51 L offerta di prodotti Derivati OTC: swap, opzioni, contratti forward Derivati regolamentati: futures e opzioni su futures

52 I prodotti CME

53 Chi usa i Derivati Meteo CME Gli utilizzatori di prodotti meteo CME includono le società in business legati all energia nonché un numero crescente di imprese agricole, ristoranti, e società coinvolte nel turismo Molti traders di derivati meteo OTC scambiano anche prodotti meteo CME al fine di coprire le loro transazioni OTC Il mercato meteo CME non riguarda tanto gli eventi meteorologici estremi quanto le variazioni meteorologiche ordinarie che, anche se meno drammatiche, possono seriamente impattare la redditività di una società

54 Chi usa i Derivati-Meteo CME? Caso 1 Una stazione sciistica per rimanere in attività dipende da un clima freddo. Per proteggersi dalla possibilità di un inverno caldo, la stazione sciistica può vendere (andare corto) contratti CME HDD ad un livello da stabilire con l aiuto di una società di analisi di temperature Un inverno caldo risulterà in un basso indice HDD, e la stazione sciistica potrà ricomprare i suoi contratti ad un prezzo più basso, usando il profitto per compensare le perdite nella sua attività

55 Chi usa i derivati meteo CME? Caso 2 Un trader professionale specializzato in derivati meteo ha letto una ricerca che sostiene che un numero elevato di uragani nel sud e sud-est degli USA precede inverno più freddi della media nel nord-est USA Dopo avere osservato parecchi uragani colpire il sud e sud-est degli USA il trader decide di aprire una posizione lunga (acquisto) sul contratto future stagionale CME HDD di Chicago, sperando che l indice aumenti man mano che le temperature scendono oltre i livelli previsti, riuscendo poi a chiudere la propria posizione con un profitto

56 Indici utilizzati nei weather derivatives I contratti meteorologici per i mesi invernali negli USA e in Europa sono basati su un indice dei valori di HDD Heating Degree Days, i giorni in cui l energia è usata per il riscaldamento Analogamente i contratti estivi USA sono basati su un indice di Cooling Degree Days, giorni in cui l energia è usata per il condizionamento In Europa i contratti CMR estivi sono basati su un indice di Temperatura Media Cumulata (CAT) Sia gli indici HDD che i CDD sono calcolati sulla base delle deviazioni di temperatura media rispetto ai 65 Fahrenheit in USA e ai 18 Celsius in Europa e Giappone La temperatura media giornaliera è la la media tra temperatura massima e minima nella 24 ore dalla mezzanotte di un giorno a quella di un giorno successivo.

57 Perchè la scelta dei 18? Consumo di gas, media tra Milano e Palermo

58 I valori giornalieri degli indici HDD e CDD Il valore di un HDD indica di quanti gradi la temperatura media di un dato giorno è inferiore a 65 F Ad esempio una temperatura media di 40 F genera un valore HDD giornaliero di 25 Temperature sopra i 65 F generano HDD pari a 0 Il valore di un CDD indica di quanti gradi la temperatura media di un dato giorno è superiore a 65 F Ad esempio una temperatura media di 80 F genera un valore CDD giornaliero di 15 Temperature sotto i 65 F generano CDD pari a 0

59 La misurazione dei valori mensili degli indici I valori degli indici HDD e CDD mensili sono la somma dei valori HDD e CDD giornalieri registrati in un dato mese. Se ad esempio si fossero registrate 10 giornate HDD a Novembre 2009 a Chicago, il valore dell indice mensile HDD riferito a Chicago per Novembre 2009 sarebbe pari alla somma dei 10 valori giornalieri Se i valori HDD fossero 25,15, 20, 25,18, 22, 20,19, 21 e 23 il valore mensile dell indice sarebbe 208. Il valore di un contratto future CME si ottiene moltiplicando il valore HDD o CDD mensile per 20 USD. Nell esempio citato il contratto sarebbe regaolato a scadenza al valore di 4160 USD (20x208)

