mese richiesta

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000"

Transcript

1 1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese richiesta All inizio del periodo vi sono 50 tecnici. Ogni tecnico lavora non più di 160 ore al mese. Per soddisfare i picchi di domanda è necessario assumere e formare nuovi tecnici. Durante il periodo di formazione, di un mese, i nuovi assunti sono seguiti ciascuno da un tecnico che gli dedica 50 ore. I tecnici esperti hanno un stipendio mensile di 2000 euro, mentre i nuovi assunti (durante il mese di apprendistato) guadagnano 1000 euro. Si suppone che alla fine di ogni mese il 5% dei tecnici passi alla concorrenza. Formulare un modello di programmazione matematica che permetta di soddisfare la domanda e di minimizzare i costi. 1.8 Turni in ospedale. Si vuole organizzare i turni in un reparto ospedaliero in modo tale da minimizzare il numero di infermieri coinvolti. Ogni infermiere lavora 5 giorni consecutivi seguiti da due giorni di riposo. Le esigenze di personale (in termini di numero minimo di infermieri) per ogni giorno della settimana sono le seguenti: giorno Lun Mar Mer Gio Ven Sab Dom richiesta Formulare il problema in termini di programmazione lineare intera. 1.9 Distribuzione di PC. Un distributore di PC ha a disposizione n siti candidati per depositi, con un costo di apertura pari a f i ed una capacità massima pari a b i, i = 1,..., n. Vi sono m negozi da rifornire ognuno con una richiesta minima pari a d j, j = 1,..., m. Supponendo che il costo unitario di trasporto da un deposito i ad un negozio j sia pari a c ij, si vuole minimizzare il costo totale (costi fissi di apertura dei depositi + costo di trasporto). Formulare un modello di programmazione lineare intera che permette di risolvere il problema. Tenendo presente che la quantità massima di materiale trasportato dal deposito i al negozio j è di q ij, (e che la somma di queste quantità sia pari alla capacità massima del deposito, cioè che j m q ij = b i per ogni i n), dare una formulazione alternativa del problema Produzione di modem. Un impresa produce un modello di modem e vuole pianificare la produzione per i successivi quattro mesi. La propria linea di produzione ha una capacità produttiva di 2500 unità/mese, ognuna delle quali costa 7 euro. Documento preparato da Pietro Belotti 1

2 L impresa, tuttavia, può anche usufruire di una linea di produzione di terzi, che può produrre 700 unità al mese al costo di 9 euro l una. L impresa ha dei costi di magazzino di 1 euro al mese per ogni modem; il magazzino contiene, all inizio del periodo di pianificazione, 70 unità; e si richiede che vi siano 300 unità alla fine del periodo. Per ragioni tecniche riguardanti i macchinari di produzione, un impianto di produzione avviato deve produrre un lotto minimo di almeno 80 unità. Le vendite previste per i prossimi 4 mesi sono riportate di seguito: mese=j richiesta=r j Si desidera determinare un piano di produzione che soddisfi la richiesta e minimizzi i costi. Formulare il problema in termini di programmazione lineare intera. Come va modificato il modello se vi sono costi fissi di produzione f 1 e f 2 per i due impianti? Soluzioni 1.7 Servizi informatici. Definiamo la variabile x j, con j = 1,..., 5, come il numero di nuovi assunti formati durante il mese j; con y j definiamo il numero di tecnici esperti presenti nel mese j. La funzione obiettivo, tenendo conto che alla fine del mese un nuovo assunto diventa automaticamente un tecnico esperto, è data dallo stipendio da pagare nei 5 mesi ai tecnici e agli apprendisti: z = 1000 (x 1 + x 2 + x 3 + x 4 + x 5 ) (y 1 + y 2 + y 3 + y 4 + y 5 ) Durante il mese j, il numero di ore dedicate dai tecnici esperti alla manutenzione e alla consulenza è dato da 160y j 50x j. Dato che questo numero di ore deve soddisfare la richiesta di ore mensile possiamo scrivere i vincoli 160y 1 50x y 2 50x y 3 50x y 4 50x y 5 50x Inoltre, al mese j + 1 il numero di tecnici esperti è dato dalla parte (95%) di tecnici del mese j che non è passata alla concorrenza più quelli assunti nel mese j. Pertanto, 0.95y j + x j = y j+1 j = 1, 2, 3, 4 (1) Documento preparato da Pietro Belotti 2

3 Imponiamo infine i seguenti vincoli sulle variabili: y 1 = 50 x 0 y 0. Risolvendo il problema di PL si ottiene la soluzione ottima frazionaria: z = x = y = Ovviamente, la soluzione frazionaria trovata non ha senso e si deve imporre l integralità delle variabili x e y. Sorge però un altro problema: per i vincoli (1), il valore di y j+1 potrebbe essere frazionario anche se y j e x j sono interi. Il vincolo alternativo 0.95y j + x j = y j+1 j = 1, 2, 3, 4 aggira questo inconveniente, ma rende il problema non lineare. Si può comunque considerare una semplice linearizzazione introducendo una variabile intera z j Z 0 per ogni j = 1, 2, 3, 4. Si riscrive il vincolo sopra come: e si aggiungono i vincoli: z j + x j = y j+1 j = 1, 2, 3, 4. z j 0.95y j z j + 1 j = 1, 2, 3, 4 I vincoli sopra forzano z j ad assumere il più alto valore intero minore di 0.95y j. 1.8 Turni in ospedale. Siano lun, mar, mer, gio, ven, sab e dom le variabili che indicano il numero di infermieri il cui turno di 5 giorni inizia il giorno di lunedì, martedì,..., domenica. Il modello è il seguente: min (lun + mar + mer + gio + ven + sab + dom) lun + gio + ven + sab + dom 11 (Presenze Lunedì) lun + mar + ven + sab + dom 9 (Presenze Martedì) lun + mar + mer sab + dom 7 (Presenze Mercoledì) lun + mar + mer + gio + dom 12 (Presenze Giovedì) lun + mar + mer + gio + ven 13 (Presenze Venerdì) mar + mer + gio + ven + sab 8 (Presenze Sabato) mer + gio + ven + sab + dom 5 (Presenze Domenica) lun, mar, mer, gio, ven, sab, dom Z + Documento preparato da Pietro Belotti 3

4 1.9 Distribuzione di PC. In un classico problema di trasporto si suppone che le unità produttive (depositi) siano già dislocate sul territorio e operative; può accadere però di di dover affrontare una decisione a monte rispetto al piano di trasporto, che consiste nella scelta delle unità produttive da attivare in un insieme di potenziali siti candidati. L obiettivo dell azienda consiste nella minimizzazione della somma dei costi fissi d investimento e dei costi di trasporto; questi ultimi, trascurabili rispetto ai primi se si tiene conto di un orizzonte temporale limitato, vanno scalati su un orizzonte più lungo, ad esempio quello di ritorno dell investimento iniziale. Le variabili decisionali sono la quantità x ij da trasportare da ogni deposito i ad ogni negozio j e le variabili binarie y i pari a 1 se il deposito i è attivato. Il modello dunque è il seguente: min n m n c ij x ij + f i y i (1) m x ij b i y i i = 1,..., n (2) n x ij d j j = 1,..., m (3) x ij 0, y i {0, 1} i = 1,..., n, j = 1,..., m Considerando che x ij q ij per i n, j m, si possono imporre i vincoli x ij q ij y i i n, j m, (4) che esprimono che x ij = 0 per ogni j m se y i = 0, ovvero che non c e trasporto dal deposito j se il deposito j non viene attivato. Questi vincoli rendono ridondanti i vincoli m x ij b i y i i n, (5) dato che sommando i vincoli (4) su tutte le j si ottengono esattamente i vincoli (5). Quindi i (4) possono essere usati per sostituire i (5) nella formulazione del problema, dando così luogo a una formulazione alternativa. Si noti che il contrario non vale: cioè non è possibile derivare i vincoli (4) dai vincoli (5), quindi la formulazione data dai vincoli (4) è più stringente (cioè l insieme delle soluzioni ammissibili della formulazione con i (4) è contenuto nell insieme delle soluzioni ammissibili della formulazione con i (5)). Documento preparato da Pietro Belotti 4

5 1.10 Produzione di modem. Definiamo le variabili x 1j come il numero di modem prodotti dalla linea principale nel mese j, con j = 1,..., 4, e con x 2j il numero di modem prodotti dalla terza parte. Denotiamo con y j la quantità in magazzino alla fine del mese j {0, 1,..., 4} (si noti che consideriamo anche la variabile y 0, che si riferisce alla quantità in magazzino alla fine del mese precedente all inizio del periodo di pianificazione) e con le variabili binarie z 1j e z 2j indichiamo se ha luogo produzione di modem nel mese j nell impianto principale o in quello di terza parte, rispettivamente. La funzione obiettivo da minimizzare è la seguente: z = 7 x 1j + 9 x 2j + 1 A causa dei lotti minimi di produzione, la variabile x 1j può essere positiva e comunque non superiore a 2500 se la variabile binaria z 1j è 1. In questo caso però x 1j dovrà anche essere non minore di 80. Possiamo quindi scrivere (vale analogamente per x 2j e z 2j ) j=0 y j 80z 1j x 1j 2500z 1j 80z 2j x 2j 700z 2j Dobbiamo inoltre imporre i vincoli di domanda (si noti che deve essere y 0 = 70 e y 4 = 300): x 11 + x 21 + y x 12 + x 22 + y x 13 + x 23 + y x 14 + x 24 + y La quantità in magazzino alla fine del mese j è data dalla quantità nel mese precedente e dalla quantità prodotta ma non venduta: j {1,..., 4} (y j = y j 1 + x 1j + x 2j r j ) Infine deve essere x 1j, x 2j, y j R +, z 1j, z 2j {0, 1}. Se vogliamo valutare nella funzione obiettivo anche i costi fissi di produzione è sufficiente aggiungervi la quantità f 1 z 1j + f 2 z 2j. Documento preparato da Pietro Belotti 5

Ricerca Operativa A.A. 2008/2009

Ricerca Operativa A.A. 2008/2009 Ricerca Operativa A.A. 08/09 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi

Dettagli

Modelli di Programmazione Lineare e Programmazione Lineare Intera

Modelli di Programmazione Lineare e Programmazione Lineare Intera Modelli di Programmazione Lineare e Programmazione Lineare Intera 1 Azienda Dolciaria Un azienda di cioccolatini deve pianificare la produzione per i prossimi m mesi. In ogni mese l azienda ha a disposizione

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera 8.1 MODELLI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 8.1.1 Una compagnia petrolifera dispone di 5 pozzi (P1, P2, P3, P4, P5) dai quali può estrarre petrolio.

Dettagli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Ricerca Operativa 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi (come

Dettagli

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Esercizio n.1 Un azienda intende incrementare il proprio organico per ricoprire alcuni compiti scoperti. I dati relativi ai compiti

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

Problema della produzione dei monitor

Problema della produzione dei monitor Problema della produzione dei monitor Una azienda produce monitor per PC in tre diversi stabilimenti. Il costo di produzione di ciascun monitor varia a causa della diversa efficienza produttiva degli stabilimenti.

Dettagli

Università Ca Foscari Venezia

Università Ca Foscari Venezia Università Ca Foscari Venezia Dipartimento di Scienze Ambientali, Informatica e Statistica Giovanni Fasano 2 Problemi di Costo Fisso & Vincoli Disgiuntivi (con esercizi ) November 12, 2015 2 Università

Dettagli

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione: 1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale

Dettagli

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine:

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine: 1.1 Pianificazione degli investimenti. Una banca deve investire C milioni di Euro, e dispone di due tipi di investimento: (a) con interesse annuo del 15%; (b) con interesse annuo del 25%. Almeno 1 di C

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

Produzione e forza lavoro

Produzione e forza lavoro Produzione e forza lavoro Testo Un azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare,

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Il modello matematico 2: Funzioni obiettivo: ma.min, Min-ma Tipologie di Vincoli Funzione obiettivo ma-min: Esempio Scommesse Il signor

Dettagli

1. Definizione di budget e collocazione nel processo di programmazione e controllo

1. Definizione di budget e collocazione nel processo di programmazione e controllo 21 Capitolo II Il budget 1. Definizione di budget e collocazione nel processo di programmazione e controllo Il budget - e' un programma delle operazioni di gestione da compiere in un anno, finalizzato

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 20/202 Lezione 6-8 Rappresentazione di funzioni non lineari: - Costi fissi - Funzioni lineari a tratti Funzioni obiettivo non lineari:

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Università del Salento

Università del Salento Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6 Docente: Laura Palagi PIANIFICAZIONE DELLA PRODUZIONE 2 Si distingue in: PRODUCTION PLANNING: Tentativo

Dettagli

Modelli per la gestione delle scorte

Modelli per la gestione delle scorte Modelli per la gestione delle scorte Claudio Arbib Università di L Aquila Seconda Parte Sommario Sui problemi di gestione aperiodica equazioni di stato Funzioni di costo Un modello convesso formulazione

Dettagli

Costi unitari materie dirette 30 40 Costi unitari manodopera diretta. Energia 10 20 Quantità prodotte 600 400 Prezzo unitario di vendita 120 180

Costi unitari materie dirette 30 40 Costi unitari manodopera diretta. Energia 10 20 Quantità prodotte 600 400 Prezzo unitario di vendita 120 180 SVOLGIMENTO Per ogni attività di programmazione e pianificazione strategica risulta di fondamentale importanza per l impresa il calcolo dei costi e il loro controllo, con l attivazione di un efficace sistema

Dettagli

Modelli con vincoli di tipo logico

Modelli con vincoli di tipo logico Modelli con vincoli di tipo logico Le variabili decisionali possono essere soggette a vincoli di tipo logico, più o meno espliciti. Ad esempio: vincoli di incompatibilità tra varie alternative: se localizziamo

Dettagli

La gestione delle scorte

La gestione delle scorte La gestione delle scorte Controllo delle scorte Sist. prod. / Fornitore ordini domanda I Magazzino R Lead Time T La gestione delle scorte Problema: uando ordinare uanto ordinare Obiettivi: Basso livello

Dettagli

Luigi De Giovanni Esercizi di modellazione matematica Ricerca Operativa

Luigi De Giovanni Esercizi di modellazione matematica Ricerca Operativa Piani di investimento Un finanziere ha due piani di investimento A e B disponibili all inizio di ciascuno dei prossimi cinque anni. Ogni euro investito in A all inizio di ogni anno garantisce, due anni

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

GESTIONE DELL INFORMAZIONE AZIENDALE GRUPPO A prova scritta del 20 maggio 2004

GESTIONE DELL INFORMAZIONE AZIENDALE GRUPPO A prova scritta del 20 maggio 2004 GESTIONE DELL INFORMAZIONE AZIENDALE GRUPPO A prova scritta del 20 maggio 2004 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

acqua Ore_uomo A 30 25 B 25 20 C 15 15

acqua Ore_uomo A 30 25 B 25 20 C 15 15 ESERCIZIO 1 Una ditta produttrice di formaggi dispone di due stabilimenti per la lavorazione del latte, A e B, due magazzini per la stagionatura, 1 e 2, e due siti per la distribuzione, P e Q. In un determinato

Dettagli

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUARTA SETTIMANA

Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUARTA SETTIMANA Economia, Corso di Laurea Magistrale in Ing. Elettrotecnica, A.A. 2013-2014. Prof. R. Sestini SCHEMA DELLE LEZIONI DELLA QUARTA SETTIMANA SURPLUS del CONSUMATORE E utile poter disporre di una misura monetaria

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

PIL : produzione e reddito

PIL : produzione e reddito PIL : produzione e reddito La misura della produzione aggregata nella contabilità nazionale è il prodotto interno lordo o PIL. Dal lato della produzione : oppure 1) Il PIL è il valore dei beni e dei servizi

Dettagli

1. Considerazioni preliminari

1. Considerazioni preliminari 1. Considerazioni preliminari Uno dei principali aspetti decisionali della gestione logistica è decidere dove localizzare nuove facility, come impianti, magazzini, rivenditori. Ad esempio, consideriamo

Dettagli

Il dimensionamento della produzione e dell impianto

Il dimensionamento della produzione e dell impianto Università degli Studi di Urbino Carlo Bo Facoltà di Economia Corso di Laurea in INTERNAZIONALIZZAZIONE DELLE IMPRESE ECONOMIA, GESTIONE E INTERNAZIONALIZZAZIONE DELLE IMPRESE Prof. Fabio Musso A.A. 2007-08

Dettagli

Organizzare le risorse umane con ricerca obiettivo

Organizzare le risorse umane con ricerca obiettivo Organizzare le risorse umane con ricerca obiettivo Tra i tanti esempi che si possono ipotizzare, proviamo ad affrontare un problema che si verifica frequentemente nella gestione di una Struttura Operativa,

Dettagli

Risparmiare sulla bolletta del telefono

Risparmiare sulla bolletta del telefono Livello scolare: 1 biennio Risparmiare sulla bolletta del telefono Abilità interessate In situazioni problematiche, individuare relazioni significative tra grandezze di varia natura (per esempio variazione

Dettagli

Prodotto Materia S (kg/unità) Materia U (kg/unità) Componente L Alce 0,15 0,45 2 Orso 0,75 0,75 3

Prodotto Materia S (kg/unità) Materia U (kg/unità) Componente L Alce 0,15 0,45 2 Orso 0,75 0,75 3 Budget Esercizio n 1 L impresa Yellowstone produce due prodotti (Alce e Orso) utilizzando le materie prime S e U e un componente (L). Il componente L può essere prodotto internamente utilizzando un impianto

Dettagli

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007)

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Nome... Cognome... 1 Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Si consideri la funzione f(x) = 4x 2 1 + 6x 4 2 2x 2 1x 2. Si applichi per un iterazione il metodo del gradiente a partire dai

Dettagli

Un applicazione della programmazione lineare ai problemi di trasporto

Un applicazione della programmazione lineare ai problemi di trasporto Un applicazione della programmazione lineare ai problemi di trasporto Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria della Sicurezza: Trasporti e Sistemi Territoriali AA 2012-2013

Dettagli

Ogni azienda ha la necessità di conoscere il proprio sistema dei costi sia per controllare la situazione esistente che per verificare il

Ogni azienda ha la necessità di conoscere il proprio sistema dei costi sia per controllare la situazione esistente che per verificare il Ogni azienda ha la necessità di conoscere il proprio sistema dei costi sia per controllare la situazione esistente che per verificare il raggiungimento degli obiettivi avendo come fine il mantenimento

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera Come è stato già osservato in precedenza, quando tutte le variabili di un problema di Programmazione Lineare sono vincolate ad assumere valori interi, si parla

Dettagli

Un problema di Capital Budgeting

Un problema di Capital Budgeting LABORATORIO RICERCA OPERATIVA Un problema di Capital Budgeting Laura Palagi Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti Sapienza Universita` di Roma Capital Budgeting (Pianificazione

Dettagli

Modelli di Programmazione Lineare

Modelli di Programmazione Lineare Capitolo 2 Modelli di Programmazione Lineare 2.1 Modelli di allocazione ottima di risorse Esercizio 2.1.1 Un industria manifatturiera può fabbricare 5 tipi di prodotti che indichiamo genericamente con

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Fondamenti di Economia Aziendale ed Impiantistica Industriale

Fondamenti di Economia Aziendale ed Impiantistica Industriale Politecnico di Milano IV Facoltà di Ingegneria Fondamenti di Economia Aziendale ed Impiantistica Industriale Impiego della programmazione lineare nella progettazione degli impianti Cosa significa progettare

Dettagli

Ricerca Operativa Modelli di Programmazione Lineare

Ricerca Operativa Modelli di Programmazione Lineare Ricerca Operativa Modelli di Programmazione Lineare Luigi De Giovanni, Laura Brentegani AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

TUTTI I MUTUI DI CHEBANCA! Condizioni valide al 1 luglio 2010

TUTTI I MUTUI DI CHEBANCA! Condizioni valide al 1 luglio 2010 TUTTI I MUTUI DI CHEBANCA! valide al 1 luglio 2010 Questo documento, predisposto ai sensi delle disposizioni di trasparenza di Banca d Italia, elenca tutti i prodotti di mutuo offerti da CheBanca! 1. Mutui

Dettagli

Per CONOSCERE uno STRUMENTO UTILE a migliorare l Efficienza ed ottenere Espansione vedi nel mio sito la sezione intitolata: Migliorare i Risultati.

Per CONOSCERE uno STRUMENTO UTILE a migliorare l Efficienza ed ottenere Espansione vedi nel mio sito la sezione intitolata: Migliorare i Risultati. Per CONOSCERE uno STRUMENTO UTILE a migliorare l Efficienza ed ottenere Espansione vedi nel mio sito la sezione intitolata: Migliorare i Risultati. Esiste un metodo semplice per ottenere i Costi sotto

Dettagli

Applicazione: Pianificazione di un impianto con il valore attuale netto

Applicazione: Pianificazione di un impianto con il valore attuale netto Applicazione: Pianificazione di un impianto con il valore attuale netto Un azienda intende produrre un farmaco che sarà venduto in modo esclusivo per 20 anni, dopo di che il brevetto diverrà pubblico.

Dettagli

Strumenti di pianificazione e. teleriscaldamento urbano

Strumenti di pianificazione e. teleriscaldamento urbano Strumenti di pianificazione e gestione ottima delle reti di teleriscaldamento urbano Daniele Vigo Università di Bologna Dip. di Elettronica, Informatica e Sistemistica daniele.vigo@unibo.it Sommario Introduzione

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Posizionamento di antenne È dato un insieme A di possibili siti in cui installare antenne, a ciascuno

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

GARANZIA GIOVANI Percorso A

GARANZIA GIOVANI Percorso A Investiamo nel vostro futuro Guida alla procedura informatica per la Gestione delle proposte formative riferite all iniziativa GARANZIA GIOVANI Percorso A SIMULATORE DATI FINANZIARI INDICE 1. SIMULATORE

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33 Docente: Laura Palagi Homework in Ricerca Operativa gruppo n 33 Turni del Personale Martina Conti

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

Analisi dei costi di produzione

Analisi dei costi di produzione Analisi dei costi di produzione industriale Analisi dei costi 1 Comportamento dei costi La produzione è resa possibile dall impiego di diversi fattori. L attività di produzione consuma l utilità dei beni

Dettagli

Il piano principale di produzione

Il piano principale di produzione Il piano principale di produzione Piano principale di produzione 1 Piano principale di produzione (Master Production Schedule) MPS pianifica le consegne di prodotto finito in termini di quantità e di data

Dettagli

Ricerca Operativa Esercizio 1

Ricerca Operativa Esercizio 1 E1 Esercizio 1 La fonderia ESSELLE deve produrre esattamente 1000 pezzi del peso di un chilogrammo ciascuno. Il ferro con cui questi pezzi saranno fatti deve contenere manganese e silicio nelle seguenti

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

Titoli FIN FII BOT BOC AI Rendimenti 9.5 10.5 12 12.5 6 Rischi 5 6 7 8 1

Titoli FIN FII BOT BOC AI Rendimenti 9.5 10.5 12 12.5 6 Rischi 5 6 7 8 1 (esercizi tratti da: Esercizi di Ricerca Operativa Ghirardi, Grosso, Perboli. Ed. Progetto Leonardo) Esercizio 1 Una società di investimenti finanziari deve gestire un budget di 1000000 Euro per conto

Dettagli

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE Nella Sezione 16.5 abbiamo visto come un regolatore che voglia fissare il prezzo del monopolista in modo da minimizzare la

Dettagli

TUTTI I MUTUI DI CHEBANCA! Condizioni valide al 1 gennaio 2011

TUTTI I MUTUI DI CHEBANCA! Condizioni valide al 1 gennaio 2011 TUTTI I MUTUI DI CHEBANCA! valide al 1 gennaio 2011 Questo documento, predisposto ai sensi delle disposizioni di trasparenza di Banca d Italia, elenca tutti i prodotti di mutuo offerti da CheBanca! 1.

Dettagli

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ In questa Appendice mostreremo come trovare la tariffa in due parti che massimizza i profitti di Clearvoice,

Dettagli

Tutorato 2. Martedi 21 Ottobre 2014 Dott.ssa G. Catani

Tutorato 2. Martedi 21 Ottobre 2014 Dott.ssa G. Catani Tutorato 2 Martedi 21 Ottobre 2014 Dott.ssa G. Catani SEZIONE I: AZIENDA DI EROGAZIONE Esercizio 1 Un azienda di erogazione ha ricevuto elargizioni per 10.000. A quale area di gestione appartengono i flussi

Dettagli

L orizzonte temporale nei prospetti semplificati dei fondi aperti. Nota di studio. Ufficio Studi

L orizzonte temporale nei prospetti semplificati dei fondi aperti. Nota di studio. Ufficio Studi L orizzonte temporale nei prospetti semplificati dei fondi aperti Nota di studio Ufficio Studi Gennaio 2012 1 1] Premessa Nel corso del 2010 uno degli obiettivi del Gruppo di Lavoro Rischio e Classificazione

Dettagli

Automazione industriale Automazione e controllo avanzati

Automazione industriale Automazione e controllo avanzati Automazione industriale Automazione e controllo avanzati Prof. Giancarlo Ferrari Trecate Dipartimento di Informatica e Sistemistica Università degli Studi di Pavia giancarlo.ferrari@unipv.it Informazioni

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 96 matematica per l economia Esercizio 65. Consideriamo ancora il problema 63 dell azienda vinicola, aggiungendo la condizione che l azienda non può produrre più di 200 bottiglie al mese. Soluzione. La

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa Prof. Gianmaria Martini Offerta dell impresa La decisione di un impresa a riguardo della quantità

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna

Dettagli

Ricerca Operativa Modelli di Programmazione Lineare

Ricerca Operativa Modelli di Programmazione Lineare Ricerca Operativa Modelli di Programmazione Lineare Luigi De Giovanni, Laura Brentegani AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE INTRODUZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Introduzione alla simulazione Una simulazione è l imitazione

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

I Esonero di Metodi di Ottimizzazione (Laurea in Ingegneria Gestionale-Corso B) Traccia A

I Esonero di Metodi di Ottimizzazione (Laurea in Ingegneria Gestionale-Corso B) Traccia A I Esonero di Metodi di Ottimizzazione Traccia A 1. Uno stabilimento deve varare un piano di assunzioni di dirigenti, impiegati ed operai. L assunzione di un dirigente può avvenire attraverso un concorso

Dettagli

SISTEMA di GESTIONE QUALITÀ Non Conformità ed Efficacia delle Azioni Correttive Preventive

SISTEMA di GESTIONE QUALITÀ Non Conformità ed Efficacia delle Azioni Correttive Preventive SISTEMA di GESTIONE QUALITÀ Non Conformità ed Efficacia delle Azioni Correttive Preventive Il sistema di gestione della qualità a cui mi riferisco è quello relativo alla norma ISO-9001:2000. Prima di entrare

Dettagli

ORGANICI, EFFICIENZA E PRODUTTIVITÀ NELLA GDO

ORGANICI, EFFICIENZA E PRODUTTIVITÀ NELLA GDO ORGANICI, EFFICIENZA E PRODUTTIVITÀ NELLA GDO LA METODOLOGIA DI ANALISI Le possibili aree di esplorazione Per individuare soluzioni nuove, cioè quelle soluzioni che le normali prassi di lavoro nei punti

Dettagli

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Modelli di PL: allocazione ottima di risorse Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Allocazione ottima di robot Un azienda automobilistica produce tre

Dettagli

15. Analisi del rapporto tra costi, volumi e risultati. Ragioneria Generale ed Applicata Sede di Fano

15. Analisi del rapporto tra costi, volumi e risultati. Ragioneria Generale ed Applicata Sede di Fano 15. Analisi del rapporto tra costi, volumi e risultati Ragioneria Generale ed Applicata Sede di Fano UNO STRUMENTO PER L ANALISI CONGIUNTA DELL ANDAMENTO DEI COSTI, RICAVI, RISULTATI B.E.P.= break even

Dettagli

2.3 Azienda PACK. 54 L Activity Based Costing in pratica

2.3 Azienda PACK. 54 L Activity Based Costing in pratica 54 L Activity Based Costing in pratica 2.3 Azienda PACK L azienda Pack opera nel settore del packaging e produce contenitori per alimenti. Il controllo di gestione ha applicato una tecnica ABC per conoscere

Dettagli

Ricerca Operativa Prima Parte

Ricerca Operativa Prima Parte 1 2 fasi Prima Parte 2 Testi didattici S. Martello, M.G. Speranza, Ricerca Operativa per l Economia e l Impresa, Ed. Esculapio, 2012. F.S. Hillier, G.J. Lieberman, Ricerca operativa - Fondamenti, 9/ed,

Dettagli

Commento al tema di Economia aziendale

Commento al tema di Economia aziendale Commento al tema di Economia aziendale Il tema proposto per la prova di Economia aziendale negli Istituti Tecnici è incentrato sul controllo di gestione ed è articolato in una parte obbligatoria e tre

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Allegato B- Piano di gestione Relazione economico-finanziaria ai sensi dell'art. 55 Regolamento CE 1083/2006

Allegato B- Piano di gestione Relazione economico-finanziaria ai sensi dell'art. 55 Regolamento CE 1083/2006 Provincia di Bari PO FESR Puglia 2007-2013 Asse VI- Linea di intervento 6.2 Azione 6.2.1 Iniziative per le infrastrutture di supporto degli insediamenti produttivi Bando Regione Puglia BURP n. 117 del

Dettagli

Lezione 18 1. Introduzione

Lezione 18 1. Introduzione Lezione 18 1 Introduzione In questa lezione vediamo come si misura il PIL, l indicatore principale del livello di attività economica. La definizione ed i metodi di misura servono a comprendere a quali

Dettagli

Premessa. Esercitazione. Calcolo del reddito nel Conto del reddito. Calcolo del reddito nel Conto del capitale e nel Conto del reddito

Premessa. Esercitazione. Calcolo del reddito nel Conto del reddito. Calcolo del reddito nel Conto del capitale e nel Conto del reddito Sul calcolo del reddito di fine periodo: riflessioni di base 1 INDICE: Premessa Esercitazione Calcolo del reddito nel Conto del capitale Calcolo del reddito nel Conto del reddito Calcolo del reddito nel

Dettagli

Biblioteca di Cervia NOZIONI BASE DI INFORMATICA

Biblioteca di Cervia NOZIONI BASE DI INFORMATICA Biblioteca di Cervia NOZIONI BASE DI INFORMATICA NOZIONI DI INFORMATICA Il PC è composto solitamente di tre parti principali: - Il Case, ovvero il contenitore del cuore del computer, da qui si accende

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof Laura Palagi http://wwwdisuniroma1it/ palagi Dipartimento di Ingegneria

Dettagli

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5 IL METODO DEL SIMPLESSO 65 Esercizio 7.4.4 Risolvere utilizzando il metodo del simplesso il seguente problema di PL: min 4 + + + + = 4 + + = + = 5 Innanzitutto scriviamo il problema in forma standard:

Dettagli