Gioco Interno Tipologie e Norme

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Gioco Interno Tipologie e Norme"

Transcript

1 Gioco Interno Tipologie e Norme Per gioco interno si intende l misur complessiv di cui un nello si può spostre rispetto ll ltro in direzione oppost. E necessrio distinguere fr gioco rdile e gioco ssile. Il gioco rdile è perpendicolre ll sse centrle del cuscinetto, mentre il gioco ssile viene misurto lungo l sse centrle. Si misur l distnz tr un posizione finle e l ltr. Gioco Rdile Gioco Assile Il gioco interno dei cuscinetti volventi in esercizio influenz notevolmente le prestzioni degli stessi con ripercussioni sull durt ftic, vibrzione, rumorosità, generzione di clore, ecc. Gioco misurto e gioco geometrico Per ottenere un misurzione più ccurt del gioco, questo viene generlmente rilevto pplicndo l cuscinetto un crico di misur specifico; il vlore del gioco rilevto risult sempre leggermente superiore l gioco interno teorico, chimto nche gioco geometrico. L differenz tr i due dti corrisponde l vlore dell deformzione elstic cust dl crico di misur. Il vlore del gioco rilevto risult sempre leggermente superiore l gioco interno teorico e tle differenz corrisponde l vlore dell deformzione elstic cust dl crico di misur. Risult così possibile ricvre con sufficiente pprossimzione il gioco interno teorico, medinte correzione del gioco rilevto con il vlore dell deformzione elstic. Quest deformzione risult molto sentit nei cuscinetti sfere, mentre h un vlore così bsso d poter essere trscurt nei cuscinetti rulli. Vi preghimo di consultre il ctlogo generle dei cuscinetti NSK per le tbelle con i giochi interni in relzione l tipo di cuscinetto. TECHNICAL INSIGHT Un pubbliczione di NSK Europe 1/6

2 Conversione del gioco rdile in gioco ssile Gioco Assile Δ = Δ r cot α = 1.5 Δ e r Δ r α e : Gioco Rdile : Angolo di conttto : Costnte Fttori che condizionno il gioco interno Riduzione del gioco rdile per effetto dell ccoppimento In qulsisi condizione opertiv, l nello interno o quello esterno risult clettto rispettivmente sull lbero o nell lloggimento con un ccoppimento forzto; si determin quindi un riduzione del gioco rdile interno cus dell espnsione o dell contrzione degli nelli stessi del cuscinetto. L riduzione vri in funzione dell serie dimensionle del cuscinetto e dell form costruttiv dell lbero o dell lloggimento. Si può definire come gioco residuo ( f ) il vlore ottenuto dll sottrzione dell riduzione per effetto dell ccoppimento dl gioco interno teorico ( 0 ). Diminuzione del gioco interno rdile dovut ll differenz di tempertur tr l nello interno ed esterno e gioco effettivo In esercizio, per effetto dell ttrito di rotzione si svilupp un certo quntittivo di clore che viene trsmesso ttrverso l lbero e l lloggimento. Generlmente, l lloggimento trsmette il clore meglio dell lbero, cosicché l tempertur dell nello interno risult superiore di 5 ~ 10 C rispetto quell dell nello esterno. Se l lbero venisse riscldto oppure l lloggimento venisse rffreddto l differenz di tempertur tr nello interno ed esterno risulterebbe superiore. Quindi, cus dell diltzione termic dovut ll differenz di tempertur tr l nello interno e quello esterno, il gioco rdile diminuisce. Si può quindi definire come gioco effettivo ( ), il vlore ottenuto dll sottrzione dell riduzione t dl gioco residuo ( f ). Vrizioni del gioco rdile interno : Gioco Effettivo Anello Esterno fe : Riduzione del gioco dovut ll ccoppimento tr l nello esterno ed il foro dell lloggimento (ΔD e) : Gioco Interno (teorico) Rulli : Gioco Residuo Riduzione del gioco dovut ll ccoppimento tr l nello interno e l lbero (= ΔD i ) : Riduzione del gioco dovut ll differenz di tempertur tr l nello interno e quello esterno TECHNICAL INSIGHT Un pubbliczione di NSK Europe 2/6

3 Il vlore di quest diminuzione può essere determinto ttrverso l seguente formul: t = α Δ t D e t : Riduzione del gioco rdile per effetto dell differenz di tempertur tr l nello interno ed esterno (mm) α : Coefficiente di diltzione linere dell cciio per cuscinetti = (1/ C) Δ t : Differenz di tempertur tr nello interno e quello esterno ( C) D e : Dimetro dell pist di rotolmento dell nello esterno (mm) Per Cuscinetti Sfere D e = (4D+d) Per Cuscinetti Rulli D e = (3D+d) E opportuno scegliere un cuscinetto con gioco zero o leggermente positivo. Qundo si utilizzno cuscinetti sfere conttto obliquo d un coron oppure cuscinetti rulli conici ccoppiti, è opportuno che, se non risult necessri un condizione di precrico, rimng un gioco effettivo nche se piccolo. Nel cso di utilizzo di due cuscinetti rdili rulli cilindrici tipo NJ è necessrio prevedere, l montggio, un deguto gioco ssile che teng conto dell effetto llungmento dell lbero in esercizio. Esempi di ottimizzzione del gioco interno Condizioni opertive Esempi Gioco interno consiglito Flessione dell lbero elevt Ruote posteriori di utomobili C5 o equivlente Alberi cvi con pssggio di vpore o con ltri sistemi di riscldmento Cilindri essicctori per crtiere Vie rulli di cciierie C3, C4 C3 Presenz di crichi d urto e vibrzioni elevte, oppure di un ccoppimento forzto su entrmbi gli nelli Motori di trzione ferrotrnviri Vgli vibrnti Giunti idrulici Alberi d uscit di riduttori per trttori C4 C3, C4 C4 C4 Accoppimento libero per entrmbi gli nelli Cilindri di lmintoi C2 o equivlente Specifiche ristrette per rumorosità e vibrzioni Piccoli motori elettrici con specifiche prticolri C1, C2, CM Registrzione del gioco l montggio per evitre flessioni dell lbero, ecc. Mndrini di tornitrici CC9, CC1 Precrico, uno specile tipo di gioco negtivo Generlmente i cuscinetti volventi mntengono durnte il funzionmento un gioco interno residuo. In lcuni csi, soprttutto qundo bisogn ssicurre il conttto tr i corpi volventi e le piste di rotolmento, si deve prevedere un gioco negtivo, ricorrendo ll operzione di precrico. Il precrico viene solitmente pplicto quei cuscinetti ( sfere conttto obliquo oppure rulli conici) dove è possibile regolre il gioco durnte il montggio. Normlmente, per ottenere un coppi di cuscinetti precricti, vengono montti due cuscinetti con disposizione fcci fcci o dorso dorso. TECHNICAL INSIGHT Un pubbliczione di NSK Europe 3/6

4 Finlità del precrico in ppliczioni tipiche Mndrini di mcchine utensili, strumenti di precisione, ecc. Mntenere i cuscinetti nell posizione corrett nelle direzioni rdile e ssile, e conservre l precisione di rotzione dell lbero. Mndrini di mcchine utensili, lberi pignone di differenzili per utoveicoli, ecc. Aumentre l rigidezz del cuscinetto e ottimizzre l ingrnggio Piccoli motori elettrici, ecc. Ridurre l minimo l rumorosità dovut lle vibrzioni ssili e ll risonnz. Appliczioni crtterizzte d velocità o ccelerzioni elevte, equipggite con cuscinetti sfere conttto obliquo e con cuscinetti ssili sfere. Impedire lo striscimento tr corpi volventi e piste di rotolmento dovuto d un fenomeno giroscopico e centrifugo Cuscinetti ssili sfere e cuscinetti orientbili rulli montti su lbero orizzontle Mntenere i corpi volventi in posizione corrett rispetto gli nelli del cuscinetto. Tipologie di precrico 1) Precrico di tipo rigido Un sistem per ottenere il precrico dei cuscinetti consiste nell registrzione o serrggio ssile degli stessi. Si ottiene bloccndo ssilmente due cuscinetti contrpposti, in modo tle che l loro posizione reltiv non si modifichi durnte il funzionmento. Prticmente si possono dottre tre metodi per ottenere questo tipo di precrico: Montggio di un coppi di cuscinetti con gioco ssile e slti fccili ottenuti di lvorzione Utilizzo di distnzili o rsmenti di dimensioni pproprite Utilizzo di viti o ghiere per consentire l regolzione del precrico ssile. In questo cso risult opportuno rilevre l coppi di spunto per verificre il vlore di precrico. Precrico di tipo rigido 1b) Rigidezz e precrico di tipo rigido Qundo gli nelli interni dell coppi di cuscinetti sono bloccti ssilmente, i cuscinetti A e B risultno spostti di 0 e viene eliminto lo spzio ssile o slto fccile corrispondente 2 0 tr gli nelli interni. In quest condizione si impone su ciscun cuscinetto un precrico di vlore 0. Cuscinetto A Cuscinetto B Coppi di cuscinetti precricti con disposizione dorso dorso TECHNICAL INSIGHT Un pubbliczione di NSK Europe 4/6

5 Rigidezz, rpporto tr il crico e il cedimento ssile, con un determinto crico esterno ssile gente su un coppi di cuscinetti. Cuscinetto B Crico Assile Cuscinetto A A 0 0 B Cedimento ssile con precrico A B 0 di tipo rigido 0 0 : Crico ssile esterno A : Crico ssile sul cuscinetto A B : Crico ssile sul cuscinetto B : Cedimento dell coppi di cuscinetti A : Cedimento del cuscinetto A B : Cedimento del cuscinetto B A 2) Precrico di tipo elstico Un ltro sistem per ottenere il precrico desiderto è quello di ricorrere d un moll elicoidle o tzz, così d imporre un vlore costnte del precrico stesso. Tle vlore si mntiene bbstnz costnte nche se viene modificrsi l posizione reltiv dei cuscinetti durnte il funzionmento. Precrico di tipo elstico 2b) Rigidezz e precrico di tipo elstico L figur qui di seguito riport il grfico reltivo l cedimento di un coppi di cuscinetti con precrico ottenuto ttrverso elementi elstici. L curv di cedimento dell moll risult pressoché prllel ll sse orizzontle, in qunto l rigidezz delle molle è minore rispetto quell del cuscinetto. Ne consegue che l rigidezz con precrico elstico è similre F 0 F quell di un cuscinetto 0 singolo con pplicto un precrico 0. Crico Assile Cuscinetto A 0 0 A Cedimento Assile Spostmento ssile con precrico di tipo elstico TECHNICAL INSIGHT Un pubbliczione di NSK Europe 5/6

6 Confronto tr rigidezz e sistemi di precrico Il confronto l rigidezz dei cuscinetti con precrico di tipo rigido ed elstico può essere così sintetizzto: (1) Qundo entrmbi i precrichi sono uguli, il precrico di tipo rigido grntisce un mggiore rigidezz del cuscinetto; ovvero il cedimento dovuto i crichi esterni risult inferiore rispetto i cuscinetti con un precrico di tipo elstico. (2) I precrichi di tipo elstico sono mggiormente indicti per ppliczioni crtterizzte d velocità elevte, per smorzmenti delle vibrzioni ssili, per cuscinetti ssili montti su lberi orizzontli. (3) Nel cso di un precrico di tipo rigido, il precrico stesso vri in funzione dei seguenti fttori: Vrizione dell espnsione ssile dovut d un differenz di tempertur tr l lbero e l sede Vrizione dell espnsione rdile dovut d un differenz di tempertur tr l nello interno ed esterno Cedimento dovuto l crico (4) Nel cso di un precrico di tipo elstico, l vrizione del crico dell moll è minim poiché gli effetti dell espnsione o contrzione dell lbero risultno trscurbili. Vlore del precrico Nelle condizioni pplictive dove il precrico risult mggiore del necessrio, possono verificrsi umenti nomli dell tempertur o dell coppi d ttrito, un riduzione dell durt ftic, ecc. Per ovvire queste nomlie è opportuno determinre con cur il vlore del precrico, prendendo in esme le condizioni di esercizio e l finlità del precrico stesso. In csi estremi, il cuscinetto potrebbe durre solo lcune ore. (1) Crico ssile minimo per cuscinetti ssili sfere Per i vlori di precrico si consigli di utilizzre come regol generle un precrico leggero o extr leggero per i mndrini di rettific o per centri di lvoro. E consiglibile utilizzre un precrico medio per mndrini di torni in cui si richiede rigidezz. Qulor l velocità di rotzione risulti superiore l vlore D pw n (d m n) > , il vlore del precrico deve essere considerto e scelto con l mssim ttenzione. (2) Preloding xil bll berings I corpi volventi dei suddetti cuscinetti, qundo sono utilizzti per ppliczioni soggette velocità di rotzione elevte, tendono d essere sottoposti d un momento giroscopico e d un zione centrifug verso l esterno, producendo brsioni o striscimenti sulle piste di rotolmento. Per ovvire questi fenomeni, si consigli di pplicre i cuscinetti un crico ssile minimo min corrispondente l vlore mssimo ricvto dlle equzioni riportte. Crico ssile Confronto tr rigidezz e sistem di precrico Cuscinetto con precrico di tipo rigido Cuscinetto con precrico di tipo elstico Cedimento ssile Cuscinetto senz precrico C 0 n min = 100 C 0 min = 1000 min : Crico ssile minimo (N), {kgf} n : Velocità (min -1 ) C 0 N mx N mx : Coefficiente di crico sttico (N), {kgf} : Velocità di riferimento per lubrificzione d olio (min -1 ) 2 (3) Crico ssile minimo per cuscinetti ssili orientbili rulli Qundo i suddetti cuscinetti vengono utilizzti per ppliczioni soggette elevte velocità di rotzione, i corpi volventi tendono d essere centrifugti verso l esterno, producendo brsioni o striscimenti sulle piste di rotolmento. Per evitre questi fenomeni si consigli di pplicre i cuscinetti un crico ssile minimo min che si ricv dll seguente equzione: C 0 min = 1000 TECHNICAL INSIGHT Un pubbliczione di NSK Europe 6/6

Cuscinetti ad una corona di sfere a contatto obliquo

Cuscinetti ad una corona di sfere a contatto obliquo Cuscinetti d un coron di sfere conttto obliquo Cuscinetti d un coron di sfere conttto obliquo 232 Definizione ed ttitudini 232 Serie 233 Vrinti 233 Tollernze e giochi 234 Elementi di clcolo 236 Crtteristiche

Dettagli

UNITÀ DI GUIDA E SLITTE

UNITÀ DI GUIDA E SLITTE UNITÀ DI GUIDA E SLITTE TIPOLOGIE L gmm di unità di guid e di slitte proposte è molto mpi. Rggruppimo le guide in fmiglie: Unità di guid d ccoppire cilindri stndrd Si trtt di unità indipendenti, cui viene

Dettagli

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate

BOZZA. 1 2a S/2 S/2. Lezione n. 27. Le strutture in acciaio Le unioni bullonate Le unioni saldate Lezione n. 7 Le strutture in cciio Le unioni bullonte Le unioni sldte Unioni Le unioni nelle strutture in cciio devono grntire un buon funzionmento dell struttur e l derenz dell stess llo schem sttico

Dettagli

Attuatori pneumatici fino 700 cm 2 Tipo 3271 e Tipo 3277 per montaggio integrato del posizionatore

Attuatori pneumatici fino 700 cm 2 Tipo 3271 e Tipo 3277 per montaggio integrato del posizionatore Attutori pneumtici fino cm Tipo e Tipo per montggio integrto del posiziontore Appliczione Attutore linere per il montggio su vlvole di regolzione, soprttutto per l Serie,, e vlvol microflusso Tipo dimensione

Dettagli

drylin madreviti e viti drylin

drylin madreviti e viti drylin drylin Funzionmento secco esente d mnutenzione Filettture destre e sinistre Leggere e silenziose Insensibili sporco e polveri Inossidbili Disponibili nche con filettture multiprincipio Disponibili nche

Dettagli

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273 Attutori pneumtici 00, 00 e x 00 cm² Tipo Comndo mnule Tipo Appliczione Attutore linere per il montggio su vlvole di regolzione Serie 0, 0 e 0 Dimensione: 00 e 00 cm² Cors: fino 0 mm Gli ttutori pneumtici

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Pareti verticali Cappotto esterno

Pareti verticali Cappotto esterno Preti verticli Cppotto esterno L isolmento termico dei fbbricti dll esterno, comunemente detto cppotto, h vuto le sue prime ppliczioni lcuni decenni f e ncor oggi costituisce uno dei sistemi di isolmento

Dettagli

Accoppiamento pompa e sistema

Accoppiamento pompa e sistema Accoppimento pomp e sistem 1/9 Considerimo il sistem idrulico dell Fig. 1 costituito d due bcini, mbedue soggetti ll pressione tmosferic e collegti tr loro d un tubzione: si vuole portre l cqu dl bcino

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

TECNOLOGIE PER L ACQUACOLTURA

TECNOLOGIE PER L ACQUACOLTURA Scuol di specilizzzione in: Allevmento, igiene, ptologi delle specie cqutiche e controllo dei prodotti derivti TECNOLOGIE PER L ACUACOLTURA PROF. MASSIMO LAZZARI Anno ccdemico 007-008 L movimentzione meccnic

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "FERMI"

ISTITUTO TECNICO INDUSTRIALE STATALE FERMI ISTITUTO TECNICO INDUSTIALE STATALE "EMI" TEVISO GAA NAZIONALE DI MECCANICA 212 ropost di soluzione rim rov cur di Benetton rncesco (vincitore edizione 211 unzionmento: L gru bndier girevole sopr riportt

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

ELEMENTI DI DINAMICA DEI FLUIDI

ELEMENTI DI DINAMICA DEI FLUIDI Corso di Fisic tecnic e mbientle.. 011/01 - Docente: Prof. Crlo Isetti ELEMENTI DI DINAMICA DEI FLUIDI 6.1 GENERALITÀ Il moto più semplice cui si f riferimento è in genere il moto stzionrio, che è crtterizzto

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche.

Figura 47: i ponti termici possono essere causati da discontinuità dei materiali o da discontinuità geometriche. Prestzioni PONTI TERMICI Normlmente il clcolo delle dispersioni termiche di un edificio viene svolto considerndo che le temperture interne ed esterne sino costnti (Regime Termico tzionrio). Questo signific

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA Corso di lure in Ingegneri Meccnic Tesin del corso di TRASMISSIONE DEL CALORE Docente Prof. Ing. Gennro Cuccurullo Tesin n.7a Effetti termici del

Dettagli

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto

I costi dell impresa. Litri di benzene per unità di tempo. Linea di isocosto 7 I costi dell impres 7.1. Per l combinzione di equilibrio dei due input, si ved il grfico successivo. L pendenz dell line di isocosto e` pri ll opposto del rpporto tr i prezzi dei fttori: -10 = 2 = -5.

Dettagli

Movimentazioni lineari

Movimentazioni lineari Sistemi lineri I sistemi lineri ACK sono costituiti d 2 brre d cciio sezione circolre temprte e rettificte in tollernz h e nche cromte nei dimetri. A richiest in ccioi inox. Sono montte rigide e prllele

Dettagli

ANCORANTI CHIMICI EV II TASSELLO CHIMICO STRUTTURALE. Scheda tecnica rev. 1

ANCORANTI CHIMICI EV II TASSELLO CHIMICO STRUTTURALE. Scheda tecnica rev. 1 Sched tecnic rev. 1 EV II TASSELLO CHIMICO STRUTTURALE ncornte chimico d iniezione in resin epossicrilto/vinilestere bicomponente d ltissim resistenz Che cos'è È un ncornte chimico d iniezione composto

Dettagli

Sistemi di Bloccaggio

Sistemi di Bloccaggio Sistemi di loccggio Sistemi Clmp Grnzi Condizioni di grnzi per i sistemi clmp Le condizioni generli e i termini di grnzi pplicti dll Hem Mschinen-und pprteschutz GmbH e si possono leggere nel sito www.hem-shutz.de.

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA Freni e frizioni ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA 1. forz di ttuzione del meccnismo. coppi trsmess 3. perdit di energi 4. incremento di tempertur 1

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

LE SOLLECITAZIONI. Gli ingranaggi face gear, o a denti frontali (figura DEGLI INGRANAGGI A DENTI FRONTALI

LE SOLLECITAZIONI. Gli ingranaggi face gear, o a denti frontali (figura DEGLI INGRANAGGI A DENTI FRONTALI SANDRO BARONE, PAOLA FORTE LE SOLLECITAZIONI DEGLI INGRANAGGI A DENTI FRONTALI Un ingrnggio denti frontli (Fce Ger) offre vntggi si in termini di peso si in termini di riprtizione dei crichi sui denti,

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

tubi corrugati in polietilene

tubi corrugati in polietilene tubi corrugti in polietilene Sistemi integrli per trsporto ed il trttmento dei fluidi tubi corrugti in polietilene istino cvidotti e drenggi PERETE INTERNA PRODOTTA CON PE ADDITIVATO PER FACIITARE O SCORRIMENTO

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

Prova n. 1 LEGER TEST

Prova n. 1 LEGER TEST Prov n. 1 LEGER TEST Descrizione L prov si svolge su un percorso delimitto d due coni, posti ll distnz di 20 mt l uno dll ltro. Il cndidto deve percorrere spol l distnz tr i due coni, pssndo dll velocità

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

C A 10 [HA] C 0 > 100 K

C A 10 [HA] C 0 > 100 K Soluzioni Tmpone Le soluzioni tmpone sono soluzioni in cui sono presenti un cido debole e l su bse coniugt sotto form di sle molto solubile. Hnno l crtteristic di mntenere il ph qusi costnte nche se d

Dettagli

Calcolo a fatica di componenti meccanici. Seconda parte

Calcolo a fatica di componenti meccanici. Seconda parte Clcolo ftic di componenti meccnici econd prte Fttori che influenzno l vit ftic Quli sono i fttori che influenzno l vit ftic di un struttur? iepilogo dei principli fttori che influenzno l durt ftic degli

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

FASCICOLO TECNICO PRESTAZIONI ENERGETICHE SOLAI

FASCICOLO TECNICO PRESTAZIONI ENERGETICHE SOLAI Pgin di 7 Rel. ermic soli Fscicolo tecnico per il clcolo delle prestzioni energetiche di soli lstre trliccite ( predlles ) IN ACCORDO ALLA NORMA UNI EN ISO 6946:008 0 07.0.00 Rev. Dt Descrizione Redtto

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

Manuale Generale Sintel Guida alle formule di aggiudicazione

Manuale Generale Sintel Guida alle formule di aggiudicazione MANUALE DI SUPPOTO ALL UTILIZZO DELLA PIATTAFOMA SINTEL GUIDA ALLE FOMULE DI AGGIUDICAZIONE Pgin 1 di 21 AGENZIA EGIONALE CENTALE ACQUISTI Indice 1 INTODUZIONE... 3 1.1 Cso di studio... 4 2 FOMULE DI CUI

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Ventilazione residenziale. VMC con recupero di calore. I benefici. Valore aggiunto all edificio

Ventilazione residenziale. VMC con recupero di calore. I benefici. Valore aggiunto all edificio I benefici L VMC (Ventilzione Meccnic Controllt) doppio flusso con recupero di clore è un soluzione semplice d instllre, ltmente efficce per grntire il ricmbio d ri continuo, 24 ore su 24, in tutt l cs

Dettagli

DSA* VALVOLA DIREZIONALE A COMANDO PNEUMATICO

DSA* VALVOLA DIREZIONALE A COMANDO PNEUMATICO 60/ ID DS* VLVOL DIREZIONLE COMNDO NEUMICO CCHI REE DS ISO 0-0 (CEO 0) DS5 ISO 0-05 (CEO R05) p mx (vedi tell prestzioni) Q nom (vedi tell prestzioni) RINCIIO DI FUNZIONMENO Le vlvole tipo DS* sono distriutori

Dettagli

Installazione e manutenzione

Installazione e manutenzione Instllzione e mnutenzione per ttrezztur con tubo guid singolo 893008/04 2 INDICE Questo "mnule di instllzione e mnutenzione" rigurd l'ttrezztur con singolo tubo guid per mixer serie 400, 430-480 Introduzione

Dettagli

Lavorazioni delle materie plastiche

Lavorazioni delle materie plastiche Lvorzioni delle mterie plstiche CONTENUTI Lvorzione delle mterie plstiche con prticolre rigurdo llo stmpggio iniezione PREREQUISITI Conoscenz delle proprietà dei mterili Conoscenz degli elementi costituenti

Dettagli

NORME APPLICABILI ALLE ARMATURE 9

NORME APPLICABILI ALLE ARMATURE 9 QUADERNO III Strutture in clcestruzzo rmto e legno CALCESTRUZZO ARMATO Sched N : NORME APPLICABILI ALLE ARMATURE 9 Not generle: le indiczioni nel seguito riportte sono trtte dlle norme frncesi BAEL 91

Dettagli

Temi speciali di bilancio

Temi speciali di bilancio Università degli Studi di Prm Temi specili di bilncio Le imposte (3) Il consolidto fiscle nzionle RIFERIMENTI Normtiv Artt. 117 129 del TUIR Art. 96 del TUIR Prssi contbile Documento OIC n. 25 Documento

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

ELEMENTI DI STABILITA

ELEMENTI DI STABILITA tbilità Per stbilità di un nve si intende, in generle, l fcoltà di conservre l su posizione di equilibrio, cioè l su ttitudine resistere lle forze che tendono inclinrl e l cpcità di rddrizzrsi spontnemente

Dettagli

«ECOFILLER» Iniezione diretta di cariche minerali o di poliuretano riciclato. Eraldo Greco. Guido Podrecca. Commercial Director.

«ECOFILLER» Iniezione diretta di cariche minerali o di poliuretano riciclato. Eraldo Greco. Guido Podrecca. Commercial Director. «ECOFILLER» Iniezione dirett di criche minerli o di poliuretno riciclto Erldo Greco Commercil Director Guido Podrecc R&D Mnger ANPE - 2 2 Conferenz Conferenz Nzionle Nzionle Premess Nei vri processi produttivi

Dettagli

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO

Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Ai gentili Clienti Loro sedi Oggetto: SOGGETTI IRES - LA RILEVAZIONE CONTABILE DELLE IMPOSTE DI ESERCIZIO Al termine di ciscun periodo d impost, dopo ver effettuto le scritture di ssestmento e rettific,

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

IL MINISTRO DELLO SVILUPPO ECONOMICO

IL MINISTRO DELLO SVILUPPO ECONOMICO Decreto del Ministero dello sviluppo economico 11 mrzo 2008 Attuzione dell'rt. 1, comm 24, letter ), dell Legge 24/12/2007, n 244, per l definizione dei vlori limite di fbbisogno di energi primri nnuo

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Sistema d'ancoraggio Monotec Cassaforma a telaio Framax Xlife

Sistema d'ancoraggio Monotec Cassaforma a telaio Framax Xlife 999805705-03/2014 it I tecnici delle csseforme. Sistem d'ncorggio Monotec ssform telio rmx Xlife Informzioni prodotto Istruzioni di montggio e d'uso 9764-445-01 Introduzione Informzioni prodotto Sistem

Dettagli

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro)

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro) 0.0 Scle di legno 9 0.0 Scle di legno Le scle servono superre le differenze di ltezz. Nelle cse unifmiliri sono sovente costruite in legno. Un scl è definit tle se formt d lmeno tre sclini consecutivi,

Dettagli

CON BENDING TUBI PERFETTAMENTE PIEGATI. SEMPRE

CON BENDING TUBI PERFETTAMENTE PIEGATI. SEMPRE CON BENDING TUBI PEFETTAMENTE PIEGATI. SEMPE Conveniente, ccurt ed eseguit su misur Siete ll ricerc di tui perfettmente piegti in 2 o 3D? Allor lscite che ce ne occupimo noi. Dteci semplicemente i rggi

Dettagli

DUOSTEEL 25. Canne Fumarie Doppia Parete Coibentazione 25 mm. Canne fumarie in acciaio Inox

DUOSTEEL 25. Canne Fumarie Doppia Parete Coibentazione 25 mm. Canne fumarie in acciaio Inox Cnne Fumrie Doppi Prete Coibentzione 25 mm Cnne fumrie in cciio Inox CERTIFICAZIONI Cnne fumrie Doppi Prete INDICE 1 Elemento diritto mm 250... pg. 4 2 Elemento diritto mm 500... pg. 4 3 Elemento dritto

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

Industria agroalimentare Proteggete la vostra produzione con i lubrificanti NEVASTANE

Industria agroalimentare Proteggete la vostra produzione con i lubrificanti NEVASTANE Industri grolimentre Proteggete l vostr produzione con i lubrificnti Prodotto e distribuito in Itli d Servizi: il mssimo dl vostro prodotto! Sempre più produttori sono convinti dell necessità di utilizzre

Dettagli

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario 58 Modulo 6 L rccolt bncri e il rpporto di conto corrente I destintri del Modulo sono gli studenti del quinto nno che, dopo ver nlizzto e ppreso le crtteristiche fondmentli dell ttività delle ziende di

Dettagli

Eccellente qualità delle immagini

Eccellente qualità delle immagini www. dr wi ng c d. c om/ pr i m p g i n t e r moc me r e. ht ml Eccellente qulità delle immgini Il sensore è il cuore dell termocmer. Testo ttribuisce un enorme vlore ll mssim qulità possibile. Testo 890

Dettagli

REQUISITI ENERGETICI DEGLI EDIFICI. 1. Indice di prestazione energetica per la climatizzazione invernale

REQUISITI ENERGETICI DEGLI EDIFICI. 1. Indice di prestazione energetica per la climatizzazione invernale Allegto C REQUISITI ENERGETICI DEGLI EDIFICI 1. Indice di prestzione energetic per l climtizzzione invernle 1.1 Edifici residenzili dell Clsse E1, esclusi collegi, conventi, cse di pen e cserme Tbell 1.1

Dettagli

a cura di: ing. Ernesto Grande e.grande@unicas.it http://www.docente.unicas.it/ernesto_grande

a cura di: ing. Ernesto Grande e.grande@unicas.it http://www.docente.unicas.it/ernesto_grande Università degli Studi di Cssino Progetto di Strutture Costruzioni i in Acciio i cur di: ing. Ernesto Grnde e.grnde@unics.it http://www.docente.unics.it/ernesto_grnde t it/ t d Testi consigliti 1. G. Bllio,

Dettagli

ISTRUZIONI DI MONTAGGIO

ISTRUZIONI DI MONTAGGIO Gruppo Imr ISTRUZIONI DI MONTAGGIO collettori sul tetto Figur 1 - I collettori DB possono essere montti fcilmente con il sistem di montggio per l sovrpposizione ll fld d due persone, senz necessità di

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

Imparare: cosa, come, perché.

Imparare: cosa, come, perché. GIOCO n. 1 Imprre: cos, come, perché. L pprendimento scolstico non è solo questione di metodo di studio, m di numerose situzioni di tipo personle e di gruppo, oppure legte l contesto in cui pprendimo.

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

P8 Ponti radio terrestri e satellitari

P8 Ponti radio terrestri e satellitari P8 Ponti rdio terrestri e stellitri P8.1 Un collegmento in ponte rdio 11 GHz impieg due ntenne prboliche uguli venti gudgno G 40 db ed efficienz η 0,5. Gli pprti di ricetrsmissione sono collegti lle rispettive

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8)

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8) COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionle 18 febbrio 2010, n. 8) N Prot. VARIAZIONE...del (d compilrsi cur dell ufficio competente) Al Comune di.. Il/L sottoscritto/: Cognome Nome Dt

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

CONDIZIONAMENTO DELL ARIA

CONDIZIONAMENTO DELL ARIA Corso di Impinti Tecnici.. 009/00 Docente: Prof. C. Isetti CAPITOLO 7 7. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del

Dettagli

LE RETTIFICHE DI STORNO

LE RETTIFICHE DI STORNO Cpitolo 11 LE RETTIFICHE DI STORNO cur di Alfredo Vignò Le scritture di rettific di fine esercizio Sono composte l termine del periodo mministrtivo per inserire nel sistem vlori stimti e congetturti di

Dettagli

DUOSTEEL GD. Canne Fumarie Doppia Parete Grandi Diametri Coibentazione 50 mm. Canne fumarie in acciaio Inox

DUOSTEEL GD. Canne Fumarie Doppia Parete Grandi Diametri Coibentazione 50 mm. Canne fumarie in acciaio Inox Cnne Fumrie Doppi Prete Grndi Dimetri Coientzione 50 mm Cnne fumrie in cciio Inox Cnne fumrie Doppi Prete Grndi Dimetri INDICE 1 Elemento diritto mm 500... pg. 3 2 Elemento diritto mm 1000... pg. 3 3 Elemento

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

Direttive concernenti l impiego di gru e macchine edili e del genio civile in prossimità di linee elettriche

Direttive concernenti l impiego di gru e macchine edili e del genio civile in prossimità di linee elettriche Direttive concernenti l impiego di gru e mcchine edili e del genio civile in prossimità di linee elettriche 1 Cmpo di ppliczione Cmpo di ppliczione Le presenti direttive si pplicno i lvori con mezzi di

Dettagli

Machined Plastics Materie plastiche

Machined Plastics Materie plastiche Mchined Plstics Mterie plstiche Si eseguono lvorzioni disegno Mterie plstiche POIETIENE «POIZENE» Il Polizene è un polietilene sinterizzto ss pressione, d lt densità le cui crtteristiche meccniche e fisiche

Dettagli