GRANDEZZE MAGNETICHE Prof. Chirizzi Marco

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it"

Transcript

1 Soenoide GRANDEZZE MAGNETICHE Pof. Chiizzi Maco PREMESSA La pesente dispensa ha come obiettivo queo di gaantie agi aievi de coso di Fisica de biennio, ad indiizzo tecnico pofessionae, una adeguata pepaazione in vista dea pova stuttuata, che si svogeà ne mese di giugno, in occasione degi esami di quaifica. Come si potà notae, gi agomenti in questione non sono stati tattati in modo esaustivo, data a vastità de pogamma di fisica de eettomagnetismo. Si invitano, petanto, gi aunni ad appofondie e tematiche poposte, mediante a consutazione di ibi di testo. Pof. Chiizzi Maco

2 . Campo magnetico podotto da un conduttoe ettiineo Un conduttoe ettiineo pecoso da coente eettica d intensità I, genea neo spazio cicostante un campo magnetico a cui intensità è definita mediante i vettoe induzione magnetica B ( vedi figua ). Figua. Fio conduttoe ettiineo pecoso da coente I vaoe che B assume in un punto P a distanza da fio conduttoe si cacoa come segue: B = µ I 2 π (. ) I vettoe induzione magnetica si misua in Tesa ( T ). I fattoe µ pende i nome di pemeabiità magnetica de mezzo, si misua in Hany meto H m e i suo vaoe dipende da tipo di mezzo ento cui si sviuppa i campo magnetico. La pemeabiità de vuoto isuta essee: µ 0 = 4 π 0 7 H m (.2 ) 2

3 Tutti i mateiai non feomagnetici, compesa aia e i gas, pesentano una pemeabiità magnetica cica uguae a quea de vuoto. Le inee di foza di B sono dee ciconfeenze che giacciono su piani pependicoai a conduttoe e hanno i cento ne punto di intesezione ta i piano ed i conduttoe stesso. I veso di B si detemina appicando a egoa dea mano desta oppue icoendo a quea dea vite destosa, che consiste ne immaginae di avvitae una vite, i cui avanzamento deve coincidee con i veso dea coente: i veso dee inee di foza di B coincideà con queo dea otazione dea vite..2 Foza podotta da campo magnetico su un fio conduttoe pecoso da coente eettica Un fio conduttoe pecoso da coente eettica di intensità I, sottoposto ad un campo magnetico unifome di intensità B, pependicoae a conduttoe stesso, è soggetto ad una foza magnetica F, a cui intensità dipende daa unghezza dea pate di conduttoe inteessata a campo magnetico, daa intensità dea coente e daa intensità de campo stesso ( vedi figua 2 ). Figua 2. Fio conduttoe pecoso da coente in un campo magnetico unifome 3

4 In fomua si ha: F = B I (.3 ) La diezione dea foza è pependicoae sia a vettoe campo magnetico che aa coente. I veso di F si detemina appicando a egoa dea mano sinista: i veso de vettoe foza è individuato da poice dea mano sinista disposta ungo i conduttoe secondo i veso dea coente, con e inee de campo magnetico entanti ne pamo dea mano. Se e inee di foza de campo magnetico non isutano pependicoai a fio conduttoe, i moduo de vettoe foza magnetica si cacoa come segue: F = B I senα dove α è angoo che i vettoe induzione magnetica B ( che ipotizziamo unifome) foma con i conduttoe..3 Campo magnetico podotto da una spia cicoae L induzione de campo magnetico podotto da una spia cicoae pecosa da coente ( vedi figua 3 ), vaia punto pe punto ed assume i massimo vaoe a cento dea spia stessa. Figua 3. Spia cicoae pecosa da coente 4

5 L intensità massima di B si cacoa come segue: B µ = 2 I (.4 ) dove è i aggio dea spia, I è intensità dea coente e µ è a pemeabiità de mezzo. Le inee di foza de campo magnetico sono ciconfeenze disposte su piani pependicoai a conduttoe, non più paaei ta oo come ne caso de conduttoe ettiineo. I veso dee inee di foza si detemina ancoa con a egoa dea mano desta. I campo magnetico isuta tanto più intenso quanto maggioe è intensità dea coente che pecoe a spia e quanto minoe è i aggio. I vaoe di B è, inote, tanto più eevato quanto maggioe è a pemeabiità µ de mezzo ento cui si genea i campo stesso..4 Campo magnetico podotto da un soenoide Pe ottenee un soenoide, basta avvogee de fio conduttoe su un suppoto ciindico di mateiae isoante. Se pecoso da coente, i soenoide genea, un campo magnetico, che o si può itenee costante a inteno de soenoide stesso. Le inee di foza di B sono quee ipotate in figua 4. Figua 4. Soenoide ettiineo pecoso da coente I campo magnetico a inteno de soenoide si cacoa come segue: 5

6 N I B = µ (.5 ) dove µ, N, I,, sono ispettivamente a pemeabiità magnetica de mezzo, i numeo di spie, intensità dea coente e a unghezza de soenoide. Ossevando a figua 5 si nota che a configuazione de campo magnetico è simie a quea geneata da un magnete pemanente. I poo nod ( N ) de campo coisponde aa estemità de soenoide da cui escono e inee di foza, mente i poo sud ( S ) coisponde a ata estemità. Dato che i veso dee inee di foza dipende da queo dea coente, invetendo i veso di pecoenza dea coente si invetono e poaità de campo magnetico. Se i fio conduttoe viene avvoto attono a un suppoto chiuso su se stesso, di foma cicoae, si ottiene i soenoide tooidae ( vedi figua 5 ). Figua 5. Soenoide tooidae Quest utimo, se pecoso da coente, genea un campo magnetico e cui inee di foza sono confinate a inteno dee spie. In questo caso, e poaità de campo magnetico non si possono individuae, a meno che non si eaizzi una apetua, detta tafeo, e cui estemità costituianno i poo N e i poo S. L intensità de campo magnetico a inteno de soenoide tooidae si cacoa ne seguente modo: µ N I B = (.6 ) 2 π dove è i aggio medio de tooide. 6

7 .5 Foza magnetomotice e foza magnetizzante Consideiamo a fomua B N I = µ ( intensità de campo magnetico geneato da un soenoide ettiineo ), già anaizzata ne pecedente paagafo. La quantità N I definisce a foma magnetomotice F m, intesa come a gandezza che poduce a magnetizzazione di un cicuito magnetico. Essa ammette come unità di misua ampee numeo spie Asp ( si egge ampespie ). I appoto F m definisce, invece, a foza magnetizzante H ( si misua in Asp/m ), cioè a foza magnetomotice pe unità di unghezza dee inee di foza. La fomua da cui siamo patiti assume a seguente foma funzionae: B µ Fm = = µ H (.7 ) dove appesenta a unghezza dea inea di foza sua quae agisce a foza magnetomotice. La foza magnetizzante H non dipende da tipo di mateiae ento cui si genea i campo magnetico, a diffeenza de vettoe induzione magnetica B, che dipende daa pemeabiità µ. L espessione (.7 ) è stata icavata consideando un caso paticoae ( soenoide ettiineo pecoso da coente ), ma in eatà ha vaidità geneae e appesenta i egame esistente ta i vettoe induzione magnetica e a foza magnetizzante. I appoto ta i modui B ed H dipende soo da tipo di mateiae ento i quae agisce i campo magnetico. 7

8 .6 Cassificazione dei mateiai in base aa pemeabiità magnetica Si definisce pemeabiità magnetica eativa µ i appoto ta a pemeabiità assouta de mateiae e quea de vuoto. In fomua si ha. µ µ = ( quantità adimensionae ) (.8 ) µ 0 In base a vaoe di µ, si possono cassificae i mateiai magnetici. I mateiai che posseggono pemeabiità eativa moto minoe de unità ( µ << µ 0 ), detti mateiai diamagnetici, pesentano, a paità di foza magnetizzante, bassa attitudine a fasi magnetizzae. Ciò impica che i campo magnetico geneato ne mateiae è meno intenso di queo che si avebbe ne vuoto. Hanno tae compotamento acqua, agento e i ame. I mateiai che posseggono pemeabiità eativa poco supeioe a unità ( µ > µ 0 ), detti mateiai paamagnetici, pesentano, a paità di foza magnetizzante, più ata attitudine a fasi magnetizzae ispetto ai mateiai diamagnetici, ma si oppongono comunque aa magnetizzazione. Ciò impica che i campo magnetico geneato ne mateiae è poco più intenso di queo che si avebbe ne vuoto. I mateiai che si compotano in questo modo sono, pe esempio, auminio, i patino e aia. I mateiai che posseggono pemeabiità eativa moto supeioe a unità ( µ >> µ 0 ), detti mateiai feomagnetici, pesentano, a paità di foza magnetizzante, più ata attitudine a fasi magnetizzae ispetto ai mateiai diamagnetici, ma si oppongono comunque aa magnetizzazione. Ciò impica che i campo magnetico geneato ne mateiae è di gan unga più intenso di queo che si avebbe ne vuoto. I feo è i mateiae maggiomente utiizzato pe ottenee induzioni magnetiche moto eevate, con vaoi eativamente bassi di H. Supeata a tempeatua di Cuie ( cica C ), i mateiai feomagnetici pedono attitudine a fasi magnetizzae compotandosi come paamagnetici. 8

9 .7 Fusso magnetico Si considei un campo magnetico di induzione B costante, con inee di foza ettiinee e paaee, che attavesano pependicoamente una supeficie, come iustato in figua 6. Figua 6. Fusso magnetico eativo a una supeficie pependicoae ae inee di fusso. Si definisce fusso magnetico φ ( B ) eativo aa supeficie consideata, i podotto ta intensità de vettoe induzione magnetica B e aea dea supeficie S pependicoae ae inee di foza de campo. In fomua si ha: φ ( B ) = B S (.9 ) L unità di misua de fusso magnetico è i webe: Webe = Tesa m. I fusso 2 magnetico è una gandezza che indica i numeo di inee di fusso che attavesano a supeficie disposta pependicoamente aa oo diezione. Se a supeficie consideata non è pependicoae ae inee di foza de campo, i fusso magnetico si cacoa come segue: 9

10 φ ( B ) = B S senα (.0 ) dove α è angoo che a supeficie foma co vettoe induzione magnetica B ( vedi figua 7 ). Figua 7. Fusso magnetico eativo a una supeficie non pependicoae ae inee di fusso.8 Definizione di iuttanza e pemeanza Si considei un cicuito magnetico di foma tooidae ( figua 5 ), composto da un mateiae di pemeabiità µ, con sezione S costante, pependicoae ae inee di foza de campo magnetico, e unghezza media. Si supponga che su cicuito stesso sia avvoto un induttoe di N spie pecoso da una coente di intensità I. I fusso magnetico che attavesa a sezione S si cacoa come segue: dove m F Φ = B S = µ H S = µ m S (. ) H ed F sono ispettivamente a foza magnetizzante e a foza magnetomotice. La quantità µ S pende i nome di pemeanza, che denotiamo con a ettea Ρ, e dipende dae popietà fisiche e geometiche de mateiae. Essa si 0

11 misua in Heny ( simboo H ). I ecipoco dea pemeanza definisce a iuttanza, ossia: R = = P µ S a cui unità di misua è Riassumendo: H. S Ρ = µ (.2 ) R = P = µ S (.3 ) Φ = B S = F Ρ (.4 ) m Φ = Fm B S = (.5 ) R Le equazioni (.4 ) e (.5 ) espimono a egge di Hopkinson. La iuttanza indica opposizione de mateiae a fasi magnetizzae: quando maggioe è i suo vaoe tanto più i mateiae si oppone aa magnetizzazione. Ossevando, infatti, a eazione (.5 ) si nota che a aumentae di R, supponendo a sezione S costante, diminuisce i fusso Φ e quindi anche i campo magnetico B podotto da una data foza magnetomotice F m..9 Definizione di induttanza Un fio conduttoe avvoto su un suppoto magnetico, non necessaiamente feomagnetico ( pe esempio aia ), pende i nome di induttoe o bobina eettica. L induttoe è un componente eettico caatteizzato da un paameto, detto induttanza, i cui vaoe o si indica con a ettea L. L induttoe, quando pecoso da coente di intensità I, genea a suo inteno un campo magnetico e cui inee di foza si concatenano con e spie de induttoe, come quee iustate in figua 4.

12 La eazione ΦC = N Φ (.6 ) dove N e Φ sono ispettivamente i numeo di spie e i fusso magnetico, definisce i fusso concatenato. I appoto ΦC L = (.7 ) I definisce induttanza dea bobina eettica. L unità di misua è heny ( H ). Appicando a egge di Hopkinson possiamo scivee: Φ L = I C N Φ N Ρ Fm = = I I Sostituendo espessione dea pemeanza si ha: L = N 2 N P N I = I µ S = N 2 2 N P = R (.8 ) La (.8 ) mosta che induttanza è costante se o è a pemeabiità magnetica de mateiae su cui è avvoto induttoe. Notiamo, inote, che induttanza aumenta con i numeo di spie e con a sezione S, mente diminuisce a aumentae dea unghezza dea bobina. L induttanza compessiva di due o più induttoi coegati in seie ( figua 8 ) si cacoa effettuando a somma dee induttanze: L seie = L + L L n (.9 ) Figua 8. Induttoi coegati in seie. 2

13 Figua 9. Induttoi coegati in paaeo L induttanza compessiva di due o più induttoi coegati in paaeo ( figua 9) si cacoa utiizzando a seguente eazione: L paaeo = L + L 2 + L L n (.20 ).0 Enegia de campo magnetico I gafico ipotato in figua 0 appesenta andamento ineae de fusso concatenato con e spie di un induttoe avente induttanza L costante, in funzione dea coente i che pecoe induttoe stesso. ϕ c Figua 3. Andamento ineae de fusso concatenato in funzione dea coente magnetizzante. 3

14 L aea de tiangoo ABC appesenta enegia magnetica W immagazzinata da induttoe. Se a coente i vaia da zeo a vaoe finae I, i fusso concatenato vaia da zeo a vaoe finae Φ = L I e enegia W si cacoa come segue: C AB BC I ΦC I L I 2 W = = = = L I ( joue ) (.2 ) In definitiva, enegia immagazzinata da una bobina dipende da induttanza L e da quadato dea coente che a pecoe. Ricodando che Φ = N Φ, F = N I, si possono icavae ate due espessioni C utii pe i cacoo de enegia magnetica immagazzinata, ossia: m W ΦC I N Φ I Φ F = = W = m (.22 ) Φ Fm R Φ Φ 2 Φ W = = W = Φ R = (.23 ) Ρ 4

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

La magnetostatica. Le conoscenze sul magnetismo fino al 1820.

La magnetostatica. Le conoscenze sul magnetismo fino al 1820. Le conoscenze sul magnetismo fino al 1820. La magnetostatica Le nozioni appese acquisite nel coso dei secoli sui fenomeni magnetici fuono schematizzate elativamente tadi ispetto alle pime ossevazioni,

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (AMERICHE) SESSIONE ORDINARIA Il candidato isolva uno dei due poblemi e degli 8 quesiti scelti nel questionaio. N. De Rosa, La pova di matematica pe il liceo

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 La siepe Sul eto di una villetta deve essee ealizzato un piccolo giadino ettangolae di m, ipaato da una siepe posta lungo il bodo Dato che un lato del giadino è occupato

Dettagli

Potenziale elettrico per una carica puntiforme isolata

Potenziale elettrico per una carica puntiforme isolata Potenziale elettico pe una caica puntifome isolata Consideiamo una caica puntifome positiva. Il campo elettico geneato da uesta caica è: Diffeenza di potenziale elettico ta il punto ed il punto B: B ds

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

6 INDUZIONE ELETTROMAGNETICA

6 INDUZIONE ELETTROMAGNETICA 6 INDUZIONE ELETTOMAGNETIA Patendo dall ipotesi di simmetia dei fenomeni natuali pe cui se una coente esecita un influenza su di una calamita così una calamita deve pote modificae lo stato di una coente

Dettagli

Cariche in campo magnetico: Forza magnetica

Cariche in campo magnetico: Forza magnetica Lezione 18 Campo magnetico I Stoicamente, i geci sapevano che avvicinando un pezzo di magnetite a della limatua di feo questa lo attaeva. La magnetite ea il pimo esempio noto di magnete pemanente. Come

Dettagli

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM

CAPITOLO 11 La domanda aggregata II: applicare il modello IS-LM CPITOLO 11 La domanda aggegata II: applicae il modello - Domande di ipasso 1. La cuva di domanda aggegata appesenta la elazione invesa ta il livello dei pezzi e il livello del eddito nazionale. Nel capitolo

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

15. LA RESISTENZA A FATICA: FONDAMENTI

15. LA RESISTENZA A FATICA: FONDAMENTI G. Petucci Lezioni di Costuzione di Macchine 5. LA RESISTEZA A FATICA: FODAMETI Gi eementi meccanici sono spesso soggetti a soecitazioni che vaiano ne tempo in modo cicico, cioè a stoie di caico nee quai

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE Teoia delle onde EM e popagazione (B. Peite) mecoledì 8 febbaio 1 Coso di Compatibilità Elettomagnetica 1 Indice degli agomenti Fenomeni ondulatoi La matematica dell onda La legge

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

CAPITOLO 10 La domanda aggregata I: il modello IS-LM

CAPITOLO 10 La domanda aggregata I: il modello IS-LM CAPITOLO 10 La domanda aggegata I: il modello IS-LM Domande di ipasso 1. La coce keynesiana ci dice che la politica fiscale ha un effetto moltiplicato sul eddito. Infatti, secondo la funzione di consumo,

Dettagli

Investimento. 1 Scelte individuali. Micoreconomia classica

Investimento. 1 Scelte individuali. Micoreconomia classica Investimento L investimento è l aumento della dotazione di capitale fisico dell impesa. Viene effettuato pe aumentae la capacità poduttiva. ECONOMIA MONETARIA E FINANZIARIA (5) L investimento In queste

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

5. CAMBIO. 5.1. descrizione

5. CAMBIO. 5.1. descrizione ambio powe - shift 5. AMBIO 5.. descizione Tattasi di cambio meccanico a te velocità avanti e te velocità indieto, ealizzate mediante cinque iduttoi epicicloidali vaiamente collegati ta loo. Tutte le cinque

Dettagli

Campo magnetico: fatti sperimentali

Campo magnetico: fatti sperimentali Campo magnetico: fatti speimentali Le popietà qualitative dei magneti e la pesenza di un campo magnetico teeste eano conosciute da tempo, ma le pime misue quantitative e le teoie e gli espeimenti pe deteminane

Dettagli

Polo Universitario della Spezia G. Marconi

Polo Universitario della Spezia G. Marconi Nicolò Beveini Appunti di Fisica pe il Coso di lauea in Infomatica Applicata Polo Univesitaio della Spezia G. Maconi Nicolò Beveini Appunti di fisica Indice 1. La misua delle gandezze fisiche... 4 1.1

Dettagli

SIMULAZIONE - 22 APRILE 2015 - QUESITI

SIMULAZIONE - 22 APRILE 2015 - QUESITI www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,

Dettagli

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi

FI.CO. 2. ...sempre più fico! ( Fisica Comprensibile per geologi) Programma di Fisica 2 - (v 5.0-2002) A.J. 2000 Adriano Nardi FI.CO. 2 ( Fisica Compensibile pe geologi) Pogamma di Fisica 2 - (v 5.0-2002)...sempe più fico! A.J. 2000 Adiano Nadi La fisica dovebbe essee una scienza esatta. Questo papio non può gaantie la totale

Dettagli

Disequazioni. 21.1 Intervalli sulla retta reale

Disequazioni. 21.1 Intervalli sulla retta reale Disequazioni 1 11 Intevalli sulla etta eale Definizione 11 Dati due numei eali a e b, con a < b, si chiamano intevalli, i seguenti sottoinsiemi di R: a, b) = {x R/a < x < b} intevallo limitato apeto, a

Dettagli

4 IL CAMPO MAGNETICO STATICO

4 IL CAMPO MAGNETICO STATICO 4 IL CAMPO MAGNETICO STATICO Analogamente al caso dei fenomeni elettici anche i fenomeni magnetici eano noti sin dagli antichi geci i quali denominaono il mineale poveniente dalla egione di in Macedonia

Dettagli

CAPITOLO 3 Il reddito nazionale: da dove viene e dove va

CAPITOLO 3 Il reddito nazionale: da dove viene e dove va CAPITOLO Il eddito nazionale: da dove viene e dove va Domande di ipasso. I fattoi di poduzione e la tecnologia di poduzione deteminano il livello della poduzione aggegata di un sistema economico. I fattoi

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica

Materiale didattico. Organizzazione del modulo IL CALCOLO FINANZIARIARIO. Programma Struttura logica IL CALCOLO FINANZIARIARIO You do not eally undestand something unless you can explain it to you gandmothe (A.Einstein) Calcolo finanziaio Intoduzione Economia dell impesa foestale: Bilancio Pianificazione

Dettagli

Compendio sui Sensori

Compendio sui Sensori Compendio sui Sensoi Gli Inteuttoi di Posizione pemettono il ilevamento mediante il contatto fisico dietto (fine cosa); l oggetto dunque, poggia fisicamente sopa l inteuttoe chiudendo e/o apendo un contatto;

Dettagli

ALMA Mater Studiorum Università degli Studi di Bologna. Campi magnetici in astrofisica

ALMA Mater Studiorum Università degli Studi di Bologna. Campi magnetici in astrofisica ALMA Mate Studioum Univesità degli Studi di Bologna SCUOLA DI SCIENZE Coso di Lauea in Astonomia Dipatimento di Fisica e Astonomia Campi magnetici in astofisica Elaboato Finale Candidato: Filippo Scocca

Dettagli

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione

Approfondimento 7.5 - Altri tipi di coefficienti di correlazione Appofondimento 7.5 - Alti tipi di coefficienti di coelazione Il coefficiente di coelazione tetacoico e policoico Nel 900 Peason si pose anche il poblema di come misuae la coelazione fa caatteistiche non

Dettagli

REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO DI COPPIA PER MOTORI ASINCRONI

REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO DI COPPIA PER MOTORI ASINCRONI UNIVERSITÀ DEGLI STUDI DI PARMA DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Dottoato di Riceca in Tecnologie dell Infomazione XXIV Ciclo Andea Rossi REALIZZAZIONE DIGITALE DI ALGORITMI DI CONTROLLO DIRETTO

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

Gravitazione Universale

Gravitazione Universale Gavitazione Univesale Liceo Ginnasio Statale S.M. Legnani Anno Scolastico 2007/08 Classe 3B IndiizzoClassico Pof.Robeto Squellati 1 Le leggi di Kepleo Ossevando la posizione di Mate ispetto alle alte stelle,

Dettagli

GEOMETRIA 3D MODELLO PINHOLE

GEOMETRIA 3D MODELLO PINHOLE http://imagelab.ing.unimo.it Dispense del coso di Elaboazione di Immagini e Audio Digitali GEOMETRIA 3D MODELLO PINHOLE Pof. Robeto Vezzani Calibazione della telecamea: a cosa seve? Obiettivo: pote calcolae

Dettagli

Politecnico di Milano. Dipartimento di Fisica. G. Valentini. Meccanica

Politecnico di Milano. Dipartimento di Fisica. G. Valentini. Meccanica Politecnico di Milano Dipatimento di Fisica G. Valentini Meccanica I INDICE LA FISICA ED IL METODO SPERIMENTALE. INTRODUZIONE. IL METODO SPERIMENTALE GRANDEZZE FISICHE ED INDICI DI STATO 4. DEFINIZIONE

Dettagli

Antenne: generalità Nel caso di condizioni di campo lontano si possono individuare grandezze caratteristiche della radiazione.

Antenne: generalità Nel caso di condizioni di campo lontano si possono individuare grandezze caratteristiche della radiazione. ntenne: genealità Dispositivo utilizzato pe iadiae o icevee in maniea efficace le onde e.m. ntenne tasmittenti e iceventi sono fomalmente simili (ecipocità). Esistono antenne adatte ed ottimizzate pe ceti

Dettagli

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s

EX 1 Una cassa di massa m=15kg è ferma su una superficie orizzontale scabra. Il coefficiente di attrito statico è µ s STATICA EX Una cassa di massa m=5kg è fema su una supeficie oizzontale scaba. Il coefficiente di attito statico è µ s = 3. Supponendo che sulla cassa agisca una foza F fomante un angolo di 30 ispetto al

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE PTNZIL LTTRIC D NRGI PTNZIL Ba. Una caica elettica q mc si tova nell oigine di un asse mente una caica negativa q 4 mc si tova nel punto di ascissa m. Sia Q il punto dell asse dove il campo elettico si

Dettagli

Capitolo I La radiazione solare

Capitolo I La radiazione solare W. Gassi Temoenegetica e Rispamio Enegetico in Edilizia Cap. La adiazione solae - Capitolo La adiazione solae - Genealità Lo spetto di emissione solae (exta atmosfeico) è itenuto equivalente a quello di

Dettagli

Classificazione delle linee di trasmissione

Classificazione delle linee di trasmissione Classificazione delle linee di tasmissione Linee TEM (Tansvese Electic Magnetic) Coassiale Bifilae (doppino) Stipline Linee quasi_tem Micostip Linee a due conduttoi con mezzo non unifome Linee non-tem

Dettagli

Bus di campo. Cosa sono i bus di campo. Bus di campo. M. Parvis 1

Bus di campo. Cosa sono i bus di campo. Bus di campo. M. Parvis 1 Maco Pavis Politecnico di Toino Dipatimento di Elettonica Coso Duca degli Abuzzi, 24 10129 Toino Tel. + 39 11 564 4114 Fax + 39 11 564 4099 E-mail: maco.pavis@polito.it 1 Cosa sono i bus di campo Bus pensati

Dettagli

Università degli Studi della Tuscia di Viterbo Dipartimento di ecologia e sviluppo economico sostenibile Facoltà di Agraria

Università degli Studi della Tuscia di Viterbo Dipartimento di ecologia e sviluppo economico sostenibile Facoltà di Agraria Univesità degli Studi della Tuscia di Vitebo Dipatimento di ecologia e sviluppo economico sostenibile Facoltà di Agaia Univesità degli Studi della Tuscia Dottoato di Riceca in Scienze Ambientali XIX Ciclo

Dettagli

La forza di Lorentz: Una carica che si muove in un campo magnetico risente una forza F (forza di Lorentz) data da : r =

La forza di Lorentz: Una carica che si muove in un campo magnetico risente una forza F (forza di Lorentz) data da : r = INDUTTANZA RIASSUNTO: Richiami su campo magnetico, foza di oentz egge di Faaday Autoinduzione (dimensioni ) induttanza come elemento di cicuito Cicuito R: extacoente di apetua Enegia immagazzinata in una

Dettagli

5 PROPRIETÀ MAGNETICHE DEI MATERIALI

5 PROPRIETÀ MAGNETICHE DEI MATERIALI 5 PROPRETÀ AGNETCE DE ATERAL A seguito della scopeta di Østed dell azione agnetica podotta da un filo conduttoe pecoso da coente l ipotesi più natuale che olti fisici avanzaono pe spiegae questo effetto

Dettagli

Valore finanziario del tempo

Valore finanziario del tempo Finanza Aziendale Analisi e valutazioni pe le decisioni aziendali Valoe finanziaio del tempo Capitolo 3 Indice degli agomenti. Concetto di valoe finanziaio del tempo 2. Attualizzazione di flussi futui

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

Grandezze cinematiche angolari (1)

Grandezze cinematiche angolari (1) Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza

Dettagli

FAST FOURIER TRASFORM-FFT

FAST FOURIER TRASFORM-FFT A p p e n d i c e B FAST FOURIER TRASFORM-FFT La tasfomata disceta di Fouie svolge un uolo molto impotante nello studio, nell analisi e nell implementazione di algoitmi dei segnali in tempo disceto. Come

Dettagli

Legge di Coulomb e campo elettrostatico

Legge di Coulomb e campo elettrostatico A. hiodoni esecizi di Fisica II Legge di oulomb e campo elettostatico Esecizio Te caiche positive uguali sono fisse nei vetici di un tiangolo euilateo di lato l. alcolae (a) la foza elettica agente su

Dettagli

FISICA-TECNICA Trasmissione del calore II parte

FISICA-TECNICA Trasmissione del calore II parte FISICA-TECNICA Tasmissione del caloe II pate Katia Gallucci Geometie cilindiche Vediamo oa quando abbiamo paeti cilindiche: e i L Q ka Q e Q i kπl( Te Ti ) Q e i d dt d kπl kπldt e d Q kπl i kπl( T e Te

Dettagli

ANALISI SPERIMENTALE E TEORICA DEL CARICAMENTO IN IDROGENO E DEUTERIO DI FILM DI PALLADIO

ANALISI SPERIMENTALE E TEORICA DEL CARICAMENTO IN IDROGENO E DEUTERIO DI FILM DI PALLADIO Univesità degli Studi di Milano Facoltà di Scienze Matematiche, Fisiche e Natuali Coso di lauea in Fisica ANALISI SPERIMENTALE E TEORICA DEL CARICAMENTO IN IDROGENO E DEUTERIO DI FILM DI PALLADIO (Codici

Dettagli

THERMAL DESIGN COURSE

THERMAL DESIGN COURSE Resp. del contenuto - Subject esponsible Resp. del documento/appovato - Doc.espons./Appoved Contollato - Checked 1(22) THERMAL DESIGN COURSE Table of contents 1 INTRODUZIONE... 3 1.1 Genealità... 3 1.2

Dettagli

Il moto circolare uniforme

Il moto circolare uniforme Il moto cicolae unifome Il moto cicolae unifome: peiodo e fequenza Un copo che i muoe lungo una taiettoia cicolae con elocità calae cotante ipaa pe la poizione iniziale a intealli fii di tempo. Definiamo

Dettagli

ESTENSIMETRO O STRAIN GAUGE

ESTENSIMETRO O STRAIN GAUGE ez I trasduttori di forza e di pressione La misura di una forza o di una pressione si ric onduc e aa misura di una deformazione. E queo c he succ ede nee bianc e c he permettono di misurare a forza peso

Dettagli

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1

La carica elettrica. F.Soramel Fisica Generale II - A. A. 2 0 0 4 / 0 5 1 La caica elettica 8 H.C. Oested connessione ta eletticità e magnetismo M. Faday speimentale puo, non scive fomule 85 J.C. Maxwell fomalia le idee di Faaday I geci avevano ossevato che l amba (elekton)

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Campo elettrostatico nei conduttori

Campo elettrostatico nei conduttori Campo elettostatico nei conduttoi Consideeemo conduttoi metallici (no gas, semiconduttoi, ecc): elettoni di conduzione libei di muovesi Applichiamo un campo elettostatico: movimento di caiche tansiente

Dettagli

4 Polarizzazione elettrica nel dominio del tempo

4 Polarizzazione elettrica nel dominio del tempo 4 Polaizzazione elettica nel dominio del tempo Intoduzione Atomi, molecole e ioni sono talmente piccoli che da un punto di vista macoscopico una piccola egione di un solido contiene un numeo molto elevato

Dettagli

Definizione Statico-Cinematica dei vincoli interni

Definizione Statico-Cinematica dei vincoli interni Definizione Statico-Cinematica dei vincoi interni Esempi deo schema strutturae di una struttura in cemento armato e di due strutture in acciaio in cui sono presenti dei vincoi interni cerniera. Vincoo

Dettagli

III. INTRODUZIONE ALL'ASTRODINAMICA

III. INTRODUZIONE ALL'ASTRODINAMICA III. INTRODUZIONE ALL'ASTRODINAMICA III.1. Obite kepleiane III.1.1. Equazioni del moto La Tabella III.1.1 elenca e definisce i paameti fondamentali dell'obita ellittica schematizzata in Figua III.1.1.

Dettagli

Esercizi di dinamica 2

Esercizi di dinamica 2 Esercizi di dinaica ) Un corpo di assa.0 kg si trova su un piano orizzontae scabro. I coefficiente di attrito statico tra corpo e piano è s 0.8. I corpo è sottoposto a azione di una forza orizzontae 7.0

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

Cuscinetti Di Precisione

Cuscinetti Di Precisione Cuscinetti Di Pecisione Cuscinetti a ulli di pecisione Indice dei contenuti Descizione tecnica 1 Selezione 1-1 Pocedua di selezione... 2 1-2 Esame tipo di... 3 2 Duata 2-1 Coeffi ciente di caico dinamico

Dettagli

C.I. FISICA APPLICATA Modulo di FISICA MEDICA

C.I. FISICA APPLICATA Modulo di FISICA MEDICA UNIVERSITÀ POLITECNICA DELLE MARCHE FACOLTÀDI DI MEDICINA E CHIRURGIA C.L.S. Odontoiatia e Potesi Dentaia C.I. FISICA APPLICATA Modulo di FISICA MEDICA A.A. 006/07 D. Fabizio Fioi D. Fabizio FIORI Dipatimento

Dettagli

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II Risouzione di travature reticoari iperstatiche co metodo dee forze ompemento aa ezione 3/50: I metodo dee forze II sercizio. er a travatura reticoare sotto riportata, determinare gi sforzo nee aste che

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

Il campo magnetico. sommario21.1. capitolo 21.2

Il campo magnetico. sommario21.1. capitolo 21.2 I campo magnetco captoo 21 I campo magnetco d un magnete Campo magnetco geneato da una coente eettca 21.2.1 Campo magnetco geneato da un fo nfnto ettneo pecoso da coente 21.2.2 Campo magnetco geneato da

Dettagli

Pensaci bene prima di proseguire Sei sicuro di avere fatto tutti gli sforzi necessari per risolvere i problemi.

Pensaci bene prima di proseguire Sei sicuro di avere fatto tutti gli sforzi necessari per risolvere i problemi. 96 Allcunii iisullttattii degllii eseciizii poposttii Pensaci bene pima di poseguie Sei sicuo di avee fatto tutti gli sfozi necessai pe isolvee i poblemi. 97 Pima di ispondee alle domande dei divesi esecizi,

Dettagli

La solarità nelle varie zone italiane per il fotovoltaico

La solarità nelle varie zone italiane per il fotovoltaico Energia e Ambiente La soarità nee varie zone itaiane per i fotovotaico Modena 5 marzo 2008 Gianni Leanza Energia e Ambiente QUANTA ENERGIA ARRIVA DAL SOLE? Da Soe, si iberano enormi quantità di energia

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

Cuscinetti isolati elettricamente per la prevenzione di danni dovuti al passaggio di corrente elettrica. Informazione tecnica

Cuscinetti isolati elettricamente per la prevenzione di danni dovuti al passaggio di corrente elettrica. Informazione tecnica Cuscinetti isolati eletticamente pe la pevenzione di danni dovuti al passaggio di coente elettica Infomazione tecnica Danni dovuti al passaggio di coente elettica e loo conseguenze Cuscinetti isolati eletticamente

Dettagli

Un modello di ricerca operativa per le scommesse sportive

Un modello di ricerca operativa per le scommesse sportive Un modello di iceca opeativa pe le commee potive Di Citiano Amellini citianoamellini@aliceit Supponiamo di dove giocae una ceta omma di denao (eempio euo ulla patita MILAN- JUVE Le quote SNAI ono quelle

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15 Leione V Campo magnetico B 1/15 Polo Nod N S S N Tea Sole Polo Sud Alcuni mineali (es. magnetite, da Magnesia Tessaglia) attiano il feo. Aghi calamitati si oientano nel campo magnetico teeste. Leione V

Dettagli

Fig. 1. Fig. 2. = + +ωc

Fig. 1. Fig. 2. = + +ωc Rifasamento monofase Sia dato i iruito di fig. 1 ostituito da un generatore di tensione indipendente reae di f.e.m. ed impedenza serie Z, da una inea di aimentazione di impedenza Z e da un ario + (a maggior

Dettagli

Circuiti e componenti ottici

Circuiti e componenti ottici Coso di Lauea in Ingegneia delle elecomunicazioni Sede di Femo A.A. 4-5 Laboatoio di Cicuiti e componenti ottici Intefeometo, pincipio di funzionamento e applicazioni. Studente Giovanni Pelliccioni. Pe

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

MAGNETISMO ed ELETTROMAGNETISMO

MAGNETISMO ed ELETTROMAGNETISMO MAGNETIMO ed ELETTROMAGNETIMO INTRODUZIONE: CAMPO MAGNETICO NEL VUOTO appiamo dalla fisica che un pezzo di minerale di ferro come la magnetite presenta la proprietà di attrarre spontaneamente a se altri

Dettagli

Le nuove geometrie per utensili di fresatura. Fresatura invece di politura e rettifi ca. Programma ampliato con: con raggio agli spigoli

Le nuove geometrie per utensili di fresatura. Fresatura invece di politura e rettifi ca. Programma ampliato con: con raggio agli spigoli Tecnica di fesatua Aspotazione di tucioli elevata su acciaio Aspotazione di tucioli con sicuezza di pocesso nella sgossatua Pe lavoazioni convenzionali su diffeenti mateiali Sgossatua e fi nitua in una

Dettagli

PIANO DI LAVORO. docente: Lancellotti Canio. classe: 5^ A IGEA. disciplina: ECONOMIA AZIENDALE. consegnato in data: 11 dicembre 2012

PIANO DI LAVORO. docente: Lancellotti Canio. classe: 5^ A IGEA. disciplina: ECONOMIA AZIENDALE. consegnato in data: 11 dicembre 2012 ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI Istituto Statae d Istruzione Superiore Vincenzo Manzini di San Daniee de Friui Piazza IV Novembre 33038 SAN DANIELE DEL FRIULI (prov. di Udine)

Dettagli

V. SEPARAZIONE DELLE VARIABILI

V. SEPARAZIONE DELLE VARIABILI V SEPARAZIONE DEE VARIABII 1 Tasfomazioni Otogonali Sia u = u 1, u 2, u 3 una tasfomazione delle vaiabili in R 3, dove x = x 1, x 2, x 3 sono le coodinate catesiane, u j = u j x 1, x 2, x 3 j = 1, 2, 3

Dettagli

7. Campo magnetostatico

7. Campo magnetostatico 7. Campo magnetostatico 7.1 Aspetti fenomenologici Inteazioni (attattive e epulsive) ta magneti (magnetite) In ogni magnete si possono individuae due poli che chiamiamo polo + (nod) e polo - (sud) Due

Dettagli

Concorso di Ammssione al XIX ciclo di Dottorato in Fisica - Busta n. 1

Concorso di Ammssione al XIX ciclo di Dottorato in Fisica - Busta n. 1 Concorso di Ammssione a XIX cico di Dottorato in Fisica - Busta n. 1 Icandidato svoga unoasceta dei temi erisova unoasceta dei probemi. Temi 1) Approssimazione semicassica in meccanica quantistica. Principi

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

Proporzionamento del pistone oleodinamico

Proporzionamento del pistone oleodinamico 0 Schede di Imianti Navali Poozionamento del istone oleodinamico ve 1. cua di Tommaso Coola e anco Quaanta 1 Poozionamento del istone oleodinamico vesione: 1. file oiginale: Poozionamento del istone oleodinamico

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

5.1 Determinazione delle distanze dei corpi del Sistema Solare

5.1 Determinazione delle distanze dei corpi del Sistema Solare 5.1 Deteminazione delle distanze dei copi del istema olae 5.1.1 Distanza ea-pianeti aallassi equatoiali Questo è il metodo più peciso ma anche quello più delicato da eseguie. Esso si basa sul fatto che

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

P A. TELEGROUP Professional manufacturer

P A. TELEGROUP Professional manufacturer Genealità Una buona utilizzazione dell enegia elettica non si aggiunge solo col idue od evitae gli spechi (cuae l isolamento degli impianti, impiegae utilizzatoi adatti, etc), ma anche con un azionale

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

Successioni e Progressioni

Successioni e Progressioni Successioi e Pogessioi Ua successioe è ua sequeza odiata di umei appateeti ad u isieme assegato: ad esempio, si possoo avee successioi di umei itei, azioali, eali, complessi Il pimo elemeto della sequeza

Dettagli

Operatori divergenza e rotore in coordinate cilindriche

Operatori divergenza e rotore in coordinate cilindriche Opeatoi divegena e otoe Univesità di Roma To Vegata Pof. Ing. Paolo Sammaco Opeatoi divegena e otoe in coodinate cilindiche Dott. Ing. Macello Di Risio 1 Sistema di ifeimento Si assume il sistema di ifeimento

Dettagli