60 La protezione con opzioni OTC Esempio di utilizzo di opzioni: protezione contro un un inverno caldo Indice sottostante: Heating Degree Days Periodo di rilevamento: 1 Nov 31 Mar Opzione put con cap Strike = 4850 HDD Tick size = USD Cap = USD Costo = 150,000 USD

61 La protezione con opzioni OTC

4. Introduzione ai prodotti derivati. Stefano Di Colli

4. Introduzione ai prodotti derivati. Stefano Di Colli 4. Introduzione ai prodotti derivati Metodi Statistici per il Credito e la Finanza Stefano Di Colli Che cos è un derivato? I derivati sono strumenti il cui valore dipende dal valore di altre più fondamentali

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Capitale raccomandato

Capitale raccomandato Aggiornato in data 1/9/212 Advanced 1-212 Capitale raccomandato da 43.8 a 6.298 Descrizioni e specifiche: 1. E' una combinazione composta da 3 Trading System automatici 2. Viene consigliata per diversificare

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Il clima degli ultimi 50 anni in Veneto

Il clima degli ultimi 50 anni in Veneto Abano Terme, 27 29 Aprile 2007 Il clima degli ultimi 50 anni in Veneto Adriano Barbi, Alessandro Chiaudani, Irene Delillo ARPAV Centro Meteorologico di Teolo Sabato 28 Aprile 2007 In collaborazione con

Dettagli

derivati azionari guida alle opzioni aspetti teorici

derivati azionari guida alle opzioni aspetti teorici derivati azionari guida alle opzioni aspetti teorici derivati azionari guida alle opzioni aspetti teorici PREFAZIONE Il mercato italiano dei prodotti derivati 1. COSA SONO LE OPZIONI? Sottostante Strike

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

III.8.2 Elementi per il bilancio idrico del lago di Bracciano

III.8.2 Elementi per il bilancio idrico del lago di Bracciano III.8.2 Elementi per il bilancio idrico del lago di Bracciano (Fabio Musmeci, Angelo Correnti - ENEA) Il lago di Bracciano è un importante elemento del comprensorio della Tuscia Romana che non può non

Dettagli

MODENA E IL SUO CLIMA

MODENA E IL SUO CLIMA Comune di Modena - SERVIZIO STATISTICA: note divulgative Pagina 1 di 2 MODENA E IL SUO CLIMA Modena, pur non essendo estranea al fenomeno del riscaldamento generalizzato, continua ad essere caratterizzata

Dettagli

FONDO MUTUALISTICO ALTRI SEMINATIVI

FONDO MUTUALISTICO ALTRI SEMINATIVI PREMESSA Si assiste sempre più spesso ad andamenti meteorologici imprevedibili e come tali differenti dall ordinario: periodi particolarmente asciutti alternati ad altri particolarmente piovosi. Allo stesso

Dettagli

Impara il trading dai maestri con l'analisi Fondamentale. Vantaggi. Imparare a fare trading dai maestri MARKETS.COM 02

Impara il trading dai maestri con l'analisi Fondamentale. Vantaggi. Imparare a fare trading dai maestri MARKETS.COM 02 Impar a il tr ading da i m aestr i Impara il trading dai maestri con l'analisi Fondamentale Cos'è l'analisi Fondamentale? L'analisi fondamentale esamina gli eventi che potrebbero influenzare il valore

Dettagli

UN ANNO DI MONITORAGGIO CLIMATICO A PERUGIA IN 100 ANNI DI CONFRONTO

UN ANNO DI MONITORAGGIO CLIMATICO A PERUGIA IN 100 ANNI DI CONFRONTO Con il patrocinio di energia UN ANNO DI MONITORAGGIO CLIMATICO A PERUGIA IN 100 ANNI DI CONFRONTO Dopo un anno di monitoraggio climatico nella città di Perugia, effettuato grazie alla rete meteo installata

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

i tassi di interesse per i prestiti sono gli stessi che per i depositi;

i tassi di interesse per i prestiti sono gli stessi che per i depositi; Capitolo 3 Prodotti derivati: forward, futures ed opzioni Per poter affrontare lo studio dei prodotti derivati occorre fare delle ipotesi sul mercato finanziario che permettono di semplificare dal punto

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

GUARDIAN asset management software. Solutions. The safe partner for your business

GUARDIAN asset management software. Solutions. The safe partner for your business Portfolio Management GUARDIAN Solutions The safe partner for your business Swiss-Rev si pone come società con un alto grado di specializzazione e flessibilità nell ambito di soluzioni software per il settore

Dettagli

IL TEMPO METEOROLOGICO

IL TEMPO METEOROLOGICO VOLUME 1 CAPITOLO 4 MODULO D LE VENTI REGIONI ITALIANE IL TEMPO METEOROLOGICO 1. Parole per capire A. Conosci già queste parole? Scrivi il loro significato o fai un disegno: tempo... Sole... luce... caldo...

Dettagli

I Derivati. a.a. 2013/2014 mauro.aliano@unica.it

I Derivati. a.a. 2013/2014 mauro.aliano@unica.it I Derivati a.a. 2013/2014 mauro.aliano@unica.it 1 Definizione di derivati I derivati sono strumenti finanziari (art.1 TUF) Il valore dello strumento deriva da uno o più variabili sottostanti (underlying

Dettagli

IMPARA IL MERCATO IN 10 MINUTI

IMPARA IL MERCATO IN 10 MINUTI IMPARA IL MERCATO IN 10 MINUTI AVVERTENZA SUGLI INVESTIMENTI AD ALTO RISCHIO: Il Trading sulle valute estere (Forex) ed i Contratti per Differenza (CFD) sono altamente speculativi, comportano un alto livello

Dettagli

INCERTEZZA DI MISURA

INCERTEZZA DI MISURA L ERRORE DI MISURA Errore di misura = risultato valore vero Definizione inesatta o incompleta Errori casuali Errori sistematici L ERRORE DI MISURA Errori casuali on ne si conosce l origine poiche, appunto,

Dettagli

La bolla finanziaria del cibo Emanuela Citterio: Non demonizziamo i mercati finanziari, chiediamo solo una regolamentazione

La bolla finanziaria del cibo Emanuela Citterio: Non demonizziamo i mercati finanziari, chiediamo solo una regolamentazione Economia > News > Italia - mercoledì 16 aprile 2014, 12:00 www.lindro.it Sulla fame non si spreca La bolla finanziaria del cibo Emanuela Citterio: Non demonizziamo i mercati finanziari, chiediamo solo

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

1 IL RISCHIO: INTRODUZIONE.2 2 LA VOLATILITA.4

1 IL RISCHIO: INTRODUZIONE.2 2 LA VOLATILITA.4 IL RISCHIO 1 IL RISCHIO: INTRODUZIONE.2 2 LA VOLATILITA.4 2.1 La volatilità storica... 4 2.2 Altri metodi di calcolo... 5 3 LA CORRELAZIONE..6 4 IL VALUE AT RISK....8 4.1 I metodi analitici... 9 4.2 La

Dettagli

Benvenuti al libro elettronico sul FOREX

Benvenuti al libro elettronico sul FOREX Benvenuti al libro elettronico sul FOREX Indice 1. Riguardo al MARCHIO... 2 2. Piattaforme di Trading... 3 3. Su cosa si Opera nel Mercato Forex?... 4 4. Cos è il Forex?... 4 5. Vantaggi del Mercato Forex...

Dettagli

Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit.

Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit. Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit. http://www.borsaitaliana.it/borsa/azioni/scheda.html?isin=it0004781412&lang=en http://www.borsaitaliana.it/borsa/derivati/idem-stock-futures/lista.html?underlyingid=ucg&lang=en

Dettagli

ABC. degli investimenti. Piccola guida ai fondi comuni dedicata ai non addetti ai lavori

ABC. degli investimenti. Piccola guida ai fondi comuni dedicata ai non addetti ai lavori ABC degli investimenti Piccola guida ai fondi comuni dedicata ai non addetti ai lavori I vantaggi di investire con Fidelity Worldwide Investment Specializzazione Fidelity è una società indipendente e si

Dettagli

IMPOSTA SULLE TRANSAZIONI FINANZIARIE

IMPOSTA SULLE TRANSAZIONI FINANZIARIE IMPOSTA SULLE TRANSAZIONI FINANZIARIE (STRUMENTI DERIVATI ED ALTRI VALORI MOBILIARI) Ove non espressamente specificato i riferimenti normativi si intendono fatti al decreto del Ministro dell economia e

Dettagli

Introduzione Metodo POT

Introduzione Metodo POT Introduzione Metodo POT 1 Un recente metodo di analisi dei valori estremi è un metodo detto POT ( Peak over thresholds ), inizialmente sviluppato per l analisi dei dati idrogeologici a partire dalla seconda

Dettagli

Your Global Investment Authority. Tutto sui bond: I ABC dei mercati obbligazionari. Cosa sono e come funzionano gli swap su tassi d interesse?

Your Global Investment Authority. Tutto sui bond: I ABC dei mercati obbligazionari. Cosa sono e come funzionano gli swap su tassi d interesse? Your Global Investment Authority Tutto sui bond: I ABC dei mercati obbligazionari Cosa sono e come funzionano gli swap su tassi d interesse? Cosa sono e come funzionano gli swap su tassi d interesse? Gli

Dettagli

L approccio parametrico o delle varianze-covarianze

L approccio parametrico o delle varianze-covarianze L approccio parametrico o delle varianze-covarianze Slides tratte da: Andrea Resti Andrea Sironi Rischio e valore nelle banche Misura, regolamentazione, gestione Egea, 2008 AGENDA Il VaR nell ipotesi di

Dettagli

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi

Appendice III. Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi Appendice III (articolo 5, comma 1 e art. 22 commi 5 e 7) Criteri per l utilizzo dei metodi di valutazione diversi dalle misurazioni in siti fissi 1. Tecniche di modellizzazione 1.1 Introduzione. In generale,

Dettagli

DPS-Promatic Telecom Control Systems. Famiglia TCS-AWS. Stazioni Metereologiche Autonome. connesse alla rete GSM. Guida rapida all'uso versione 1.

DPS-Promatic Telecom Control Systems. Famiglia TCS-AWS. Stazioni Metereologiche Autonome. connesse alla rete GSM. Guida rapida all'uso versione 1. DPS-Promatic Telecom Control Systems Famiglia TCS-AWS di Stazioni Metereologiche Autonome connesse alla rete GSM (www.dpspro.com) Guida rapida all'uso versione 1.0 Modelli che compongono a famiglia TCS-AWS:

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Che tempo fa? Unità 1. Pioggia, freddo e vento: al Nord è maltempo. Tromba d aria in Valtellina

Che tempo fa? Unità 1. Pioggia, freddo e vento: al Nord è maltempo. Tromba d aria in Valtellina Unità 1 Che tempo fa? Com è il tempo oggi? Sei un tipo meteoropatico? Quanto influisce il tempo sul tuo umore? Come ti senti in una giornata luminosa e soleggiata? E in una giornata umida e piovosa? Pioggia,

Dettagli

ANALISI DEL PEGGIORAMENTO AVVENUTO SUL VENETO DAL 7 AL 10 SETTEMBRE 2010 A cura di Alessandro Buoso Una pubblicazione di SERENISSIMAMETEO.

ANALISI DEL PEGGIORAMENTO AVVENUTO SUL VENETO DAL 7 AL 10 SETTEMBRE 2010 A cura di Alessandro Buoso Una pubblicazione di SERENISSIMAMETEO. AVVENUTO SUL VENETO DAL 7 AL 10 SETTEMBRE 2010 A cura di Alessandro Buoso Una pubblicazione di SERENISSIMAMETEO.EU Tra le giornate di martedì 7 e venerdì 10 Settembre 2010, il Veneto è stato interessato

Dettagli

Alle nostre latitudini la domanda di

Alle nostre latitudini la domanda di minergie Protezioni solari con lamelle, in parte fisse, e gronde Benessere ter edifici ed effi Nella società contemporanea trascorriamo la maggior parte del nostro tempo in spazi confinati, in particolare

Dettagli

Guido Candela, Paolo Figini - Economia del turismo, 2ª edizione

Guido Candela, Paolo Figini - Economia del turismo, 2ª edizione 8.2.4 La gestione finanziaria La gestione finanziaria non dev essere confusa con la contabilità: quest ultima, infatti, ha come contenuto proprio le rilevazioni contabili e il reperimento dei dati finanziari,

Dettagli

La Funzione Caratteristica di una Variabile Aleatoria

La Funzione Caratteristica di una Variabile Aleatoria La Funzione Caratteristica di una Variabile Aleatoria La funzione caratteristica Φ densità di probabilità è f + Φ ω = ω di una v.a., la cui x, è definita come: jωx f x e dx E e j ω Φ ω = 1 La Funzione

Dettagli

INDICE. Introduzione Cosa sono le Opzioni FX? Trading 101 ITM, ATM e OTM Opzioni e strategie di Trading Glossario Contatti e Informazioni

INDICE. Introduzione Cosa sono le Opzioni FX? Trading 101 ITM, ATM e OTM Opzioni e strategie di Trading Glossario Contatti e Informazioni OPZIONI FORMAZIONE INDICE Introduzione Cosa sono le Opzioni FX? Trading 101 ITM, ATM e OTM Opzioni e strategie di Trading Glossario Contatti e Informazioni 3 5 6 8 9 10 16 ATTENZIONE AI RISCHI: Prima di

Dettagli

La MKT (Mean Kinetic Temperature) come criterio di accettabilità sui controlli della temperatura

La MKT (Mean Kinetic Temperature) come criterio di accettabilità sui controlli della temperatura La (Mean Kinetic Temperature) come criterio di accettabilità sui controlli della temperatura Come funzionano i criteri di valutazione sulla temperatura Vi sono 5 parametri usati per la valutazione del

Dettagli

I Futures: copertura del rischio finanziario e strumento speculativo

I Futures: copertura del rischio finanziario e strumento speculativo I Futures: copertura del rischio finanziario e strumento speculativo Luca Cappellina GRETA, Venezia Che cosa sono i futures. Il futures è un contratto che impegna ad acquistare o vendere, ad una data futura,

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

REGOLE DI ESECUZIONE DELLE ISTRUZIONI

REGOLE DI ESECUZIONE DELLE ISTRUZIONI REGOLE DI ESECUZIONE DELLE ISTRUZIONI I. Disposizioni generali 1. Le presenti Regole di esecuzione delle istruzioni dei clienti riguardanti i contratti di compensazione delle differenze (CFD) e gli strumenti

Dettagli

Risorse energetiche, consumi globali e l ambiente: la produzione di energia elettrica. Alessandro Clerici

Risorse energetiche, consumi globali e l ambiente: la produzione di energia elettrica. Alessandro Clerici Risorse energetiche, consumi globali e l ambiente: la produzione di energia elettrica Alessandro Clerici Presidente FAST e Presidente Onorario WEC Italia Premessa La popolazione mondiale è ora di 6,7 miliardi

Dettagli

GUIDA ALLE OPZIONI BINARIE

GUIDA ALLE OPZIONI BINARIE Titolo GUIDA ALLE OPZIONI BINARIE Comprende strategie operative Autore Dove Investire Sito internet http://www.doveinvestire.com Broker consigliato http://www.anyoption.it ATTENZIONE: tutti i diritti sono

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

R I S K M A N A G E M E N T & F I N A N C E

R I S K M A N A G E M E N T & F I N A N C E R I S K M A N A G E M E N T & F I N A N C E 2010 Redexe S.u.r.l., Tutti i diritti sono riservati REDEXE S.r.l., Società a Socio Unico Sede Legale: 36100 Vicenza, Viale Riviera Berica 31 ISCRITTA ALLA CCIAA

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

PRODOTTO UVA DA VINO E PER TUTTI GLI ALTRI PRODOTTI,

PRODOTTO UVA DA VINO E PER TUTTI GLI ALTRI PRODOTTI, Strada dei mercati, 17 43126 Parma Tel.0521984996 Fax 0521950084 info@codiparma.it www.codiparma.it Oggetto: Campagna assicurativa 2015 Spett.le Socio, da quest anno le risorse finanziare sono reperite

Dettagli

XII Incontro OCSE su Mercati dei titoli pubblici e gestione del debito nei mercati emergenti

XII Incontro OCSE su Mercati dei titoli pubblici e gestione del debito nei mercati emergenti L incontro annuale su: Mercati dei Titoli di Stato e gestione del Debito Pubblico nei Paesi Emergenti è organizzato con il patrocinio del Gruppo di lavoro sulla gestione del debito pubblico dell OECD,

Dettagli

LA GESTIONE SOSTENIBILE DELLE RISORSE NATURALI IN EUROPA. Silva Marzetti

LA GESTIONE SOSTENIBILE DELLE RISORSE NATURALI IN EUROPA. Silva Marzetti L EUROPA E LE RISORSE AMBIENTALI, ENERGETICHE E ALIMENTARI BOLOGNA, 16 MARZO 2015 LA GESTIONE SOSTENIBILE DELLE RISORSE NATURALI IN EUROPA Silva Marzetti Scuola di Economia, Management e Statistica Università

Dettagli

In Olanda serricoltori come broker di borsa

In Olanda serricoltori come broker di borsa ORTICOLTURA In Olanda serricoltori come broker di borsa Le importazioni a basso prezzo di energia dalla Germania hanno reso poco redditizia la vendita alla rete, i coltivatori monitorano le quotazioni

Dettagli

Parleremo di correlazione: che cos è, come calcolarla

Parleremo di correlazione: che cos è, come calcolarla IDEMDJD]LQH 1XPHUR 'LFHPEUH %52 (56 21/,1( 68//,'(0 nel 2002, il numero di brokers che offrono la negoziazione online sul minifib è raddoppiato, passando da 7 nel 2001 a 14. A novembre due nuovi brokers

Dettagli

Corso di Valutazioni d Azienda

Corso di Valutazioni d Azienda Andrea Cardoni Università degli Studi di Perugia Facoltà di Economia Dipartimento di Discipline Giuridiche e Aziendali Corso di Laurea Magistrale in Economia e Management Aziendale Corso di Valutazioni

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Corso di Asset and liability management (profili economico-aziendali) Il patrimonio di vigilanza e la misurazione del rischio di credito

Corso di Asset and liability management (profili economico-aziendali) Il patrimonio di vigilanza e la misurazione del rischio di credito Università degli Studi di Parma Corso di Asset and liability management (profili economico-aziendali) Il patrimonio di vigilanza e la misurazione del rischio di credito Prof.ssa Paola Schwizer Anno accademico

Dettagli

DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI ALBEROBELLO E SAMMICHELE DI BARI S.C.

DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI ALBEROBELLO E SAMMICHELE DI BARI S.C. DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI ALBEROBELLO E SAMMICHELE DI BARI S.C. LA NORMATIVA MIFID La Markets in Financial Instruments Directive (MiFID) è la Direttiva

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Vetro e risparmio energetico Controllo solare. Bollettino tecnico

Vetro e risparmio energetico Controllo solare. Bollettino tecnico Vetro e risparmio energetico Controllo solare Bollettino tecnico Introduzione Oltre a consentire l ingresso di luce e a permettere la visione verso l esterno, le finestre lasciano entrare anche la radiazione

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

SVILUPPO SOSTENIBILE L ETICHETTA ENERGETICA

SVILUPPO SOSTENIBILE L ETICHETTA ENERGETICA SVILUPPO SOSTENIBILE L ETICHETTA ENERGETICA 24 2 Sommario Perché questo opuscolo 3 Il benessere sostenibile e i consumi delle famiglie italiane 4 Le etichette energetiche 5 La scheda di prodotto 9 L etichetta

Dettagli

Riscaldamento dell acqua con pannelli fotovoltaici

Riscaldamento dell acqua con pannelli fotovoltaici RISCALDATORI DI ACQUA IBRIDI LOGITEX LX AC, LX AC/M, LX AC/M+K Gamma di modelli invenzione brevettata Riscaldamento dell acqua con pannelli fotovoltaici Catalogo dei prodotti Riscaldatore dell acqua Logitex

Dettagli

Il monitoraggio della gestione finanziaria dei fondi pensione

Il monitoraggio della gestione finanziaria dei fondi pensione Il monitoraggio della gestione finanziaria nei fondi pensione Prof. Università di Cagliari micocci@unica.it Roma, 4 maggio 2004 1 Caratteristiche tecnico - attuariali dei fondi pensione Sistema finanziario

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Sistemi di supporto alle decisioni

Sistemi di supporto alle decisioni Sistemi di supporto alle decisioni Introduzione I sistemi di supporto alle decisioni, DSS (decision support system), sono strumenti informatici che utilizzano dati e modelli matematici a supporto del decision

Dettagli

CHECK UP 2012 La competitività dell agroalimentare italiano

CHECK UP 2012 La competitività dell agroalimentare italiano Rapporto annuale ISMEA Rapporto annuale 2012 5. La catena del valore IN SINTESI La catena del valore elaborata dall Ismea ha il fine di quantificare la suddivisione del valore dei beni prodotti dal settore

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

Indagine sui consumi degli edifici pubblici (direzionale e scuole) e potenzialità degli interventi di efficienza energetica

Indagine sui consumi degli edifici pubblici (direzionale e scuole) e potenzialità degli interventi di efficienza energetica Indagine sui consumi degli edifici pubblici (direzionale e scuole) e potenzialità degli interventi di efficienza energetica Marco Citterio, Gaetano Fasano Report RSE/2009/165 Ente per le Nuove tecnologie,

Dettagli

Energia in Italia: problemi e prospettive (1990-2020)

Energia in Italia: problemi e prospettive (1990-2020) Energia in Italia: problemi e prospettive (1990-2020) Enzo De Sanctis Società Italiana di Fisica - Bologna Con questo titolo, all inizio del 2008, la Società Italiana di Fisica (SIF) ha pubblicato un libro

Dettagli

Le Opzioni. Caratteristiche delle opzioni. Sottostante

Le Opzioni. Caratteristiche delle opzioni. Sottostante Le Caratteristiche delle opzioni...1 I fattori che influenzano il prezzo di un opzione...4 Strategie di investimento con le opzioni...5 Scadenza delle opzioni...6 Future Style...7 Schede prodotto...8 Mercato

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Azionario Flessibile 7 anni Scheda sintetica - Informazioni specifiche 1 di 6

Azionario Flessibile 7 anni Scheda sintetica - Informazioni specifiche 1 di 6 Scheda sintetica - Informazioni specifiche 1 di 6 La parte Informazioni Specifiche, da consegnare obbligatoriamente all investitore contraente prima della sottoscrizione, è volta ad illustrare le principali

Dettagli

Governance e performance nei servizi pubblici locali

Governance e performance nei servizi pubblici locali Governance e performance nei servizi pubblici locali Anna Menozzi Lecce, 26 aprile 2007 Università degli studi del Salento Master PIT 9.4 in Analisi dei mercati e sviluppo locale Modulo M7 Economia dei

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Ottimizzare gli sconti per incrementare i profitti

Ottimizzare gli sconti per incrementare i profitti Ottimizzare gli sconti per incrementare i profitti Come gestire la scontistica per massimizzare la marginalità di Danilo Zatta www.simon-kucher.com 1 Il profitto aziendale è dato da tre leve: prezzo per

Dettagli

La bolletta dimagrisce

La bolletta dimagrisce La bolletta dimagrisce Bolletta più leggera e più equa per le Pmi La spesa energetica delle imprese Il costo dell energia è un importante fattore di competitività per le imprese; La spesa per l energia

Dettagli

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche (versione provvisoria) Marisa Faggini Università di Salerno mfaggini@unisa.it I beni pubblici rappresentano un esempio

Dettagli

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia?

Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Logica fuzzy e calcolo delle probabilità: due facce della stessa medaglia? Danilo Pelusi 1 Gianpiero Centorame 2 Sunto: Il seguente articolo illustra le possibili analogie e differenze tra il calcolo delle

Dettagli

Economia monetaria e creditizia. Slide 3

Economia monetaria e creditizia. Slide 3 Economia monetaria e creditizia Slide 3 Ancora sul CDS Vincolo prestatore Vincolo debitore rendimenti rendimenti-costi (rendimenti-costi)/2 Ancora sul CDS dove fissare il limite? l investitore conosce

Dettagli

Facciamo emergere i vostri valori.

Facciamo emergere i vostri valori. Facciamo emergere i vostri valori. www.arnerbank.ch BANCA ARNER SA Piazza Manzoni 8 6901 Lugano Switzerland P. +41 (0)91 912 62 22 F. +41 (0)91 912 61 20 www.arnerbank.ch Indice Banca: gli obiettivi Clienti:

Dettagli

NUOVA DIRETTIVA ECODESIGN. Costruire il futuro. Per climatizzatori per uso domestico fino a 12kW (Lotto 10)

NUOVA DIRETTIVA ECODESIGN. Costruire il futuro. Per climatizzatori per uso domestico fino a 12kW (Lotto 10) NUOVA DIRETTIVA ECODESIGN Costruire il futuro Per climatizzatori per uso domestico fino a 12kW (Lotto 10) 1 indice Obiettivi dell Unione Europea 04 La direttiva nel contesto della certificazione CE 05

Dettagli

Le imprese nell economia. esportazioni, multinazionali. Capitolo 8. adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania)

Le imprese nell economia. esportazioni, multinazionali. Capitolo 8. adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) Capitolo 8 Le imprese nell economia globale: esportazioni, outsourcing e multinazionali [a.a. 2012/13] adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) 8-1 Struttura della

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Università di Pavia - Facoltà di Economia

Università di Pavia - Facoltà di Economia 0 Università di Pavia - Facoltà di Economia Il calcolo imprenditoriale per la trasformazione «finanziaria» Michela Pellicelli Le imprese possono essere considerate trasformatori finanziari in quanto: a)

Dettagli

Gli indici per l analisi di bilancio. Relazione di

Gli indici per l analisi di bilancio. Relazione di Gli indici per l analisi di bilancio Relazione di Giorgio Caprioli Gli indici di solidità Gli indici di solidità studiano il rapporto tra le parti alte dello Stato Patrimoniale, ossia tra Capitale proprio

Dettagli

Determinanti dell avversione al rischio degli investitori: riscontri giornalieri dal mercato azionario tedesco 1

Determinanti dell avversione al rischio degli investitori: riscontri giornalieri dal mercato azionario tedesco 1 Martin Scheicher +43 1 40420 7418 martin.scheicher@oenb.at Determinanti dell avversione al rischio degli investitori: riscontri giornalieri dal mercato azionario tedesco 1 I prezzi azionari oscillano al

Dettagli

L efficienza energetica dei condizionatori d aria da quest anno ha nuove direttive.

L efficienza energetica dei condizionatori d aria da quest anno ha nuove direttive. L efficienza energetica dei condizionatori d aria da quest anno ha nuove direttive. Un testo della redazione di Electro Online, il tuo esperto online. Data: 19/03/2013 Nuove regole per i condizionatori

Dettagli

DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI CASSANO DELLE MURGE E TOLVE S.C.

DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI CASSANO DELLE MURGE E TOLVE S.C. DOCUMENTO DI SINTESI STRATEGIA DI ESECUZIONE E TRASMISSIONE DEGLI ORDINI BCC DI CASSANO DELLE MURGE E TOLVE S.C. LA NORMATIVA MIFID La Markets in Financial Instruments Directive (MiFID) è la Direttiva

Dettagli

GESTIONE DELLA CAPACITA

GESTIONE DELLA CAPACITA Capitolo 8 GESTIONE DELLA CAPACITA Quale dovrebbe essere la capacità di base delle operations? (p. 298 e segg.) 1 Nel gestire la capacità l approccio solitamente seguito dalle imprese consiste nel fissare

Dettagli

EFFETTO ANTIGHIACCIO: La potenza occorrente al metro quadro per prevenire la

EFFETTO ANTIGHIACCIO: La potenza occorrente al metro quadro per prevenire la Sistema scaldante resistivo per la protezione antighiaccio ed antineve di superfici esterne Il sistema scaldante ha lo scopo di evitare la formazione di ghiaccio e l accumulo di neve su superfici esterne

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli