ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione straordinaria

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria"

Transcript

1 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata la seguente equazione in : 3 5, con R. a) Dimostrare che ammette una e una sola soluzione. b) Determinare il numero intero z tale che risulti: z z. c) Scrivere un algoritmo idoneo a calcolare un valore approssimato di a meno di 4. d) Dopo aver riferito il piano a un sistema di assi cartesiani ortogonali (Oy), determinare, se esistono, i valori del parametro reale k (k ) per cui la curva C k di equazione: y ( 3 5) k ( 3 75) ammette un massimo e un minimo relativi. e) Stabilire se esiste un valore k di k per cui la curva C k è simmetrica rispetto all origine O. PROBLEMA Un gruppo di persone è costituito da 3 uomini e dalle rispettive mogli. Ciascun uomo sceglie a caso una fra le 3 donne, con uguali possibilità di scelta, per un giro di ballo. a) Calcolare quante sono le possibili terne di coppie di ballerini. b) Calcolare la probabilità che: ) nessun uomo balli con la propria moglie; ) un solo uomo balli con la propria moglie; 3) tutti e tre gli uomini ballino con le rispettive mogli. c) Il gioco viene effettuato per n volte. Calcolare: ) per n 4, il numero medio di volte in cui tutti e tre gli uomini ballano con le rispettive mogli; ) per n 4, la probabilità che non più di volte capiti che nessun uomo balli con la propria moglie; 3) per n 6, la probabilità che esattamente 3 volte capiti che un solo uomo balli con la propria moglie; 4) per n 5, la probabilità che almeno 4 volte capiti che almeno un uomo balli con la propria moglie. N.B.: Per l uso che il candidato, se crede, ne può fare, si forniscono le formule della probabilità binomiale e della distribuzione normale: p k n p k q n k, y k ) e ( (e,78, 3,45). Zanichelli Editore, 6

2 3 4 5 QUESTIONARIO Nell insieme delle rette dello spazio si consideri la relazione così definita: «due rette si dicono parallele se sono complanari e non hanno punti comuni». Dire se è vero o falso che gode della proprietà transitiva e fornire un esauriente spiegazione della risposta. In un piano, riferito a un sistema monometrico di assi cartesiani ortogonali (Oy), è assegnato il luogo geometrico dei punti che soddisfano alla seguente equazione: 8 8y 4k 8y 3k, dove k è un parametro reale. Calcolare per quali valori di k il luogo è costituito da: ) un punto; ) due punti; 3) infiniti punti; 4) nessun punto. In un piano sono date due circonferenze non congruenti, l una esterna all altra. Di omotetie che trasformano la minore nella maggiore ve ne sono: A nessuna. B una sola. C due soltanto. D infinite. Una sola alternativa è corretta: individuarla e motivare in maniera esauriente la scelta operata. In un piano, riferito a un sistema monometrico di assi cartesiani ortogonali (Oy), è assegnata l affinità (A) di equazioni: X 3Y, y X Y. Calcolare l area della figura trasformata di un cerchio di raggio secondo l affinità (A). Considerata la successione di termine generale: a n n (n )(n ), 6 scriverla in forma ricorsiva Scrivere un algoritmo che generi i primi numeri della successione di cui al precedente quesito 5 e li comunichi sotto forma di matrice di 4 righe e 5 colonne. Considerata la successione di termine generale: sen a n 3 a n se n calcolare a n. n Considerata la funzione f () tale che: f () ( ln t) dt, con, determinare i suoi zeri e gli intervalli in cui cresce o decresce. Zanichelli Editore, 6

3 9 Come si sa, la parte di sfera compresa fra due piani paralleli che la secano si chiama segmento sferico a due basi. Indicati con r ed r i raggi delle due basi del segmento sferico e con h la sua altezza (distanza tra le basi), dimostrare che il volume V del segmento sferico considerato è dato dalla seguente formula: V 6 h(h 3r 3r ). Qualunque sia il metodo seguito per la dimostrazione, esplicitare ciò che si ammette. Calcolare il seguente limite: lim ( e t )dt sen essendo e la base dei logaritmi naturali. Durata massima della prova: 6 ore. È consentito soltanto l uso di calcolatrici non programmabili. Non è consentito lasciare l Istituto prima che siano trascorse 3 ore dalla dettatura del tema. 3 Zanichelli Editore, 6

4 SOLUZIONE DELLA PROVA D ESAME CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria PROBLEMA a) Posto f () 3 5, la funzione f è continua in R, i limiti agli estremi del campo di esistenza valgono lim ( 3 5) e la derivata prima f () 3 è sempre positiva in R. Per il teorema di unicità dello zero, la funzione f ha uno e un solo punto in cui si annulla e quindi l equazione 3 5 ammette una e una sola soluzione reale. b) Si considera l immagine della funzione f () 3 5 per alcuni valori interi di : f () 38, f (3) 7, f (4). Si osserva che nell intervallo [3; 4] la funzione cambia di segno, pertanto lo zero della funzione è localizzato in tale intervallo, ovvero z z, con z 3. c) È noto che lo zero della funzione f () 3 5 è compreso nell intervallo [3; 4]. Si procede alla risoluzione approssimata dell equazione f () attraverso il metodo di bisezione. Si costruisce il seguente algoritmo, il quale chiede in ingresso l approssimazione ε voluta. Inizio Programma Equazione polinomiale Leggi ε Si legge il valore dell approssimazione g 3 Si assegna alla variabile g il grado dell equazione, A [,,, 5] al vettore A i coefficienti dell equazione polinomiale, 3 alla variabile l estremo sinistro dell intervallo, 4 alla variabile l estremo destro dell intervallo, P 7 alla variabile P il valore f (3) 7 Ripeti Si costruisce il ciclo basato sul metodo di bisezione M ( )/ Si calcola il punto medio dell intervallo [ ; ] i Si azzera il contatore i P M Si azzera la variabile P M Ripeti Si calcola il valore f ( M ) contenuto in P M i i P M P M M A i finché i g Se P P M Si effettua il controllo sulla posizione della radice ri- allora M, P P M, spetto al punto medio altrimenti M, finché ε Si effettua il controllo sull approssimazione voluta Scrivi M Si mostra la radice approssimata Fine In linguaggio Derive il programma corrispondente da scrivere nella riga di editazione delle espressioni è il seguente: Equaz(ε): PROG (g: 3, A: [,,, 5], : 3, : 4, P: 7, LOOP (M: ( )/, i:, PM:, LOOP (i: i, PM: PM M ASUBi, IF (i g, eit)), IF (P PM, PROG (: M, P: PM), : M), IF ( ε, eit)), RETURN [M]) 4 Zanichelli Editore, 6

5 Nella figura è riportato il programma come appare nella finestra algebrica. d) Considerata la funzione parametrica f k () ( 3 5) k ( 3 75), con k, si può scrivere: f k () (k ) 3 (k ) 5( 3k). Essa è continua e ha derivata prima: f k () 3(k ) (k ). Si studia il segno di quest ultima ponendo 3(k ) (k ) : se k, 3(k ) (k ) 3 R; se k, 3(k ) (k ) 3 R. Poiché per k si ha f k () R, la funzione f k () è crescente, mentre per k è f k () R e quindi la funzione f k () è decrescente. In conclusione non esistono valori di k per cui la funzione f k ammette un massimo e un minimo relativi. e) La funzione f k () (k ) 3 (k ) 5( 3k) è simmetrica rispetto all origine O se vale che f k ( ) f k (), ovvero se è verificata l uguaglianza: (k )( ) 3 (k )( ) 5( 3k) (k ) 3 (k ) 5( 3k), cioè (k ) 3 (k ) 5( 3k) (k ) 3 (k ) 5( 3k) Confrontando i due membri dell uguaglianza, deve essere: 5( 3k) 5( 3k) k 3. Pertanto la curva C k, con k, di equazione: 3 y Figura. y= f 3 () 3 3 3, è simmetrica rispetto all origine del sistema di riferimento cartesiano. Il suo grafico è rappresentato nella figura. O PROBLEMA a) Si suppone di attribuire agli uomini del gruppo un numero da a 3, mentre alle rispettive mogli le lettere A, B, C. Le possibili terne di coppie di ballerini sono rappresentate per riga nel seguente schema. A B 3C A C 3B Figura. B A 3C B C 3A C A 3B C B 3A Le terne possibili sono pertanto 6. Il medesimo risultato può essere ottenuto considerando fissi i tre ballerini, nella successione,, 3, nella quale intercalare la terna variabile delle tre ballerine A, B, C: A B C 3 5 Zanichelli Editore, 6

6 Le possibili terne sono allora determinate dalle permutazioni dei tre elementi A, B, C, ovvero P 3 3! 6. b) Considerato l evento: E nessun uomo balla con la propria moglie, si calcola la probabilità P (E ) applicando la definizione classica di probabilità, intesa come rapporto tra casi favorevoli e casi possibili. Osservando lo schema, i casi favorevoli sono (la quarta e la quinta terna), mentre i casi possibili sono 6. Pertanto vale: b) Posto: P (E ) 6 3. E un solo uomo balla con la propria moglie, i casi favorevoli sono forniti dalle terne (A, C, 3B), (B, A, 3C ), (C, B, 3A) e quindi risulta: b3) Preso: P (E ) 3 6. E 3 tutti e tre gli uomini ballano con le rispettive mogli, c è un solo caso favorevole e la probabilità vale: P (E 3 ) 6. c) Utilizzando lo schema delle prove ripetute, la probabilità che un evento E, di probabilità costante p, si verifichi volte su n prove, è data dalla distribuzione binomiale P (X ) n p ( p) n, dove la variabile X corrisponde al numero delle volte che l evento può verificarsi. Il valore medio di tale distribuzione è M (X ) np. Per l evento E 3 tutti e tre gli uomini ballano con le rispettive mogli, la probabilità p vale 6 e se n 4, risulta: M (X ) c) Considerato l evento E nessun uomo balla con la propria moglie con probabilità p, si costruisce la corrispondente tabella della distribuzione binomiale con n 4 e la relativa funzione di ri- 3 partizione. X 3 4 P,9753,3956,9696,98765,346 F,9753,59593,888889, La funzione di ripartizione per X vale, Pertanto la probabilità che non più di volte capiti che nessun uomo balli con la propria moglie risulta essere, c3) Poiché la probabilità che un solo uomo balli con la propria moglie è uguale a, si applica la distribuzione binomiale quando 3, p ed n 6: 6 P (X 3) 3 6 3,6, 3 6 Zanichelli Editore, 6

7 ovvero la probabilità che esattamente 3 volte capiti che un solo uomo balli con la propria moglie è circa,6. c4) Si considera l evento: E 4 almeno un uomo balla con la propria moglie. Osservando lo schema al punto a), i casi favorevoli sono 4 su 6 possibili, pertanto la probabilità dell evento E 4 vale: p Se si compiono n 5 prove, con la probabilità p di verificarsi dell evento e si assume la distribuzione binomiale P (X ) 3 3 5, la probabilità che almeno 4 volte capiti 3 5 che almeno un uomo balli con la propria moglie risulta: P (X 4) P (X 4) P (X 5) ,77,84,94. QUESTIONARIO La relazione «due rette si dicono parallele se sono complanari e non hanno punti comuni» gode della proprietà transitiva. Infatti, si considerano due rette r ed s parallele tra loro e appartenenti al piano (figura 3). Sia t una retta parallela ad s e sia il piano che le contiene. Si vuole dimostrare che le rette r e t sono tra loro parallele. Si consideri un generico punto P della retta s e si conduca da esso un piano perpendicolare alla retta stessa. Per un noto teorema della geometria euclidea nello spazio, se due rette sono parallele, ogni piano perpendicolare all una è perpendicolare pure all altra. Pertanto il piano è perpendicolare sia alla retta r che alla retta t. Ora, si può dimostrare che due rette perpendicolari a uno stesso piano sono parallele tra loro. Infatti, siano A e B i piedi delle perpendicolari r e t sul piano e sia u la retta che congiunge A e B (figura 4). Si conduca su una retta v perpendicolare alla u in un punto H. Dato che r è perpendicolare a e la retta u è perpendicolare a v, allora la retta v è perpendicolare al piano determinato dalle rette r e u, per il teorema delle tre perpendicolari. Nella stessa maniera si dimostra che v è perpendicolare al piano individuato dalle rette t e u. Poiché di piani perpendicolari alla retta v ve ne è uno solo nel punto H, ne consegue che le rette r e t appartengono allo stesso piano. Essendo quest ultime complanari ed entrambe perpendicolari alla stessa retta u allora sono parallele. γ γ α u A r r A H s P v β t B Figura 3. δ t B Figura 4. 7 Zanichelli Editore, 6

8 Data l equazione 8 8y 4k 8y 3k, essa può essere scritta nella forma: y y k 3 8. Si tratta di una combinazione lineare tra l equazione y y, rappresentante la circonferenza di centro C ; e raggio r, e la retta 3 (figura 5). 4 Il luogo geometrico si riconduce a un fascio di circonferenze di k centro ; 4 e raggio r k k k se vale la condizione di realtà k. In particolare, si k trova: k k k 6k 4 k 3 5 k 3 5. Per k 3 5 k 3 5, l equazione di partenza è un fascio di circonferenze con generatrici di equazione: y y e 3 (figura 5). 4 Poiché il sistema delle generatrici, y y 9, ha equazione risolvente y y con discrimi nante negativo, l asse radicale 3 è esterno alle circonferenze, le quali non possiedono punti base. 4 Si può concludere che il luogo geometrico è costituito da: ) un punto quando r k, ossia per k 3 5 ; ) da due punti per nessun valore di k; 3) da infiniti punti per k 3 5 k 3 5 ; 4) da nessun punto per 3 5 k 3 5. y = 3 4 O C +y +y= Figura 5. 3 Considerate in un piano due circonferenze non congruenti, l una esterna all altra, di raggio rispettivamente r ed r (r r ) e centro O e O, si ponga un sistema di riferimento cartesiano Oy con l origine nel centro della minore e con l asse passante per il centro della maggiore (figura 6). Le equazioni delle due circonferenze sono: y O C r O' r' C' : y r, : ( O ) y r, ovvero y O O r, dove O r r. Presa una generica omotetia di centro C ( C ; y C ), di equazioni: k p, k, p, q R, con p C ( k), y ky q q y C ( k) Figura 6. 8 Zanichelli Editore, 6

9 e le sue inverse, k p k, y k y q k si impone che sia la trasformata di secondo l omotetia. Perciò si trasforma la curva attraverso le equazioni inverse: y r k p k k y q k r y p qy p q r k. Tolti gli apici, si confronta l equazione trovata con l equazione y O O r. Per l identità dei polinomi vale: p p O O q q. k r r k r p q r k O r r Poiché il rapporto di omotetia k può assumere due valori, esistono due omotetie che trasformano la circonferenza nella circonferenza. La risposta esatta è quindi C. 4 5 È noto che un affinità X a by c trasforma una circonferenza in un ellisse e che il rapporto tra le Y a b y c aree S e S di due figure, una trasformata dell altra rispetto all affinità, si conserva e vale S S det a b a b. X 3Y X 3y Ora, data l affinità e la sua inversa,, la matrice associata alla trasformazio- y X Y Y y 3 ne inversa è. Considerato il cerchio di raggio e superficie S, per quanto detto esso viene trasformato in un ellisse di area S tale che: S 3 det 4 3 S. In conclusione il cerchio di raggio unitario è trasformato in un ellisse di uguale area. Data la successione di termine generale a n n (n )(n ), con n N, la sua rappresentazione per enumerazione è: 6,, 5, 4, 3, 55, 9, 4, 4,. Si nota che il termine n-esimo può essere ottenuto dalla somma del termine precedente con il quadrato di n stesso: a a a 5 a a a n a n n 9 Zanichelli Editore, 6

10 Pertanto la forma ricorsiva della successione è: a a n a n n se n 6 L algoritmo che genera i primi numeri della successione a n n (n )(n ) e li comunica sotto 6 forma di matrice di 4 righe e 5 colonne, può avere la seguente forma. Inizio Programma Successione Matrice Si n i Ripeti i i j Ripeti j j assegna alla variabile Matrice una matrice 4 5 Si azzera l indice della successione a n Si azzera il contatore delle righe della matrice Si costruiscono i due cicli annidati per i contatori i e j che realizzano la matrice richiesta Si incrementa il contatore i Si azzera il contatore delle colonne della matrice Si incrementa il contatore j Matrice i j n (n )(n ) 6 Si compie il calcolo del termine della successione a n n n finché j 5 finché i 4 Scrivi Matrice Fine Si incrementa l indice n Si comunica in uscita la matrice calcolata In linguaggio Derive il programma corrispondente da scrivere nella riga di editazione delle espressioni è il seguente: Succ_(fittizia): PROG(Matrice: VECTOR(VECTOR(, a,, 5), b,, 4), n:, i:, LOOP(i: i, j:, LOOP( j: j, MatriceSUBiSUBj: /6 n (n ) ( n ), n: n, IF( j 5, eit)), IF(i 4, eit)), RETURN Matrice) Zanichelli Editore, 6

11 Nella figura 7 è riportato il programma come appare nella finestra algebrica. Figura 7. 7 La successione in forma ricorsiva, a n sen 3 a n se n, è una successione geometrica di ragione q 3 e primo termine a. La somma S n dei primi n termini risulta: 3 n 3 n S n 3 3 n La serie a n è convergente se esiste il limite lim S n. Pertanto vale: n n a n lim S n lim 3 n n n 3 n 3. Si trova l espressione di f () calcolando l integrale ( ln t ) dt: ( ln t ) dt dt ln tdt ln tdt lim ln tdt h h applicando l integrazione per parti: lim h [t ln t ] h t h t dt ln lim h h ln h essendo lim h ln h per il teorema di De L Hospital, risulta: h ln. Si studia la funzione f () ln, con. Gli zeri si ottengono ponendo f () : ln ( ln ) ln, non accettabile, e e. Zanichelli Editore, 6

12 Lo zero di f () ( ln t) dt, con, è unico e vale e. Si determina la crescenza e decrescenza studiando il segno della derivata prima f (), che risulta essere, per il teorema fondamentale del calcolo integrale: Figura 8. f () ln,. Poiché ln è vera nel C.E. per e, si ha la seguente tabella dei segni della derivata prima (figura 8). La funzione f () è pertanto strettamente crescente per e, ha un massimo per e, è strettamente decrescente per e. f'() f() + e ma 9 L intento è di dimostrare la formula del volume di un segmento sferico a due basi attraverso il calcolo integrale. Si può diversamente seguire la via della geometria euclidea nello spazio, applicando il teorema di equivalenza tra un segmento sferico a una base e la somma di una particolare sfera e di un cilindro. Nella figura 9 si ottiene un segmento sferico a due basi attraverso la rotazione intorno all asse delle di un arco di circonferenza di raggio r, di equazione f () r, con. Per il calcolo integrale, il volume del solido di rotazione si trova tramite la formula V [ f ()] d. Nel caso in questione vale: V ( r ) d (r ) d V r 3 3 r ( ) 3 ( 3 3 ) y O r r y= r r r { h Figura 9. V 3 ( )[3r ( )]. Essendo h, elevando al quadrato entrambi i membri, si ottiene h, da cui si ricava ( h ). Sostituendo all espressione del volume si ottiene: V 3 h 3r ( h ) 3 h 3r 3 3 h 6 h (6r 3 3 h ). Per il teorema di Pitagora risulta r r e r r, pertanto, sostituendo si trova: V 6 h (6r 3r 3r 3r 3r h ) 6 h (3r 3r h ). Per, il limite ha forma indeterminata. Al numeratore vi è una funzione integrale ed esiste la sua ( e t ) dt e per il teorema fondamentale del derivata prima nell intervallo [; ] che vale D calcolo integrale. La funzione al denominatore, y sen è derivabile e diversa da zero in un intorno di escluso. Si può pertanto applicare il teorema di De L Hospital: lim ( e t ) dt e lim lim e. sen s en cos sen Zanichelli Editore, 6

13 Si tratta nuovamente di una forma indeterminata per la quale è utilizzabile ancora il teorema di De L Hospital: e lim c os. ( e t ) dt Concludendo, lim. sen Per esercitarti ancora sugli argomenti trattati nel Svolgi il Problema Quesito 5 pag. W 7 Test 5 pag. 7 Esercizio 6 pag. W 94 Esercizio 9 pag. W 94 Esercizio 36 pag. J 74 Esercizio 5 pag. 6 Problema Esercizio 4 pag. 7 Esercizio pag. 76 Esercizio 6 pag. 58 Esercizio 57 pag. 7 Problema 8 pag. 76 (punto a) Quesito Quesito 9 pag. W 65 Test pag. 95 Quesito 7 pag. 9 Quesito Test 3 pag. L 46 Quesito 6 pag. L 48 Quesito 8 pag. L 48 Quesito 3 Esercizio 45 pag. J 96 Esercizio 46 pag. J 97 Quesito 4 Esercizio 494 pag. J 8 Esercizio 5 pag. J 9 Esercizio 53 pag. J Quesito 5 Esercizio 3 pag. U 9 Esercizio 8 pag. S 59 Quesito 6 Esercizio pag. T 3 Quesito 7 Quesito 7 pag. U 4 Quesito 8 Esercizio 39 pag. W 5 Esercizio 88 pag. W 5 Esercizio 89 pag. W 5 Quesito 9 Esercizio 7 pag. W 4 Esercizio 75 pag. W 4 Quesito Esercizio 98 pag. W 5 Quesito pag. W 68 3 Zanichelli Editore, 6

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 004 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA In un piano

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 22/03/2016 Verifica di Matematica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Sei stato assunto come economo da una

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali. 1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2014-15 L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado.. IL PIANO CARTESIANO Il piano cartesiano.

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 In un piano, riferito

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA

Liceo scientifico Albert Einstein. Anno scolastico 2009-2010. Classe V H. Lavoro svolto dalla prof.ssa Irene Galbiati. Materia: MATEMATICA Liceo scientifico Albert Einstein Anno scolastico 2009-2010 Classe V H Lavoro svolto dalla prof.ssa Irene Galbiati Materia: MATEMATICA PROGRAMMA DI MATEMATICA CLASSE V H Contenuti Ripasso dei prerequisiti

Dettagli

Raccolta Temi d'esame - Corso di Ordinamento

Raccolta Temi d'esame - Corso di Ordinamento ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinaria Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Si consideri la seguente

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

1 Insiemi in R n 1 1.1 Simmetrie degli insiemi... 5

1 Insiemi in R n 1 1.1 Simmetrie degli insiemi... 5 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 5 2 Funzioni da

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: LICEO SCIENTIFICO MATERIA: MATEMATICA ANNO SCOLASTICO: 2014-2015 PROF: MASSIMO BANFI

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

I appello - 26 Gennaio 2007

I appello - 26 Gennaio 2007 Facoltà di Ingegneria - Corso di Laurea in Ing. Informatica e delle Telecom. A.A.006/007 I appello - 6 Gennaio 007 Risolvere gli esercizi motivando tutte le risposte. (N.B. il quesito teorico è obbligatorio)

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Capitolo 9 Esponenziali e logaritmi... Capitolo 0 Funzioni circolari 0. Descrizione di fenomeni periodici Tra le funzioni elementari ne esistono due atte a descrivere fenomeni che si ripetono periodicamente

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

1 Limiti e continuità per funzioni di una variabile

1 Limiti e continuità per funzioni di una variabile 1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1

Dettagli

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006 PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli