Tutorato di Analisi 2 - AA 2014/15

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tutorato di Analisi 2 - AA 2014/15"

Transcript

1 Tutorato di Analisi - AA /5 Emanuele Fabbiani 5 marzo 5 Integrali doppi. La soluzione più semplice... Come per gli integrali in una sola variabile, riconoscere eventuali simmetrie evita di sprecare tempo prezioso in calcoli inutili. Se la funzione integranda f è PARI rispetto alla variabile - ovvero f, f, - e il dominio di integrazione è simmetrico rispetto all'asse, allora: f, dd f, dd. Se la funzione integranda f è ISPARI rispetto alla variabile - ovvero f, f, - e il dominio di integrazione è simmetrico rispetto all'asse, allora: f, dd. Analogo discorso può essere proposto con la variabile. Se la funzione integranda f è PARI rispetto alla variabile - ovvero f, f, - e il dominio di integrazione è simmetrico rispetto all'asse, allora: f, dd f, dd. Se la funzione integranda f è ISPARI rispetto alla variabile - ovvero f, f, - e il dominio di integrazione è simmetrico rispetto all'asse, allora: f, dd.. Integrali doppi. Risolvere i seguenti integrali doppi sull'insieme dd,, R : } Il primo passo è riconoscere e disegnare il dominio di integrazione. La prima condizione,, indica che l'insieme è limitato alla fascia di piano compresa tra le rette orizzontali e. La seconda, invece, specica che la coordinata dei punti appartenenti all'insieme varia tra la curva, ovvero il ramo della parabola contenuto nel primo quadrante, e la retta verticale. I graci successivi riportano le curve e l'insieme da esse individuato.

2 Figura.: ominio di integrazione. L'insieme non è simmetrico rispetto ad alcuno dei due assi: non ha senso ragionare su eventuali simmetrie della funzione. Si può procedere quindi con l'integrazione per li orizzontali - quella per li verticali richiederebbe di spezzare il dominio in due parti. Per ricavare gli estremi dell'integrale più interno occorre immaginare di intersecare l'insieme con una retta orizzontale: questa incontra dapprima e poi. Sull'asse, invece, l'insieme è limitato dalle rette e. Quindi: ˆ ˆ ˆ [ 5 + dd 5 + d d 5 + ] d.5 ˆ. [ ] d dd,, R : + } Il primo passo è riconoscere e disegnare il dominio di integrazione. La prima condizione, +, identica i punti compresi nel cerchio ci raggio centrato nell'origine. La seconda, invece, individua la regione di piano posta al di sotto del graco della parabola. La terza obbliga a considerare unicamente il semipiano a destra dell'asse. I graci successivi riportano le curve e l'insieme da esse individuato Figura.: ominio di integrazione. L'insieme non è simmetrico rispetto ad alcuno dei due assi: non ha senso ragionare su eventuali simmetrie della funzione.

3 Sia che si scelga l'integrazione per li orizzontali, sia che si opti per quella per li verticali, si rende necessario dividere il dominio di integrazione in due insiemi distinti. Si propende per i li orizzontali e di divide in e, tali che. I graci sono riportati nella gura seguente. }.6 < }.7 a } b < } Figura.: ominio di integrazione. Quindi: + dd + dd + + dd.8 Per quanto riguarda, i li orizzontali intercettano dapprima la parabola, poi la circonferenza. al momento che l'integrale più interno è nella variabile, occorre scrivere le due curve nella forma f Il segno positivo davanti alle radici è giusticato dal fatto che è contenuto nel primo quadrante, dove le ascisse sono positive. Gli estremi dell'integrale in, invece, sono e il punto di intersezione tra la parabola e la circonferenza, che si ricava mettendo a sistema le due curve. In denitiva: dd ˆ non accettabile. ˆ + d d. Per quanto riguarda, invece, la è compresa tra l'asse e la parte destra della circonferenza:. Il segno positivo davanti alle radici è giusticato dal fatto che è contenuto nel quarto quadrante, dove le ascisse sono positive. La variabile, invece, ha come estremi quelli ssati dal raggio della circonferenza:. Pertanto: + dd ˆ ˆ + d d.5

4 Si può ora risolvere l'intero integrale: + dd + dd + + dd.6 ˆ ˆ + ˆ ˆ d d + + d d ˆ [ ˆ ˆ [ ] + d ˆ ˆ d + ˆ d + ] [ ] + d + d + + d ] [ arctan dd,, R : + } Il dominio di integrazione è identico a quello descritto nell'esercizio precedente, senza però la condizione che impone di considerare solo i punti con ascissa positiva. I graci successivi riportano le curve e l'insieme da esse individuato Figura.: ominio di integrazione. Si nota che l'insieme è simmetrico rispetto all'asse : si cercano quindi eventuali simmetrie della funzione integranda rispetto alla variabile : f, + + arctan arctan f,.7 La funzione è dispari. Senza ulteriori calcoli, si conclude: + + arctan dd.8

5 . dd,, R : } Si esamina il dominio di integrazione. La prima condizione,, equivale a e indica che l'insieme è limitato alla fascia di piano compresa tra le rette orizzontali e. La seconda, invece, specica che la coordinata dei punti appartenenti all'insieme varia tra la parabola con asse parallelo all'asse delle ascisse e la retta verticale. I graci successivi riportano le curve e l'insieme da esse individuato Figura.5: ominio di integrazione. L'insieme è simmetrico rispetto all'asse delle ascisse : si ricercano eventuali proprietà della funzione integranda rispetto alla variabile. f, f,.9 La funzione è pari: è quindi possibile considerare soltanto metà dell'insieme. dd dd dd. L'ultima uguaglianza è giusticata dal fatto che il nuovo insieme di integrazione è completamente contenuto nel primo quadrante, dove e. Si può procedere quindi con l'integrazione per li verticali - ugualmente semplice sarebbe risultata quella per li orizzontali. Per ricavare gli estremi dell'integrale più interno occorre immaginare di intersecare l'insieme con una retta verticale: questa incontra dapprima la parabola, poi l'asse.. Sull'asse, invece, l'insieme è limitato dalle rette e. Quindi: dd ˆ ˆ d. d ˆ ˆ d d ˆ ˆ ˆ ˆ [ d d 5 d [ ] ] d. 5

6 5. dd, triangolo A ;, B ;, C ; 5 Il dominio di integrazione è un triangolo contenuto nel primo quadrante, rappresentato nella gura seguente Figura.6: ominio di integrazione. L'insieme non è simmetrico rispetto ad alcun asse: è quindi inutile considerare le simmetrie della funzione. Per evitare di dividere il dominio di integrazione si decide di utilizzare li verticali. al disegno si può notare che la coordinata è compresa tra le due rette, le cui equazioni e + 6 sono ottenibili mediante la formula della retta passante per due punti. La coordinata, invece, è limitata dagli estremi numerici e Si può quindi risolvere l'integrale: dd ˆ ˆ 6 d d ˆ [ ] 6 d ˆ 6 d.6 ˆ d ] [6 [ 9 ] dd,, R : + } Si esamina il dominio di integrazione. Le curve proposte dalla prima condizione + e + sono circonferenze, di raggio rispettivamente e. La disuguaglianza impone di considerare i punti compresi tra le due, quindi una corona circolare di raggio interno e raggio esterno. Un altro possibile ragionamento è interpretare la quantità + come il quadrato della distanza di un punto dall'origine: in questo caso, la disequazione individua tutti i punti la cui distanza dall'origine è compresa tra e. La seconda, invece, descrive i punti che si trovano al di sopra dell'asse delle ascisse ma al di sotto della retta. I graci successivi riportano le curve e l'insieme da esse individuato. 6

