15. FRAZIONI SOVRAPPOSTE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "15. FRAZIONI SOVRAPPOSTE"

Transcript

1 16 o RMT Finale maggio 2008 ARMT FRAZIONI SOVRAPPOSTE (Cat. 7, 8, 9, 10) Gianni e Lina hanno disposto ciascuno nove numeri su tre righe e tre colonne e hanno inserito sei linee tra due numeri sovrapposti: possono così leggere sei frazioni. Ecco la disposizione di ed ecco quella di Gianni: Lina: I ragazzi hanno scelto i loro numeri cercando di rispettare le seguenti regole: a) i nove numeri sono numeri naturali tutti diversi tra loro; b) ognuna delle sei frazioni che si possono leggere rappresenta un numero più piccolo di 1; c) nessuna delle sei frazioni è ridotta ai minimi termini; d) tutte le frazioni rappresentano numeri diversi fra loro. Inoltre Gianni e Lina hanno scelto i nove numeri cercando di fare in modo che il più grande tra essi fosse il più piccolo possibile. Lina è molto soddisfatta perché il suo numero più grande (16) è minore del più grande dei numeri di Gianni (18). Ma Gianni le fa osservare che lei non ha rispettato la regola d), poiché 4/8 = 3/6, né la regola c), dato che 2/9 è una frazione ridotta ai minimi termini. Scegliete anche voi nove numeri rispettando le quattro regole come Gianni, ma in modo che il numero più grande sia minore di 18 e sia il più piccolo possibile. Scrivete la vostra scelta migliore. Ambito concettuale - Aritmetica: frazioni, semplificazioni, frazioni equivalenti, numeri primi tra loro - Rendersi conto che non si può scegliere 1 (altrimenti la frazione sarebbe ridotta ai minimi termini), che due numeri sovrapposti devono avere un divisore comune, e che i numeri di una stessa colonna sono ordinati dal più piccolo al più grande. - Nel corso dei tentativi, notare che bisogna scegliere dei numeri piccoli nella prima riga, che è vantaggioso annotarsi le frazioni semplificate per evitare le frazioni equivalenti, che se si scelgono solo numeri pari, si è sicuri che tutte le frazioni saranno semplificabili, ma non si scenderà al di sotto di 9 x 2 = 18, e così via. - Partire dunque da 2 e fare man mano l elenco dei numeri ancora utilizzabili: 3, 4 (non 5) 6, (non 7), 8, 9 (a denominatore del 6), 10, (non 11) 12, (non 13) e 14. Oppure partire ipotizzando il numero più grande (ad esempio 16) e cercare gli altri seguendo le regole. Provare poi con 15 e con 14 e rendersi infine conto che con 12 non esiste alcuna soluzione. Ecco qui di seguito qualche soluzione, di cui le prime due non ottimali: punteggio 4 : Risposta corretta: disposizione corretta e ottimale di 9 numeri naturali, di cui 14 è il numero più grande utilizzato (è il minimo possibile) Livello: 7, 8, 9, 10 Origine: Israel

2 6 o RALLY MATEMATICO TRANSALPINO - PROVA I gennaio 1998 ARMT 12 FRAZIONE DI UN TERRENO Giuseppe possiede un appezzamento di terreno a forma di quadrato e, poiché è un po' giocherellone, lo divide con rette passanti per i vertici o per i punti medi (cioè i punti di mezzo) dei lati del quadrato. Francesco riceverà in eredità la parte ombreggiata del terreno di suo padre Giuseppe. Quale frazione del terreno riceverà Francesco? Giustificate la vostra risposta. Campo concettuale: - Geometria: figure equivalenti, rette parallele, punti medi - Aritmetica: frazioni : - Ricomporre le sei parti in un parallelogramma e in due triangoli rettangoli isometrici - Trovare che l'area di ognuno di questi triangoli è la metà di quella del quadrato - Dedurre che l'area del parallelogramma è metà dell'area del quadrato - Trovare quindi che la parte ombreggiata, essendo metà del parallelogramma, vale un quarto dell'area del quadrato Livello : Origine : Bourg en Bresse FINE CAT. 6 13

3 17 RMT PROVA II marzo - aprile 2009 ARMT ATTRAVERSAMENTO DEL FIUME (Cat. 6, 7, 8) ARMT II prova Un gruppo di turisti, tra 100 e 200 persone, deve attraversare un grande fiume, ma l unico ponte esistente è stato distrutto dalle intemperie. Sono però disponibili due barche: una piccola ed una grande. Con la piccola, utilizzata ogni volta al completo, tutti i turisti potrebbero attraversare il fiume in 21 viaggi. Con la grande, anch essa utilizzata ogni volta al completo, tutti i turisti potrebbero attraversare il fiume in solo 9 viaggi. Dopo 5 viaggi di ciascuna delle due barche, restano ancora dei turisti da trasportare. Secondo voi, quanti? Spiegate il vostro ragionamento. Ambito concettuale - Aritmetica: multipli comuni; frazioni (addizioni) - Tenere presente che il numero dei turisti è compreso fra 100 e Comprendere che questo numero è un multiplo comune di 21 e di 9, quindi di Trovare i multipli di 63 compresi tra 100 e 200. Essi sono due: 126 e Considerare che, se i turisti sono 126, con la barca piccola, si possono trasportare 6 turisti (126 : 21 = 6) in ogni viaggio, mentre con la barca grande 14 turisti (126 : 9 = 14) in ogni viaggio. - Calcolare allora che dopo 5 viaggi delle due barche sono stati trasportati 100 turisti (6 5 = 30 e 14 5 = 70) e che, quindi, ne restano ancora 26 da trasportare. - Analogo ragionamento nel caso di 189 turisti: ad ogni viaggio, con la barca piccola si possono trasportare 9 turisti (189 : 21), mentre con la barca grande 21 turisti (189 : 9). Dopo 5 viaggi di ogni barca, hanno potuto attraversare il fiume 150 turisti ( = 150), ne restano quindi ancora 39 da trasportare. Oppure, usando le frazioni: - Rendersi conto che il numero dei turisti trasportati in ogni viaggio dalla barca piccola è 1/21 del totale, mentre il numero dei turisti trasportati in ogni viaggio dalla barca grande è 1/9. Ne segue che, dopo 5 viaggi di entrambe le barche, il numero complessivo dei turisti trasportati è 5/21 + 5/9 = 50/63 del totale. - Comprendere che il numero totale dei turisti deve essere un multiplo di 63, maggiore di 100 e minore di 200: 126 o Calcolare, nei due casi, con la frazione complementare (1 50/63 = 13/63) il numero dei turisti ancora da trasportare: /63 = 26 o /63= 39. Attribuzione dei punteggi 4 Le due soluzioni (26 o 39 turisti) con giustificazione completa 3 Una soluzione esatta con giustificazione corretta e l altra con un errore di calcolo 2 Le due soluzioni esatte senza giustificazione, oppure due soluzioni sbagliate a causa di errori di calcolo, ma con procedimento corretto, oppure una sola soluzione esatta con giustificazione 1 Una soluzione esatta senza giustificazione, oppure una soluzione sbagliata ma con procedimento corretto 0 Incomprensione del problema. Livello: 6, 7, 8 Origine: Ticino

4 17 RMT PROVA I gennaio - febbraio 2009 ARMT BUDINO AL CIOCCOLATO (Cat. 4, 5, 6) ARMT I prova Doris, Francesca e Ben hanno bisogno di 150 grammi di cioccolato per preparare un budino al cioccolato. Ognuno di loro prende una tavoletta di cioccolato da 200 grammi, come quella disegnata qui accanto, e decide di tagliarla seguendo le sue linee. Doris taglia la sua tavoletta in tre parti, una delle quali è un rettangolo di 150 grammi. Francesca taglia la sua tavoletta in due sole parti, una delle quali è anch essa un rettangolo di 150 grammi. Ben taglia anche lui la sua tavoletta in due parti, di cui l una è un rettangolo di 150 grammi, ma più lungo di quello di Doris e di Francesca. Disegna un rettangolo come quello di Doris, un rettangolo come quello di Francesca e un rettangolo come quello di Ben, seguendo le linee delle loro tavolette. Fate tre diversi disegni. Spiegate perché ognuno di questi rettangoli pesa 150 grammi. Ambito concettuale: - Geometria: rettangolo - Aritmetica: proporzionalità, frazioni elementari - Rendersi conto che è necessario passare da 200 g - la tavoletta intera - a 150 g, e che il problema è di determinare quale sarà la parte di tavoletta che si dovrà conservare, mantenendo una forma rettangolare. - Rendersi conto che se la tavoletta intera pesa 200 g, la metà pesa 100 g e la metà della metà (ovvero un quarto), pesa 50 grammi e che si dovrà dunque togliere un quarto della tavoletta o conservarne i tre quarti. - Visualizzare allora le parti rettangolari che possono rappresentare un quarto o tre quarti (rispettivamente 1 o 3 file «orizzontali» o 2 o 6 file «verticali»). Oppure : immaginare la scomposizione in quadrati : contare i quadrati (32), e prenderne la metà e il quarto per determinare che per il budino al cioccolato occorreranno 24 quadrati, che possono formare un rettangolo di 3 x 8 o di 4 x 6. Oppure : calcolare il peso di un quadrato (200 : 32 = 6,25) e determinare quanti quadrati saranno necessari per il budino (150 : 6,25 = 24), poi constatare che i rettangoli possibili di 24 quadretti sono quelli di dimensioni 3 x 8 o 4 x 6. - Osservare che ci sono solo due disposizioni di un rettangolo di 4 x 6 sulla tavoletta (che non sono simmetriche l una dell altra) e una sola disposizione di un rettangolo di 3 x 8 (con una isometria) e constatare, partendo dalle affermazioni di ognuno, che il rettangolo di Doris è ottenuto con due tagli nel senso della larghezza, quello di Francesca con un solo taglio nel senso dalla larghezza e quello di Ben con un taglio nel senso dalla lunghezza : Doris Francesca (per es.) Ben (per es.) Attribuzione dei punteggi 4 I tre rettangoli di Doris, Francesca e Ben (come si vede sopra) disegnati chiaramente e identificati con spiegazioni su come passare da 32 a 24 quadretti e sulle due scomposizioni possibili di 24: 3 x 8 e 4 x 6 3 I tre rettangoli disegnati chiaramente, con delle spiegazioni poco chiare sui 24 quadretti 2 I tre rettangoli disegnati chiaramente e identificati, senza altre spiegazioni o due rettangoli disegnati chiaramente, con spiegazioni 1 Individuato uno solo dei rettangoli o solamente l area di 24 quadretti 0 Incomprensione del problema Livello: 4, 5, 6 Origine: Luxembourg

5 13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo, aprile 2005 ARMT.2005 p I COMPAGNI DI GIUDITTA (Cat. 5, 6) Giuditta ha notato che, nella sua classe, ci sono alcuni alunni che hanno i capelli neri e gli occhi azzurri. Poiché Giuditta è curiosa di natura, si mette ad osservare tutti gli alunni delle quattro classi della sua scuola. Dopo qualche giorno, scopre che: - la metà degli alunni sono maschi - un terzo degli alunni hanno i capelli neri - dividendo il numero degli alunni della scuola per 7, si trova il numero degli alunni che hanno gli occhi azzurri, - in ciascuna classe, ci sono almeno 20 alunni ma non più di 30. Quanti sono gli alunni delle classi osservate da Giuditta che non hanno gli occhi azzurri? Spiegate come avete trovato la vostra soluzione. Ambito concettuale - Aritmetica: frazioni, multipli, divisibilità, confronto di numeri - Capire che il numero degli studenti deve essere un multiplo di 2, di 7 e di 3 e quindi di 42 che è il loro m.c.m.: 42, 84, 126, 168,. - Esaminare i numeri precedenti (multipli) in rapporto ai valori 80 (20x4) e 120 (30x4), che sono il minimo e il massimo possibili di allievi - Concludere che gli studenti osservati sono in tutto 84, e che quindi 84 (1/7) 84 = 72 (oppure (6/7) 84 ) è il numero degli allievi che non hanno gli occhi azzurri. Oppure (per gli allievi che non conoscono il m.c.m.) - Situare il numero degli alunni tra 80 e 120 (secondo l ultima indicazione), poi cercare in questo intervallo numeri che sono divisibili per 7 (a partire da 70 o 77: 84, 91, 98, 105, 112 e 119), eliminare quindi i dispari (restano solo 84, 98 e 112) e trovare che 84 è il solo numero ancora in lista che è divisibile per 3. - Calcolare come in precedenza il numero degli allievi che hanno gli occhi azzurri: 84 : 7 = 12 e sottrarre questo risultato da 84 per conoscere il numero degli allievi che non hanno gli occhi azzurri. Livello: 5-6 Origine: Parma

6 8 e RALLY MATEMATICO TRANSALPINO ARMT 2000 FINALE - maggio LA CURA (cat. 5, 6, 7) Anna non si sente bene e il suo medico le ha prescritto una cura. Il farmacista legge la ricetta del medico e dà ad Anna una confezione, di 40 compresse, sulla quale scrive la seguente prescrizione: "Da prendere prima dei pasti con un bicchiere d'acqua: - i primi tre giorni: una mezza compressa al mattino e una compressa la sera - i tre giorni seguenti: una compressa a mezzogiorno e un quarto di compressa la sera - i tre giorni seguenti: un quarto di compressa al mattino - i tre giorni seguenti: una mezza compressa la sera lasciar passare due giorni senza prendere compresse e poi ricominciare come prima". Quanti giorni durerà la cura con la confezione di 40 compresse? Giustificate la vostra risposta. Ambito concettuale: - Aritmetica: operazioni con numeri con la virgola o con frazioni - Logica : - Capire che il numero di compresse cambia ogni tre giorni - Calcolare quante compresse prende Anna per gruppi di tre giorni e quindi per 12 giorni: giorni : compresse : 3 9/2 = 4,5 3 15/4 = 3,75 3 3/4 = 0,75 3 3/2 = 1, /4 = 21/2= 10,5 - Tener conto dei due giorni di pausa per ogni ciclo, cioè: 14 giorni per10,5 compresse - Capire che per i primi tre cicli : 42 giorni ( ), Anna prenderà 63/2 = 31,5 compresse - Capire che nella confezione ci saranno ancora (40-31,5) compresse = 8,5 compresse e quindi 7 giorni (in quanto 8.25 compresse in sei giorni, le ci vorrà quindi ancora un giorno per 1/4 di compressa), in tutto 49 giorni (42 + 7) - Oppure procedere giorno per giorno Valutazione: 4 Risposta corretta (49) e giustificazione con i dettagli 3 Risposta corretta con giustificazione poco chiara 2 Calcolo corretto delle compresse necessarie per tre cicli (in 42 giorni 31,5 compresse) con i dettagli, o risposta corretta senza dettagli e senza giustificazione 1 Calcolo corretto delle compresse necessarie per un ciclo (in 12 giorni 10,5 compresse) 0 Incomprensione del problema Livello: Origine : Parma, incontro di Siena 10. CAMPIONATO DI PALLACANESTRO (cat 6, 7, 8) Le sei scuole della città partecipano tutti i mercoledì al campionato di pallacanestro. Le regole sono quelle dei campionati degli adulti:

Nella seconda partita Tommaso ha vinto o perso delle figurine? E quante? Spiegate il vostro ragionamento.

Nella seconda partita Tommaso ha vinto o perso delle figurine? E quante? Spiegate il vostro ragionamento. 11 o RALLY MATEMATICO TRANSALPINO - PROVA II marzo 2003 ARMT.2003 p. 1 1. GIOCHI CON ME? (Cat. 3) /ARMT/2003-11 - II prova Tommaso va a casa di Francesco per giocare con le figurine. Tommaso ha 27 figurine.

Dettagli

Quanti cubetti ha utilizzato in tutto Sofia per costruire la sua doppia scala?

Quanti cubetti ha utilizzato in tutto Sofia per costruire la sua doppia scala? 10 RALLY MATEMATICO TRANSALPINO - PROVA I - gennaio-febbraio 2002 /ARMT/2002 p. 1 7. Doppia scala (Cat. 4, 5, 6) /ARMT/2002-10 - I prova Sofia ha costruito una doppia scala regolare di 1 metro di altezza

Dettagli

Indicate il pezzo che Théo ha aggiunto e ricostruite il puzzle quadrato di Aurelia con gli altri cinque pezzi.

Indicate il pezzo che Théo ha aggiunto e ricostruite il puzzle quadrato di Aurelia con gli altri cinque pezzi. 10 o RALLY MATEMATICO TRANSALPINO FINALE maggio 2002 ARMT2002 p. 1 1. Un pezzo in più (Cat. 3, 4) /ARMT/2002-10 - finale Aurelia ha formato un quadrato con i cinque pezzi del suo puzzle. Purtroppo il suo

Dettagli

Chi ha più adesivi? Spiegate come avete trovato la vostra risposta. 13 RALLY MATEMATICO TRANSALPINO PROVA 1 gennaio-febbraio 2005 ARMT.2005 p.

Chi ha più adesivi? Spiegate come avete trovato la vostra risposta. 13 RALLY MATEMATICO TRANSALPINO PROVA 1 gennaio-febbraio 2005 ARMT.2005 p. 13 RALLY MATEMATICO TRANSALPINO PROVA 1 gennaio-febbraio 2005 ARMT.2005 p. 1 1. ADESIVI (Cat. 3) ARMT.2005-13 - I prova Gli adesivi che Giulia e Oscar collezionano si vendono nelle buste. In ogni busta

Dettagli

17 Rally Matematico Transalpino, prova 1

17 Rally Matematico Transalpino, prova 1 17 RMT PROVA I gennaio - febbraio 2009 ARMT.2009 1 17 Rally Matematico Transalpino, prova 1 I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la

Dettagli

13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo, aprile 2005 ARMT.2005 p. 1

13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo, aprile 2005 ARMT.2005 p. 1 13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo, aprile 2005 ARMT.2005 p. 1 No titolo 3 4 5 6 7 8 9 Ar. Alg. Ge. Lo. Co. Orig. 1 Spettacolo di fine anno 3 X PR 2 Quanti anni hai? 3 4 X BB 3 Piega e

Dettagli

17 RMT PROVA I gennaio - febbraio 2009 ARMT.2009 1

17 RMT PROVA I gennaio - febbraio 2009 ARMT.2009 1 17 RMT PROVA I gennaio - febbraio 2009 ARMT.2009 1 N o titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge Lo. Orig. 1. IL GIOCO DEI CINQUE DADI 3 x x PR+FJ 2. IN AUTOBUS 3 4 x 9RMT 3. PARTITE DI PING-PONG 3 4 x FJ 4.

Dettagli

16 0 RMT Finale maggio 2008 ARMT.2008 1

16 0 RMT Finale maggio 2008 ARMT.2008 1 16 0 RMT Finale maggio 2008 ARMT.2008 1 1. PERLE ROSSE (Cat. 3) ARMT.2008-16 - finale Martina e Carlotta hanno trovato delle perle gialle, blu e rosse. Decidono di farsi una collana ciascuna e infilano

Dettagli

13. GLI ZII DI PIERINO

13. GLI ZII DI PIERINO 13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo - aprile 2005 ARMT.2005 p. 1 12. DADI (Cat. 6, 7, 8, 9) ARMT.2005-13 - II prova Un dado (di tipo «occidentale») è costruito correttamente se sono rispettate

Dettagli

17 Rally Matematico Transalpino, prova 1

17 Rally Matematico Transalpino, prova 1 17 Rally Matematico Transalpino, prova 1 I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza del problema inserendo la dicitura " ARMT".

Dettagli

Nuovi problemi per nuove conoscenze

Nuovi problemi per nuove conoscenze Nuovi problemi per nuove conoscenze Daniela Medici & Maria Gabriella Rinaldi 14 gennaio 2004 Le situazioni problema Le situazioni problema sono progettate e messe in scena per costruire nuove conoscenze.

Dettagli

20 RMT PROVA II marzo - aprile 2012 ARMT 2012 1

20 RMT PROVA II marzo - aprile 2012 ARMT 2012 1 20 RMT PROVA II marzo - aprile 2012 ARMT 2012 1 Problemi Categorie Argomenti Origine 6. Tre amici e i loro disegni 4 5 6 Geo grp geop 7. Una sfida per Lino 5 6 7 Ar SI 8. Il numero di Sofia 5 6 7 8 Ar

Dettagli

13 RALLY MATEMATICO TRANSALPINO PROVA 1 gennaio-febbraio 2005 ARMT.2005 p. 1 ANALISI A PRIORI

13 RALLY MATEMATICO TRANSALPINO PROVA 1 gennaio-febbraio 2005 ARMT.2005 p. 1 ANALISI A PRIORI 13 RALLY MATEMATICO TRANSALPINO PROVA 1 gennaio-febbraio 2005 ARMT.2005 p. 1 6. I TRE CONIGLI (Cat. 4, 5, 6) ARMT.2005-13 - I prova Tre conigli mangiano le verdure del mio orto! Il coniglio bianco mangia

Dettagli

15 e RMT PROVA 1 (gennaio-febbraio 2007) ARMT.2007 1

15 e RMT PROVA 1 (gennaio-febbraio 2007) ARMT.2007 1 15 e RMT PROVA 1 (gennaio-febbraio 2007) ARMT.2007 1 1. L ASINO DI TOBIA (Cat. 3) ARMT.2007-15 - I prova Tobia è andato in paese ed ha acquistato 6 sacchi di provviste. Li vuole trasportare con il suo

Dettagli

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria E4 (Alunni di quarta elementare)

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria E4 (Alunni di quarta elementare) Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 6584 (cell.: 40 47 47 952) e-mail:agostino_zappacosta@libero.it Terza Edizione Giochi di Achille (1-12-07) - Olimpiadi

Dettagli

13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo, aprile 2005 ARMT.2005

13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo, aprile 2005 ARMT.2005 1. SPETTACOLO DI FINE ANNO (Cat. 3) Nella classe di Luca ci sono 21 alunni che hanno tutti nomi differenti. Per lo spettacolo di fine anno, gli alunni che sanno suonare uno strumento musicale o che sanno

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

17 RMT PROVA II marzo - aprile 2009 ARMT.2009 1 N o titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo-Co. Orig. 1. I cuori di cioccolato 3 x x RMT 2.

17 RMT PROVA II marzo - aprile 2009 ARMT.2009 1 N o titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo-Co. Orig. 1. I cuori di cioccolato 3 x x RMT 2. 17 RMT PROVA II marzo - aprile 2009 ARMT.2009 1 N o titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo-Co. Orig. 1. I cuori di cioccolato 3 x x RMT 2. Il villaggio degli animali 3 4 x x SI 3. Le pozzanghere 3 4 x

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1 MATEMATICA COMPETENZE Dimostra conoscenze matematiche che gli consentono di analizzare dati e fatti della realtà e di verificare l'attendibilità delle analisi quantitative e statistiche proposte da altri.

Dettagli

No titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo. Orig.

No titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo. Orig. 14 RALLY MATEMATICO TRANSALPINO PRIMA PROVA No titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo. Orig. 1 Sudoku 3 x RZ 2 Il ventaglio di Giulia 3 4 x LO 3 I pacchi di Babbo Natale 3 4 x x SR 4 Tavoletta da ricoprire

Dettagli

No titolo 3 4 5 6 7 8 9 Ar. Alg. Gé. Lo.. Orig.

No titolo 3 4 5 6 7 8 9 Ar. Alg. Gé. Lo.. Orig. 13 RALLY MATEMATICO TRANSALPINO PROVA 1 gennaio-febbraio 2005 ARMT.2005 p. 1 No titolo 3 4 5 6 7 8 9 Ar. Alg. Gé. Lo.. Orig. 1 Adesivi 3 X C.I. 2 RMT 2005 3 4 X C.I. 3 Le ordinazioni 3 4 X SR 4 Belle colonne

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore Kangourou Italia Gara del 1 marzo 001 Categoria Student Per studenti di quarta e quinta superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli

Scuola Primaria Statale Falcone e Borsellino

Scuola Primaria Statale Falcone e Borsellino ISTITUTO COMPRENSIVO STATALE DI LOVERE VIA DIONIGI CASTELLI, 2 - LOVERE Scuola Primaria Statale Falcone e Borsellino PROGRAMMAZIONE DIDATTICA ANNUALE Le programmazioni didattiche sono state stese in base

Dettagli

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA SCUOLA PRIMARIA DI CORTE FRANCA MATEMATICA CLASSE QUINTA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L ALUNNO SVILUPPA UN ATTEGGIAMENTO POSITIVO RISPETTO ALLA MATEMATICA,

Dettagli

18 Rally Matematico Transalpino, prova 1

18 Rally Matematico Transalpino, prova 1 18 Rally Matematico Transalpino, prova 1 I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza del problema inserendo la dicitura " ARMT".

Dettagli

16 RMT Prova I gennaio/febbraio 2008 ARMT 2008 1

16 RMT Prova I gennaio/febbraio 2008 ARMT 2008 1 16 RMT Prova I gennaio/febbraio 2008 ARMT 2008 1 N o titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo. Orig. 1. Andiamo a lavorar 3 x SI 2. I bicchieri di Alberto 3 4 x RZ 3. Scar...tabellando 3 4 x x AO 4. I triangoli

Dettagli

19 RMT PROVA I gennaio - febbraio 2011 ARMT 2011 1

19 RMT PROVA I gennaio - febbraio 2011 ARMT 2011 1 19 RMT PROVA I gennaio - febbraio 2011 ARMT 2011 1 Problemi Categorie Argomenti Origine 1. Dal più basso al più alto 3 Lo FC 2. Le tavolette di cioccolato 3 4 Lo LUX 3. Una foto africana 3 4 Ar UD 4. I

Dettagli

7 Rally matematico transalpino Prova I e analisi p. 1

7 Rally matematico transalpino Prova I e analisi p. 1 7 Rally matematico transalpino Prova I e analisi p. 1 1. I CIOCCOLATINI (Cat 3) In questa scatola i cioccolatini erano perfettamente allineati e disposti in modo regolare. Ora, però, ne restano solo 17.

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

17 RMT PROVA II marzo - aprile 2009 ARMT.2009 1 N o titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo-Co. Orig. 1. I cuori di cioccolato 3 x x RMT 2.

17 RMT PROVA II marzo - aprile 2009 ARMT.2009 1 N o titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo-Co. Orig. 1. I cuori di cioccolato 3 x x RMT 2. 17 RMT PROVA II marzo - aprile 2009 ARMT.2009 1 N o titolo 3 4 5 6 7 8 9 10 Ar. Alg. Ge. Lo-Co. Orig. 1. I cuori di cioccolato 3 x x RMT 2. Il villaggio degli animali 3 4 x x SI 3. Le pozzanghere 3 4 x

Dettagli

LA CONOSCENZA DEL MONDO SCUOLA DELL INFANZIA. OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni

LA CONOSCENZA DEL MONDO SCUOLA DELL INFANZIA. OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni SCUOLA DELL INFANZIA INDICATORI LA CONOSCENZA DEL MONDO OBIETTIVI DI APPRENDIMENTO 3 anni 4 anni 5 anni Riconoscere la quantità. Ordinare piccole quantità. Riconoscere la quantità. Operare e ordinare piccole

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Competenze Conoscenze Abilità L alunno riconosce il significato dei numeri ed i modi per rappresentarli i numeri naturali entro il 20 nei loro aspetti

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per il Lazio Istiituto Comprensiivo Don Lorenzo Miillanii Scuola dell Infanzia Primaria Secondaria di I grado anche

Dettagli

SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016

SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016 SCUOLA PRIMARIA CURRICOLO MATEMATICA DELIBERATO ANNO SCOL. 2015/2016 SCUOLA PRIMARIA CLASSE PRIMA MATEMATICA AREA DISCIPLINARE: MATEMATICO- SCIENTIFICO-TECNOLOGICA COMPETENZA DI Mettere in relazione il

Dettagli

Istituto Comprensivo Casalgrande (R.E.) PROGETTAZIONE DI ISTITUTO MATEMATICA Scuola primaria

Istituto Comprensivo Casalgrande (R.E.) PROGETTAZIONE DI ISTITUTO MATEMATICA Scuola primaria Istituto Comprensivo Casalgrande (R.E.) PROGETTAZIONE DI ISTITUTO MATEMATICA Scuola primaria CLASSE PRIMA Obiettivi formativi ABILITA CONOSCENZE Il numero - Contare in senso progressivo e regressivo. -

Dettagli

MATEMATICA CLASSE PRIMA

MATEMATICA CLASSE PRIMA CLASSE PRIMA L alunno/a si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. Contare oggetti o eventi, a voce e mentalmente,

Dettagli

CURRICOLO di MATEMATICA Scuola Primaria

CURRICOLO di MATEMATICA Scuola Primaria CURRICOLO di MATEMATICA Scuola Primaria MATEMATICA CLASSE I Indicatori Competenze Contenuti e processi NUMERI Contare oggetti o eventi con la voce in senso progressivo e regressivo Riconoscere e utilizzare

Dettagli

CURRICOLO MATEMATICA CLASSE 1^

CURRICOLO MATEMATICA CLASSE 1^ CURRICOLO CLASSE 1^ COMPETENZE CHIAVE: Competenze di base in matematica Classe 1^ Contare oggetti o eventi, a voce e mentalmente Leggere e scrivere i numeri naturali in notazione decimale avendo consapevolezza

Dettagli

A B C. Le figure ottenute non hanno tutte lo stesso perimetro. Per esempio. il perimetro di A misura 36 unità, quello di B ne misura 34.

A B C. Le figure ottenute non hanno tutte lo stesso perimetro. Per esempio. il perimetro di A misura 36 unità, quello di B ne misura 34. 13 RALLY MATEMATICO TRANSALPINO finale maggio 2005 ARMT.2005 1 6. I DUE RETTANGOLI (Cat. 4, 5, 6) ARMT.2005-13 - finale Si ritagliano due rettangoli in un foglio di carta a quadretti, seguendo le righe

Dettagli

20 0 RMT PROVA I gennaio - febbraio 2012 ARMT 2012 1

20 0 RMT PROVA I gennaio - febbraio 2012 ARMT 2012 1 20 0 RMT PROVA I gennaio - febbraio 2012 ARMT 2012 1 1. CANDELINE DI COMPLEANNO (Cat. 3, 4) Domani Costanza compirà tre anni e la mamma ha comprato le candeline per la sua torta. Ha acquistato una confezione

Dettagli

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE

LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE LABORATORIO DI MACCHINE MATEMATICHE: SIMMETRIA ASSIALE Anno Scolastico 20010/2011 Classe 1^C dell Istituto comprensivo G. Parini plesso Ghittoni di San Giorgio- Piacenza Docente della Classe : Paola Farroni

Dettagli

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.

Dettagli

CURRICOLO MATEMATICA SCUOLA PRIMARIA

CURRICOLO MATEMATICA SCUOLA PRIMARIA CURRICOLO MATEMATICA SCUOLA PRIMARIA CLASSE PRIMA Traguardi per lo sviluppo delle competenze Sviluppare un atteggiamento positivo nei confronti della matematica. Obiettivi di apprendimento NUMERI Acquisire

Dettagli

19 RMT FINALE maggio - giugno 2011 ARMT 2011 1

19 RMT FINALE maggio - giugno 2011 ARMT 2011 1 19 RMT FINALE maggio - giugno 2011 ARMT 2011 1 Problemi Categorie Ambito Origine 1. Le figurine 3 Ar BB 2. I gettoni 3 4 Ar BB 3. Quadrati di quadrati 3 4 Ar Geo Co LY 4. La bilancia a due piatti 3 4 5

Dettagli

Curricolo scuola primaria: AREA LOGICO MATEMATICA

Curricolo scuola primaria: AREA LOGICO MATEMATICA Curricolo scuola primaria: AREA LOGICO MATEMATICA COMPETENZE CONOSCENZE ABILITA CLASSE I - Leggere e scrivere i numeri, ordinarli e usarli per contare in senso progressivo e regressivo. - Effettuare calcoli

Dettagli

SCUOLA PRIMARIA. Indicatori Obiettivi di apprendimento Criteri di valutazione

SCUOLA PRIMARIA. Indicatori Obiettivi di apprendimento Criteri di valutazione SCUOLA PRIMARIA Relazioni, dati e Contare oggetti o eventi, a voce e mentalmente, in senso progressivo e regressivo entro il 20. Leggere e scrivere i numeri naturali entro il 20, confrontarli e ordinarli

Dettagli

Istituto Comprensivo di Pralboino Curricolo Verticale

Istituto Comprensivo di Pralboino Curricolo Verticale NUMERI -L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali entro le centinaia di migliaia. -L alunno si muove nel calcolo scritto e con i numeri naturali entro le migliaia.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA

A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA D ISTITUTO COMPETENZA CHIAVE EUROPEA DISCIPLINA ISTITUTO COMPRENSIVO STATALE di Scuola dell Infanzia, Scuola Primaria e Scuola Secondaria di 1 grado San Giovanni Teatino (CH) CURRICOLO A.S. 2012-1013 CLASSE PRIMA SCUOLA PRIMARIA OBIETTIVI DI Sviluppa

Dettagli

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA

SCUOLA PRIMARIA Anno Scolastico 2014/2015 CURRICOLO DI MATEMATICA OBIETTIVI DI APPRENDIMENTO AL TERMINE DELLA CLASSE TERZA DELLA SCUOLA PRIMARIA Ministero dell Istruzione, dell Università e della Ricerca Istituto Comprensivo Statale di Calolziocorte Via F. Nullo,6 23801 CALOLZIOCORTE (LC) e.mail: lcic823002@istruzione.it - Tel: 0341/642405/630636

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi

CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi CURRICOLO DI MATEMATICA SCUOLA PRIMARIA MATEMATICA SEZIONE A : Traguardi formativi FINE CLASSE TERZA SCUOLA PRIMARIA FINE SCUOLA PRIMARIA COMPETENZE SPECIFICHE ABILITÀ CONOSCENZE ABILITÀ CONOSCENZE Utilizzare

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

CONTENUTI METODOLOGIA STRUMENTI METODO DI STUDIO VALUTAZIONE ANNO COMPETENZE OBIETTIVI DI APPRENDIMENTO

CONTENUTI METODOLOGIA STRUMENTI METODO DI STUDIO VALUTAZIONE ANNO COMPETENZE OBIETTIVI DI APPRENDIMENTO NNO COMPETENZE OBIETTIVI DI PPRENDIMENTO CONTENUTI METODOLOGI STRUMENTI METODO DI STUDIO VLUTZIONE 4^ M T E M T I C L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e

Dettagli

ESERCIZI DI PREPARAZIONE E

ESERCIZI DI PREPARAZIONE E ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

ISTITUTO COMPRENSIVO RIGNANO - INCISA PROGRAMMAZIONE ANNUALE DI MATEMATICA. Scuola primaria classe quinta 1 quadrimestre

ISTITUTO COMPRENSIVO RIGNANO - INCISA PROGRAMMAZIONE ANNUALE DI MATEMATICA. Scuola primaria classe quinta 1 quadrimestre ISTITUTO COMPRENSIVO RIGNANO - INCISA PROGRAMMAZIONE ANNUALE DI MATEMATICA Scuola primaria classe quinta 1 quadrimestre INDICATORI OBIETTIVI ATTIVITÀ - Leggere, scrivere, confrontare numeri naturali fino

Dettagli

22 RMT Finale maggio-giugno 2014 ARMT2014

22 RMT Finale maggio-giugno 2014 ARMT2014 Titolo Categorie Tema Origine 1. La torta quadrata 3 4 geometria 1.F.8 2. La varicella 3 4 aritmetica LU 3. Percorsi sui fiammiferi 3 4 5 combinatoria 1.F.10 4. Il tappeto della Sig.ra Ladoccia 3 4 5 geometria,

Dettagli

I Giochi di Archimede -- Soluzioni triennio 21 novembre 2007

I Giochi di Archimede -- Soluzioni triennio 21 novembre 2007 PROGETTO OLIMPIDI DI MTEMTI U.M.I. UNIONE MTEMTI ITLIN MINISTERO DELL PULI ISTRUZIONE SUOL NORMLE SUPERIORE I Giochi di rchimede -- Soluzioni triennio 1 novembre 007 Griglia delle risposte corrette Problema

Dettagli

SEZIONE A: Traguardi formativi CLASSE QUARTA COMPETENZE ABILITÀ CONOSCENZE

SEZIONE A: Traguardi formativi CLASSE QUARTA COMPETENZE ABILITÀ CONOSCENZE COMPETENZA CHIAVE EUROPEA: A - Numeri SEZIONE A: Traguardi formativi COMPETENZE IN MATEMATICA CLASSE QUARTA COMPETENZE ABILITÀ CONOSCENZE Utilizzare con sicurezza le tecniche e le procedure del calcolo

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti

Dettagli

Problemi Categorie Argomenti Origine

Problemi Categorie Argomenti Origine 20 e RMT PROVA I gennaio - febbraio 2012 ARMT 2012 1 Problemi Categorie Argomenti Origine 1. Le candeline di compleanno 3 4 Ar SI 2. L ultimo in piedi 3 4 Ar Lo 8 RMT 3. Il gioco di Yuri 3 4 Geo GE, RZ

Dettagli

Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1

Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Matematica Livello secondario I Indice del Quaderno d'accompagnamento 1 Indice / Terminologia addendo x L'addizione, la somma, l'addendo, più 1 2a 24 addizionare x L'addizione, la somma, l'addendo, più

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

ESAME DI STATO PROVA NAZIONALE

ESAME DI STATO PROVA NAZIONALE Ministero della Pubblica Istruzione ESAME DI STATO Anno Scolastico 2007 2008 PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza Classe:.. Studente:. Fascicolo 1 Istituto Nazionale per la Valutazione

Dettagli

Ministero dell Istruzione dell Università e della Ricerca Ufficio Scolastico Regionale del Veneto

Ministero dell Istruzione dell Università e della Ricerca Ufficio Scolastico Regionale del Veneto Ministero dell Istruzione dell Università e della Ricerca Ufficio Scolastico Regionale del Veneto Istituto Comprensivo di Bosco Chiesanuova Piazzetta Alpini 5 37021 Bosco Chiesanuova Tel 045 6780 521-

Dettagli

MATEMATICA UNITÀ DI APPRENDIMENTO Classi quarte - Scuola Primaria di Bellano - a.s. 2014/2015

MATEMATICA UNITÀ DI APPRENDIMENTO Classi quarte - Scuola Primaria di Bellano - a.s. 2014/2015 METODOLOGIA ATTIVITÀ - MEZZI PERIODO DI ATTUAZIONE I NUMERI NATURALI Simbolizzare la realtà con il linguaggio della matematica. Storia, Tecnologia, Italiano Lettura e scrittura di numeri naturali oltre

Dettagli

Matematica classe 1^

Matematica classe 1^ NUCLEO TEMATICO 1 Numeri 1 L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. 7 legge e comprende testi che coinvolgono aspetti logici e matematici. NUCLEO TEMATICO 2

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2011 2012 PROVA DI MATEMATICA. Scuola secondaria di I grado. Classe Prima

Rilevazione degli apprendimenti. Anno Scolastico 2011 2012 PROVA DI MATEMATICA. Scuola secondaria di I grado. Classe Prima Ministero dell Istruzione dell Università e della Ricerca Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola secondaria di I grado Classe Prima Spazio per l etichetta

Dettagli

GRUPPO DI LAVORO DI PARMA

GRUPPO DI LAVORO DI PARMA ATTIVITÀ DI ANALISI QUESITI INVALSI GRUPPO DI LAVORO DI PARMA Coordinamento prof. P. VIGHI ANALISI QUESITI RELATIVI A: FASCICOLO somministrato nella 2^ classe PRIMARIA a.s. 2013-2014 FASCICOLO somministrato

Dettagli

PROVA DI MATEMATICA 2 VERSO LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI SECONDO GRADO PROVA DI MATEMATICA. 30 quesiti. Scuola... Classe... Alunno...

PROVA DI MATEMATICA 2 VERSO LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI SECONDO GRADO PROVA DI MATEMATICA. 30 quesiti. Scuola... Classe... Alunno... PRV I MTEMTI VERS L RILEVZINE INVLSI SUL SENRI I SEN GR PRV I MTEMTI 30 quesiti Scuola... lasse... lunno... 7 3 4 6 Sostituendo, nell espressione (n + )(n - ), il numero naturale n con il suo successivo

Dettagli

18 Rally Matematico Transalpino, prova 2

18 Rally Matematico Transalpino, prova 2 18 o RMT Prova II Marzo 2010 ARMT 2010 1 18 Rally Matematico Transalpino, prova 2 I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza

Dettagli

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri

Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE. Operare con i numeri COMPETENZA CHIAVE MATEMATICA Fonte di legittimazione Raccomandazione del Parlamento europeo 18/12/2006 CLASSE PRIMA COMPETENZE ABILITÀ CONOSCENZE L alunno utilizza il calcolo scritto e mentale con i numeri

Dettagli

Istituto Comprensivo Perugia 9 Anno scolastico 2014/2015 Programmazione delle attività educativo didattiche MATEMATICA

Istituto Comprensivo Perugia 9 Anno scolastico 2014/2015 Programmazione delle attività educativo didattiche MATEMATICA Istituto Comprensivo Perugia 9 Anno scolastico 2014/2015 Programmazione delle attività educativo didattiche MATEMATICA CLASSE:PRIMA DISCIPLINA: MATEMATICA AMBITO OBIETTIVI DI APPRENDIMENTO/ABILITÀ CONOSCENZE

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare

Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli

Introduzione ai problemi RMT

Introduzione ai problemi RMT Introduzione ai problemi RMT I problemi del RMT sono sempre accompagnati da un analisi a priori dei contenuti matematici e del compito dell allievo, completata da una descrizione dei criteri di attribuzione

Dettagli

Il calcolo letterale per risolvere problemi e per dimostrare

Il calcolo letterale per risolvere problemi e per dimostrare Il calcolo letterale per risolvere problemi e per dimostrare (si prevedono circa 25 ore di lavoro in classe) Nome e cognome dei componenti del gruppo che svolge le attività di gruppo di questa lezione

Dettagli

Vince il più piccolo. Contenuti

Vince il più piccolo. Contenuti Vince il più piccolo Livello scolare: 4 a classe Competenze interessate Contenuti Nuclei coinvolti Collegamenti esterni Comprendere il significato e l uso dello zero e della virgola. Comprendere il significato

Dettagli

SCUOLA PRIMARIA: MATEMATICA

SCUOLA PRIMARIA: MATEMATICA SCUOLA PRIMARIA: MATEMATICA Traguardi per lo sviluppo delle competenze al termine della scuola primaria L'alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare

Dettagli

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE

MATEMATICA OBIETTIVI DI APPRENDIMENTO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE Il bambino raggruppa e ordina oggetti e materiali secondo criteri diversi. Identifica alcune proprietà dei materiali. Confronta e valuta quantità. Utilizza simboli per registrare materiali e quantità.

Dettagli

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011)

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) D1. Nella tabella che vedi sono riportati i dati relativi alla distribuzione di alunni e insegnanti nella scuola secondaria di primo grado

Dettagli

2. NUMERO DA INDOVINARE

2. NUMERO DA INDOVINARE 1. L ASINO DI TOBIA (Cat. 3) Tobia è andato in paese ed ha acquistato 6 sacchi di provviste. Li vuole trasportare con il suo asino fino alla sua casa sulla cima del monte. Ecco i sacchi di provviste sui

Dettagli

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA ANNO SCOLASTICO 2013/2014 INSEGNANTI Gabellone, Silvagni,Damiano TRAGUARDI DELLE COMPETENZE AL TERMINE della CLASSE QUARTA Sviluppa

Dettagli

Progettazione Classe Prima. Area matematico-scientifica. Matematica Processi cognitivi attivati al termine della classe prima della Scuola Primaria

Progettazione Classe Prima. Area matematico-scientifica. Matematica Processi cognitivi attivati al termine della classe prima della Scuola Primaria Progettazione Classe Prima Processi cognitivi attivati al termine della classe prima della Scuola Primaria Contare oggetti o eventi con la voce e mentalmente, in senso progressivo e regressivo. Leggere

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 Rapporto tecnico sulle caratteristiche delle prove INVALSI 2011 Scuola secondaria di secondo grado classe II MATEMATICA Domanda D1 item a D1. Nella tabella che

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_07.qxp 16-04-2007 12:02 Pagina 5 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva

Dettagli

ISTITUTO COMPRENSIVO RIGNANO - INCISA

ISTITUTO COMPRENSIVO RIGNANO - INCISA ISTITUTO COMPRENSIVO RIGNANO - INCISA PROGRAMMAZIONE ANNUALE DI MATEMATICA Scuola primaria - Classe terza 1 quadrimestre NUMERI Obiettivi Contare oggetti o eventi, con la voce e mentalmente, in senso progressivo

Dettagli

UBI MATH. Matematica per il tuo futuro ARITMETICA 1

UBI MATH. Matematica per il tuo futuro ARITMETICA 1 Ubaldo Pernigo Marco Tarocco UBI MATH Matematica per il tuo futuro ARITMETICA Sommario contenuti digitali integrativi unità Gli insiemi Gli insiemi e la loro rappresentazione 2 Prime competenze 4 2 I sottoinsiemi

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA TRAGUARDI DI COMPETENZA NUCLEI FONDANTI OBIETTIVI DI APPRENDIMENTO CONOSCITIVA IL NUMERO CARATTERISTICHE Quantità entro il numero 20 Cardinalità Posizionalità RELAZIONI

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

A B C F G H. Blu Rosso Blu. Blu Rosso Blu. Giallo Rosso Giallo. Blu Rosso Blu

A B C F G H. Blu Rosso Blu. Blu Rosso Blu. Giallo Rosso Giallo. Blu Rosso Blu 20 0 RMT PROVA II marzo - aprile 2012 ARMT 2012 1 1. CORNICE MULTICOLORE (Cat. 3, 4) Girolamo ha una cornice formata da 8 quadrati uguali di cartone bianco. Girolamo vuol colorare la sua cornice e per

Dettagli

CURRICOLO MATEMATICA

CURRICOLO MATEMATICA 1 CURRICOLO MATEMATICA Competenza 1 al termine della scuola dell Infanzia 2 NUMERI Raggruppare, ordinare, contare, misurare oggetti, grandezze ed eventi direttamente esperibili. Utilizzare calendari settimanali

Dettagli

PROGRAMMAZIONE INDIVIDUALE DOCENTE ANNO SCOLASTICO 2013-14 PROF. ROBERTA BIAGI. MATERIA: Matematica CLASSE I E

PROGRAMMAZIONE INDIVIDUALE DOCENTE ANNO SCOLASTICO 2013-14 PROF. ROBERTA BIAGI. MATERIA: Matematica CLASSE I E PROGRAMMAZIONE INDIVIDUALE DOCENTE ANNO SCOLASTICO 2013-14 PROF. ROBERTA BIAGI MATERIA: Matematica CLASSE I E DATA DI PRESENTAZIONE: 28 novembre 2013 Finalità della disciplina La finalità della disciplina

Dettagli

PRIMO ISTITUTO COMPRENSIVO di PALAZZOLO S/O via Zanardelli n.34 Anno scolastico 2014/2015

PRIMO ISTITUTO COMPRENSIVO di PALAZZOLO S/O via Zanardelli n.34 Anno scolastico 2014/2015 PRIMO ISTITUTO COMPRENSIVO di PALAZZOLO S/O via Zanardelli n.34 Anno scolastico 2014/2015 CURRICOLI DISCIPLINARI SCUOLA DELL INFANZIA e PRIMO CICLO di ISTRUZIONE Percorso delle singole discipline sulla

Dettagli

PROBLEMI PASSATEMPO. tratti dalle gare matematiche

PROBLEMI PASSATEMPO. tratti dalle gare matematiche PROBLEMI PASSATEMPO tratti dalle gare matematiche La portata del ponte Due segnali stradali si trovano all imboccatura di un ponte. Essi indicano la massima larghezza, 325 cm, ed il massimo peso, 4300

Dettagli

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA COMPETENZA 1 UTILIZZARE CON SICUREZZA LE TECNICHE E LE PROCEDURE DI CALCOLO ARITMETICO SCRITTO E MENTALE CON RIFERIMENTO A CONTESTI REALI Stabilire

Dettagli

CURRICOLO MATEMATICA - CLASSE QUINTA -

CURRICOLO MATEMATICA - CLASSE QUINTA - CURRICOLO MATEMATICA - CLASSE QUINTA - COMPETENZA NUCLEO FONDANTE OBIETTIVI DI APPRENDIMENTO CONTENUTI TRAGUARDI NUMERI 1.a) Indicare il valore posizionale delle cifre nei numeri decimali b) comporre e

Dettagli

MATEMATICA - CLASSE SECONDA

MATEMATICA - CLASSE SECONDA ELABORATO DAI DOCENTI DELLA SCUOLA PRIMARIA DIREZIONE DIDATTICA 5 CIRCOLO anno scolastico 2012-2013 MATEMATICA - CLASSE PRIMA TRAGUARDI DI COMPETENZA DA SVILUPPARE AL TERMINE DELLA CLASSE PRIMA Padroneggia

Dettagli