7 Figura.7: ominio di integrazione. al momento che il dominio di integrazione è un settore di una corona circolare, risulta utile il passaggio in coordinate polari: ρ cos θ.7 ρ sin θ La funzione diventa: + + ρ cos θ + ρ sin θ + ρ cos θ + sin θ + ρ +.8 Occorre ora ricavare gli estremi di integrazione nelle nuove variabili. ρ rappresenta il raggio del cerchio che viene spazzato dall'integrale e deve quindi variare tra il raggio interno e il raggio esterno della corona circolare. ρ.9 θ, invece, identica l'angolo formato dal vettore che collega un punto dell'insieme di integrazione all'origine e dal semiasse positivo delle ascisse. Nell'insieme in esame tale angolo è compreso tra e l'angolo θ ma formato dalla retta con l'asse. Rispolverando le formule di quarta liceo, si scopre che l'angolo formato da una retta con l'asse è pari ad arctan m dove m è il coeciente angolare. θ arctan. θ π. Ricordando che il cambio di dierenziali richiesto dalla coordinate polari è: Si può riscrivere l'integrale. ˆ ρ ρ + dρ + + dd ρ + ρdρdθ dθ dd ρdρdθ. ˆ [ ln ρ + ] dθ ln 5 ln dθ ln 5 7. dd,, R : + } ρ ρ + dρ dθ. dθ π 6 ln 5 7

8 Si disegna l'insieme di integrazione: semipiano delle ordinate positive. il semicerchio di raggio centrato nell'origine e contenuto nel Figura.8: ominio di integrazione. Il dominio è simmetrico rispetto all'asse, si cercano quindi eventuali simmetrie della funzione rispetto all'incognita. f, f,. La funzione è pari: è quindi possibile considerare soltanto metà dell'insieme. dd dd dd.5 L'ultimo passaggio si giustica osservando che, sul nuovo dominio di integrazione, sia che sono sempre positive. al momento che il dominio di integrazione è un quarto di circonferenza, risulta utile il passaggio in coordinate polari: ρ cos θ.6 ρ sin θ La funzione diventa: ρ cos θ ρ sin θ ρ cos θ sin θ.7 Occorre ora ricavare gli estremi di integrazione nelle nuove variabili. ρ rappresenta il raggio del cerchio che viene spazzato dall'integrale e deve quindi variare tra e il raggio della circonferenza. ρ.8 θ, invece, identica l'angolo formato dal vettore che collega un punto dell'insieme di integrazione all'origine e dal semiasse positivo delle ascisse. Nell'insieme in esame tale angolo è compreso tra e l'angolo formato dagli assi cartesiani, per denizione ortogonali tra loro. θ π.9 Ricordando che il cambio di dierenziali richiesto dalla coordinate polari è: dd ρdρdθ. Si può riscrivere l'integrale. ˆ dd ρ cos θ sin θ ρdρdθ ρ cos θ sin θ dρ dθ. cos θ sin θ dθ 8 ˆ ρ dρ

9 al momento che cos θ sin θ non dipende dalla variabile ρ può uscire dall'integrale più interno e rimanere unicamente in quello più esterno. Similmente, ρ è una costante rispetto ala variabile θ. L'integrale in θ si risolve mediante le formule di duplicazione del seno. Quindi: sin sin cos sin cos sin. cos θ sin θ dθ ˆ ρ dρ sin θ [ cos θ] π [ ρ ] dθ ˆ ρ dρ sin θ dθ + 8. dd,, R : + } ˆ ρ dρ. Il dominio è molto simile all'esercizio precedente, ad eccezione del fatto che occorre considerare la semicirconferenza nel semipiano delle negative Figura.9: ominio di integrazione. Il dominio è simmetrico rispetto all'asse, si cercano quindi eventuali simmetrie della funzione rispetto all'incognita. f, f,. La funzione è dispari: senza ulteriori indugi si conclude. dd.5 9. cos + e dd,, R : + π } La particolare forma della funzione integranda e del dominio di integrazione suggeriscono di utilizzare un cambio di variabili. u +.6 v In questo modo sia la funzione che l'insieme vengono notevolmente semplicati. cos + e cos u e v.7 9

10 , R : + π } u, v R : u π } v.8 Nelle nuove variabili il dominio di integrazione non è altro che un rettangolo di base π e altezza con centro di simmetria nell'origine. a ominio nelle coordinate e. b ominio nelle coordinate u e v. Figura.: ominio di integrazione. Rimane da considerare il cambio dei dierenziali. dd det Jac Φ, dudv.9 dove det Jac Φ, è il determinante della matrice jacobiana del cambio di variabili. u + Φ, + ;.5 v Quindi l'integrale diventa:. Jac Φ, [ + [ det Jac Φ, det ] [ ].5 ] det.5 + cos + e dd cos u e v dd π ˆ cos u du e v dv e + e e e π ˆ cos u e v dv du.5 e + + dd,, R : + + } La particolare forma della funzione integranda e del dominio di integrazione suggeriscono di utilizzare un cambio di variabili. u +.5 v + In questo modo sia la funzione che l'insieme vengono notevolmente semplicati. e + + eu v.55

11 , R : + + } u, v R : u v } Nelle nuove variabili il dominio di integrazione non è altro che un quadrato di lato a ominio nelle coordinate e. b ominio nelle coordinate u e v. Figura.: ominio di integrazione. Rimane da considerare il cambio dei dierenziali. dd det Jac Φ, dudv.57 dove det Jac Φ, è il determinante della matrice jacobiana del cambio di variabili. u + Φ, + ; +.58 v + Jac Φ, [ + + det Jac Φ, det Quindi l'integrale diventa: e + + dd ˆ ˆ e u du [ ] ] [ ].59 det u e v dd ˆ ˆ e u v dv du.6 v dv [ ] e u [ln v ] e ln ln e ln. Integrali di supercie.. Calcolare l'area della supercie cartesiana di equazione z + limitata al dominio, R : + 8 }. L'area di una supercie σ u, v ristretta al dominio è denita come: A n u, v dudv.6 dove n u, v è la norma del vettore normale alla supercie vedi sezione Superfici. Il primo passo è quindi il calcolo del vettore normale a σ. Nel caso di una supercie cartesiana, ovvero descritta dal graco di una funzione f,, si può utilizzare la formula: n, f, ; f, ;.6

12 Nel caso in esame la funzione è f, +. Pertanto: n, ; ;.6 La cui norma è: n, L'integrale da risolvere è quindi: n, dd + + dd.66 Si cerca innanzitutto di capire quale sia la curva che descrive l'insieme d'integrazione L'equazione individua un ellisse con i fuochi sull'asse e vertici di coordinate ± 8; e ; ±. Il verso della disequazione impone di considerare i punti interni alla curva Figura.: ominio di integrazione. al momento che l'insieme è costituito dall'area racchiusa da un ellisse, è opportuno passare alle coordinate ellittiche. aρ cos θ.7 bρ sin θ dove ρ e θ sono le variabili di integrazione, mentre a e b sono i parametri dell'ellisse scritto nella forma a + b. Nel caso in esame si ha a 8 e b. 8ρ cos θ.7 ρ sin θ Applicando la sostituzione, la funzione diventa: + + 8ρ cos θ + ρ sin θ + 8ρ +.7 Occorre ora ricavare gli estremi di integrazione nelle nuove variabili. Nelle coordinate ellittiche, ρ varia sempre tra e : sono i parametri a e b a rendere conto delle dimensioni della curva. ρ.7

13 Come nelle coordinate polari, θ identica l'angolo formato dal vettore che collega un punto dell'insieme di integrazione all'origine e dal semiasse positivo delle ascisse. Nell'insieme in esame tale angolo deve spazzare l'intero piano. θ π.7 Ricordando che il cambio di dierenziali richiesto dalla coordinate ellittiche è: Si può riscrivere l'integrale. + + dd 8ρ + ρ 8 dρdθ dθ 6 ˆ 6ρ 8ρ + dρ 8π dd ρab dρdθ.75 ˆ ρ 8ρ + dρ dθ.76 6 [ 8ρ + ] π [ 8ρ + ] 6π. Risolvere il seguente integrale di supercie. dσ.77 σ z Sulla supercie σ di equazione z + ristretta al dominio, R : } +. Gli integrali di supercie si trasformano in integrali doppi grazie alla seguente formula: f,, z dσ f σ u, v n u, v dudv.78 σ dove σ u, v è la supercie su cui si intende eettuare l'integrazione, ristretta al dominio, n u, v è la norma del vettore normale alla supercie e la scrittura f σ u, v identica la funzione f alle cui variabili, e z vengono sostituite le componenti della supercie σ. Nel caso in esame, σ è una supercie cartesiana. Pertanto può essere scritta come: σ,, z ; ; +.79 Come nel caso precedente, il vettore normale si ricava mediante la formula: f, f, n, ; ; In questo caso, la funzione f, è f, +. Pertanto: n, + ; + ;.8.8 La cui norma è: n, L'integrale da risolvere è quindi: f σ u, v n u, v dudv dd + Si scrive il dominio d'integrazione in una forma più leggibile. + dd

14 Si riconosce ora che la disequazione rappresenta la corona circolare compresa tra le due circonferenze di raggio e centrate nell'origine Figura.: ominio di integrazione. al momento che l'insieme è costituito da una corona circolare, è opportuno passare alle coordinate polari. ρ cos θ.86 ρ sin θ Applicando la sostituzione, la funzione diventa: + ρ cos θ + ρ sin θ ρ.87 Occorre ora ricavare gli estremi di integrazione nelle nuove variabili. ρ rappresenta il raggio del cerchio che viene spazzato dall'integrale e deve quindi variare tra il raggio dalla circonferenza interna e quello della circonferenza esterna. ρ.88 La variabile θ identica l'angolo formato dal vettore che collega un punto dell'insieme di integrazione all'origine e dal semiasse positivo delle ascisse. Nell'insieme in esame tale angolo deve spazzare l'intero piano. θ π.89 Ricordando che il cambio di dierenziali richiesto dalla coordinate polari è: Si può riscrivere l'integrale. + dd ρ ρdρdθ dθ ˆ. Risolvere il seguente integrale di supercie. dd ρ dρdθ.9 ρ dρ [ ρ π σ ] π ˆ ρ dρ dθ.9 [ ] ρ π z + dσ.9 + +

15 Sulla supercie σ di equazione z ristretta al dominio, R : + + }. Gli integrali di supercie si trasformano in integrali doppi grazie alla seguente formula: f,, z dσ f σ u, v n u, v dudv.9 σ dove σ u, v è la supercie su cui si intende eettuare l'integrazione, ristretta al dominio, n u, v è la norma del vettore normale alla supercie e la scrittura f σ u, v identica la funzione f alle cui variabili, e z vengono sostituite le componenti della supercie σ. Nel caso in esame, σ è una supercie cartesiana. Pertanto può essere scritta come: σ,, z ; ;.9 Come nel caso precedente, il vettore normale si ricava mediante la formula: f, f, n, ; ;.95 In questo caso, la funzione f, è f,. Pertanto: La cui norma è: n, L'integrale da risolvere è quindi: f σ u, v n u, v dudv n, ; ; dd dd Si esamina il dominio d'integrazione: la prima condizione identica i punti interni ad un ellisse I fuochi sono sull'asse e i vertici hanno coordinate ±; e ; ±. La seconda disequazione, invece, individua i punti esterni alla circonferenza di raggio centrata nell'origine Figura.: ominio di integrazione. L'insieme è simmetrico sia rispetto a che rispetto a. Si vericano quindi eventuali simmetrie della funzione integranda: f, f,. 5

16 f, f,. La funzione è pari sia rispetto alla variabile che rispetto a. Si sceglie quindi di considerare solo la parte di contenuta nel primo quadrante: dd dd dd. L'ultimo passaggio è lecito perché, nel nuovo dominio, sempre. Si procede quindi con l'integrazione per li orizzontali. Immaginando di intersecare l'insieme con una retta orizzontale, il limite inferiore al segmento che si otterrebbe sarebbe rappresentato dalla circonferenza, mentre quello superiore dall'ellisse. Si rende ora necessario esprimere le due curve nella forma f Quindi:.6 Per quanto riguarda la variabile, invece, l'inseme è limitato dai valori e : Si può quindi risolvere l'integrale: dd ˆ ˆ ˆ d d + d 6.7 ˆ. Applicazioni dei doppi integrali alla sica. ˆ d 6 [ ] d ˆ ] [ 6 [ ] d.8. Si dimostri che il momento d'inerzia di un disco cavo di massa m, raggio interno r i e raggio esterno r e è I m ri + e r. La denizione di momento d'inerzia per un corpo bidimensionale è ˆ I r dm.9 S Considerando un disco cavo con centro nell'origine degli assi e densità superciale di massa σ,, si ha: ˆ ˆ I + σ, dd. disco cavo Supponendo σ, costante su tutta la supercie: ˆ ˆ ˆ ˆ I + σdd σ disco cavo Si opera ora la trasformazione in coordinate polari: ˆ ˆ I σ Con Quindi: I σ ˆ re r i disco cavo disco cavo + dd. ρ ρdρdθ. r i ρ r e. θ π. ˆ re ρ dρdθ σπ ρ dρ σπ r i 6 [ ρ ] re r i σπ r e r i.5

17 Si scompone ora il termine tra parentesi: I σπ re ri re + ri.6 Si riconosce inoltre che π re ri rappresenta l'area della gura. Il prodotto tra questa e la densità superciale fornisce la massa del corpo: m σπ re ri.7 In denitiva, I r m e + ri.8 7

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE.

VERIFICA DI MATEMATICA. CLASSI TERZE (3AS, 3BS, 3CS, 3DS, 3ES) 2 settembre 2013 COGNOME E NOME.. CLASSE. VERIFIC DI MTEMTIC CLSSI TERZE (S, BS, CS, DS, ES) settembre COGNOME E NOME.. CLSSE. Esercizio In un piano cartesiano ortogonale determinare: a) l equazione della parabola con asse parallelo all asse,

Dettagli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli

Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli Appunti sul corso di Complementi di Matematica- modulo Analisi Prof. B.Bacchelli 09- Integrale doppio: Riferimenti: R.Adams, Calcolo ifferenziale 2. Capitoli 5.1, 5.2, 5.4. Esercizi 5.3, 5.4 Integrale

Dettagli

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2.

DOMINIO E LIMITI. Esercizio 3 Studiare gli insiemi di livello della funzione f, nei seguenti casi: 1) f(x,y) = y2 x 2 + y 2. FUNZIONI DI DUE VARIABILI 1 DOMINIO E LIMITI Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia (insiemi aperti, chiusi, limitati, convessi, connessi per archi; punti di

Dettagli

Funzioni reali di più variabili reali

Funzioni reali di più variabili reali Funzioni reali di più variabili reali Generalità. Indichiamo con R n il prodotto cartesiano di R per sé stesso, n volte: R n = {(, 2,, n ) ;! R,, n!r}. Quando n = 2 oppure n = 3 indicheremo le coordinate

Dettagli

Calcolo integrale in più variabili

Calcolo integrale in più variabili ppunti di nalisi II Calcolo integrale in più variabili Integrali doppi Nel caso di una funzione di una variabile f : a, b] R, supponendo f continua e fx) a, b], la quantità b a fx)dx indica l area fra

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[

Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari. esiste (evidentemente) una sola coppia ( ρ, θ) R [ 0,2π[ Cambiamento di variabili negli integrali doppi: La trasformazione in coordinate polari Osservazione: Se ( x, ) \{(0,0)} esiste (evidentemente) una sola coppia ( ρ, θ) [ 0,[ tale che x. imane in tal modo

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizio 1 Testo Sia F F 1 x,y),f x,y)) ) x 1 x y + 1 x, y 1 x y + 1 y un campo vettoriale. 1. Si determini il dominio in cui

Dettagli

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni:

6) f(x, y) = xy 1 log(5 2x 2y) x + y. 2x x 2 y 2 z 2 x 2 + y 2 + z 2 x Esercizio 2. Studiare gli insiemi di livello delle seguenti funzioni: FUNZIONI IN PIÙ VARIABILI 1. Esercizi Esercizio 1. Determinare il dominio delle seguenti funzioni, specificando se si tratta di un insieme aperto o chiuso: 1) f(x, ) = log(x x ) ) f(x, ) = x + 3) f(x,

Dettagli

Capitolo 16 Esercizi sugli integrali doppi

Capitolo 16 Esercizi sugli integrali doppi Capitolo 6 sercizi sugli integrali doppi Brevi richiami di teoria Sia f : [a, b] [c, d] B IR una funzione limitata e non negativa, definita sul rettangolo R = [a, b] [c, d]. Dividiamo l intervallo [a,

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove R R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x, C : x + y x Completando

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it

Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva 2011, matematicamente.it Nicola De Rosa, Liceo scientifico di ordinamento sessione suppletiva, matematicamente.it PROBLEMA Data una semicirconferenza di diametro AB =, si prenda su di essa un punto P e sia M la proiezione di P

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Prove d'esame a.a. 20082009

Prove d'esame a.a. 20082009 Prove d'esame aa 008009 Andrea Corli settembre 0 Sono qui raccolti i testi delle prove d'esame assegnati nell'aa 00809, relativi al Corso di Analisi Matematica I (trimestrale, 6 crediti), Laurea in Ingegneria

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1.

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 2011. Il candidato risolva uno dei due problemi e 5 dei 10 quesiti scelti nel questionario 1. ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ODINAMENTO 11 Il candidato risolva uno dei due problemi e 5 dei 1 quesiti scelti nel questionario 1. PROBLEMA 1 Si considerino le funzioni f e g definite, per

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi Lezione 2 IL PIANO CARTESIANO 1 Il piano cartesiano In un piano

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 004 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA In un piano

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA

PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15. Insegnante: Roberto Bottazzo Materia: FISICA PROGRAMMA SVOLTO - CLASSE PRIMA sez. R - ITT. ALGAROTTI - A.S. 2014/15 Materia: FISICA 1) INTRODUZIONE ALLA SCIENZA E AL METODO SCIENTIFICO La Scienza moderna. Galileo ed il metodo sperimentale. Grandezze

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Capitolo Concetto di funzione Generalità sulle funzioni Definizione di funzione Definizione Dato un sottoinsieme non vuoto D di R, si chiama funzione reale di variabile reale, una relazione che ad ogni

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Definizione DEFINIZIONE

Definizione DEFINIZIONE Definizione Funzione reale di due variabili reali Indichiamo con R 2 l insieme di tutti i vettori bidimensionali. Dato un sottoinsiemed R 2, una funzione f: D R è una legge che assegna a ogni punto (x,

Dettagli

11. L integrazione. 11.2 Integrazione definita. Prerequisiti

11. L integrazione. 11.2 Integrazione definita. Prerequisiti . L integrazione. Integrazione definita Prerequisiti Concetto di limite Continuità di una funzione Calcolo differenziale Calcolo integrale Concetto di volume Metodo degli indivisibili di Cavalieri Obiettivi

Dettagli

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p.

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p. Il valore assoluto F Battelli Università Politecnica delle Marche Ancona Pesaro Precorso di Analisi 1 22-28 Settembre 2005 p1/23 Il valore assoluto Si definisce il valore assoluto di un numero reale l

Dettagli

LA RETTA. Retta per l'origine, rette orizzontali e verticali

LA RETTA. Retta per l'origine, rette orizzontali e verticali Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a

M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a VETTORI APPLICATI Sistema di vettori applicati L'ente matematico costituito da un punto P e da un vettore (libero) V, si dice vettore applicato in P e si denota con (P;V). E comodo rappresentare il vettore

Dettagli

Capitolo Sedicesimo CENNO SULLE SUPERFICI

Capitolo Sedicesimo CENNO SULLE SUPERFICI Capitolo Sedicesimo CENNO SULLE SUPERFICI 1. L A N O Z I O N E D I S U P E R F I C I E In tutto il Capitolo, chiameremo dominio un sottoinsieme di  2 che sia la chiusura di un aperto connesso. Sono tali,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2001 Sessione suppletiva ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 1 Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PRBLEM 1 Si consideri la funzione reale

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

4G 14/2/2000 Potenze in R

4G 14/2/2000 Potenze in R Claudio Cereda esponenziali e logaritmi luglio 2005 pag. 1 4G 14/2/2000 Potenze in R 1. Si consideri la potenza a m/n con a R + e m/n frazione assoluta ridotta ai minimi termini. a) cosa si intende con

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è

Dettagli

I appello - 26 Gennaio 2007

I appello - 26 Gennaio 2007 Facoltà di Ingegneria - Corso di Laurea in Ing. Informatica e delle Telecom. A.A.006/007 I appello - 6 Gennaio 007 Risolvere gli esercizi motivando tutte le risposte. (N.B. il quesito teorico è obbligatorio)

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) 1.721 m (B) 0.387 m (C) 0.500 m (D) 0.613 m (E) 2.721 m

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) 1.721 m (B) 0.387 m (C) 0.500 m (D) 0.613 m (E) 2.721 m Fisica generale II, a.a. 01/013 L FORZ DI OULOM.1. Date le due cariche fisse della figura dove q 1 = 0. e q = 0.5 la posizione di equilibrio lungo l'asse di una terza carica mobile q 3 = 0.01 si trova

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Corso di recupero di Matematica per Biologia. Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di recupero di Matematica per Biologia. Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di recupero di Matematica per Biologia Tutor: Pancaldi Francesco Università di Ferrara Facoltà di Scienze Matematiche, Fisiche e Naturali 30 dicembre 2009 INDICE 1 Indice 1 Numeri 1 1.1 Numeri Naturali

Dettagli

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio

Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

con le coppie ordinate di numeri reali, sulla base di alcune operazioni convenzionali.

con le coppie ordinate di numeri reali, sulla base di alcune operazioni convenzionali. 1 I vettori ordinari In questo capitolo approfondiremo innanzitutto lo studio delle proprieta geometriche del piano cartesiano. I concetti e i risultati di cui ci occuperemo saranno quindi generalizzati,

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

ATTIVITÀ DEL SINGOLO DOCENTE

ATTIVITÀ DEL SINGOLO DOCENTE PIANO DI LAVORO DOCENTE Carmela Calò MATERIA Matematica DESTINATARI 4Cl ANNO SCOLASTICO 2013-14 COMPETENZE CONCORDATE CON CONSIGLIO DI CLASSE Si veda la programmazione comune del CdC COMPETENZE CONCORDATE

Dettagli

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE")

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC DERIVE) F U N Z I O N I E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE") I N D I C E Funzioni...pag. 2 Funzioni del tipo = Kx... 4 Funzioni crescenti e decrescenti...10

Dettagli

DOMINIO = R INTERSEZIONI CON ASSI

DOMINIO = R INTERSEZIONI CON ASSI STUDIO DELLA FUNZIONE CUBICA a cura di Maria Teresa Bianchi La funzione è razionale intera ed è espressa in forma normale da: #1: y = a x + b x + c x + d I coefficienti del polinomio di grado a secondo

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli