Amplificatori operazionali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Amplificatori operazionali"

Transcript

1 mplfcator operazonal Parte (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal V+ Ingresso nertente Ingresso non nertente Uscta Per l suo funzonamento rchee un almentazone ( solto uale) che ene fornta meante altr ue termnal (che spesso negl schem engono sottntes) I alor ella tensone almentazone anno soltamente a 5 V a V (un alore tpco è 5 V) V-

2 mplfcatore operazonale L amplfcatore operazonale può essere rappresentato come un sposto a ue porte La porta ngresso ha come termnal l ngresso non nertente e l ngresso nertente La tensone èetta tensone ngresso fferenzale La porta uscta ha come termnal l uscta e la massa, rappresentata al noo a cu sono collegat ue generator almentazone (l amplfcatore operazonale non ha termnal collegat a massa) mplfcatore operazonale L amplfcatore operazonale è un amplfcatore tensone con resstenza ngresso n eleata (alor tpc > 0 6 resstenza uscta out pccola (alor tpc < 00 guaagno eleato (alor tpc coè 00-0 B) èetto guaagno a anello aperto (open loop gan) Normalmente è possble conserare n pratcamente nfnta e out pratcamente nulla la corrente alla porta ngresso è nulla

3 mplfcatore operazonale Un amplfcatore operazonale può essere rappresentato anche come un sposto a tre porte, metteno n eenza le tenson tra gl ngress e la massa Questa rappresentazone mette n eenza che l amplfcatore operazonale amplfca la fferenza tra le tenson applcate a suo ngress (coè s comporta come un amplfcatore fferenzale) 5 Ingresso fferenzale e moo comune Quano le tenson applcate a ue ngress sono ugual la tensone un uscta è (ealmente) uguale a zero In pratca, a causa netabl asmmetre nel crcuto, la relazone tra gl ngress e l uscta rsulta el tpo o con e non esattamente ugual Per stuare l comportamento ell amplfcatore n queste conzon conene ntrourre, oltre alla tensone ngresso fferenzale la tensone ngresso moo comune, efnta come c 6

4 7 Ingresso fferenzale e moo comune Le tenson egl ngress possono essere espresse n funzone ella tensone fferenzale e ella tensone moo comune meante le relazon che possono essere nterpretate meante l seguente crcuto equalente c c 8 Guaagno fferenzale e moo comune Introuceno le espresson preceent egl ngress nella relazone s ottene Nell ultma espressone sono stat ntroott l guaagno fferenzale e l guaagno moo comune o c c c c c o c

5 apporto reezone moo comune Il rapporto tra l guaagno fferenzale e l guaagno moo comune è etto rapporto reezone moo comune (CM, common-moe rejecton rato) CM c D solto l CM è espresso n B CM(B) 0 log 0 c Il CM è una fgura merto che nca quanto l comportamento un amplfcatore fferenzale è prossmo al comportamento eale 9 apporto reezone moo comune Gl amplfcator operazonal hanno alor el CM molto eleat (tpcamente B) Spesso è possble conserare l CM pratcamente nfnto In queste conzon s può rtenere e qun c 0 0

6 Caratterstca ngresso-uscta La caratterstca trasfermento un amplfcatore operazonale ha un anamento pratcamente lneare nell ntorno ell orgne, con penenza par a l crescere la tensone uscta satura Il alore ella tensone saturazone V sat è tpcamente nferore - V a quello ella tensone almentazone Caratterstca ngresso-uscta eale Dato che è molto grane, l nterallo alor corrsponente alla regone lneare è molto pccolo (poche ecne o centnaa V) Nella regone lneare s può rtenere che sa pratcamente nulla, l che equale a conserare l guaagno pratcamente nfnto

7 mplfcatore operazonale eale Le conserazon preceent portano alla efnzone ell amplfcatore operazonale eale, che è caratterzzato alle seguent propretà esstenza ngresso n nfnta esstenza uscta out nulla Guaagno a anello aperto nfnto Guaagno moo comune c nullo apporto reezone moo comune nfnto Larghezza bana nfnta (guaagno npenente alla frequenza) Cortocrcuto rtuale Un amplfcatore operazonale eale può essere rappresentato come un oppo bpolo per l quale la tensone e la corrente ella porta ngresso sono entrambe nulle la tensone e la corrente ella porta uscta possono assumere entrambe alor arbtrar L ngresso nertente e l ngresso non nertente sono sempre allo stesso potenzale, come se fossero collegat tra loro a un cortocrcuto Le corrent a ue termnal ngresso sono sempre nulle, mentre se ue termnal fossero effettamente unt a un cortocrcuto s arebbe, n generale, una corrente ersa a zero Per questo s ce che ue ngress sono n cortocrcuto rtuale

8 nals crcut con amplfcator operazonal eal Crcut relatamente semplc possono essere rsolt n moo retto, teneno conto e cortocrcut rtual La porta ngresso un operazonale ene conserata come un cortocrcuto per quanto rguara le tenson come un crcuto aperto per quanto rguara le corrent Procement altà pù generale possono essere ottenut come estensone e meto sstematc anals crcutale (come l metoo elle corrent magla, elle tenson noo, ecc.) In partcolare, rsulta puttosto semplce l estensone el metoo elle tenson noo 5 Metoo elle tenson noo per crcut con amplfcator operazonal eal Le corrent agl ngress egl operazonal sono nulle le equazon noo s scrono trascurano termnal ngresso egl operazonal La corrente al termnale uscta può assumere un alore arbtraro le corrent uscta anno ncluse nelle equazon noo come ncognte auslare solto l erso rfermento ene scelto entrante al punto sta ell operazonale, qun uscente al noo le corrent compaono nelle equazon noo con segno + La tensone tra gl ngress un operazonale è nulla per ogn operazonale s ee ntrourre un equazone auslara che mpone l uguaglanza elle tenson e no a cu sono collegat gl ngress 6

9 mplfcatore nertente L ngresso nertente è rtualmente a massa La tensone conce con La tensone è uguale a o La corrente entrante nell ngresso nertente è nulla le corrent e sono ugual 7 mplfcatore nertente o Guaagno tensone o V esstenza ngresso n Crcuto equalente 8

10 Sommatore nertente Il crcuto può essere conserato un estensone el caso preceente In questo caso la corrente n f è uguale alla somma elle corrent egl N resstor collegat agl ngress La tensone n uscta è una somma pesata elle tenson egl ngress 9 Sommatore nertente 0 N f k k N k f k k Il peso cascuna elle tenson ngresso k nella somma può essere mofcato n moo npenente, mofcano la resstenza k Per l k-esmo ngresso, la resstenza ngresso è uguale a k 0

11 mplfcatore non nertente causa el cortocrcuto rtuale le tenson e ue ngress sono ugual La tensone conce con La corrente entrante nell ngresso nertente è nulla le corrent e sono ugual mplfcatore non nertente o Guaagno tensone o V esstenza ngresso n Crcuto equalente

12 Insegutore tensone Crcuto equalente La tensone uscta conce con la tensone ell ngresso nertente che, a sua olta, conce con la tensone a causa el cortocrcuto rtuale Guaagno tensone: esstenza ngresso: n esstenza uscta: out 0 Insegutore tensone Spesso questo crcuto ene mpegato come separatore (buffer) Il blocco ee una resstenza carco pratcamente nfnta Il blocco ee una sorgente con resstenza pratcamente nulla La tensone o conce con la tensone a uoto el blocco, npenentemente a alor ella resstenza uscta el blocco e ella resstenza ngresso el blocco

13 mplfcatore fferenzale Il crcuto può essere sto come una combnazone elle confgurazon nertente e non nertente La tensone n uscta può essere alutata meante l prncpo sorapposzone egl effett 5 mplfcatore fferenzale Contrbuto Dato che la corrente entrante nell ngresso nertente è nulla, anche le corrent (e qun la tensone) e sono nulle Le tenson egl ngress ell amplfcatore operazonale sono nulle Dal punto sta l crcuto s comporta come un amplfcatore nertente 6

14 mplfcatore fferenzale Contrbuto Dato che la corrente entrante nell ngresso non nertente è nulla, e formano un parttore a cu è applcata la tensone La tensone all uscta el parttore costtusce l ngresso un amplfcatore non nertente 7 mplfcatore fferenzale Combnano ue contrbut s ha o Per ottenere un amplfcatore fferenzale occorre fare n moo che coeffcent e sano ugual e oppost Questo s erfca se (spesso s pone, ) In queste conzon s ha o o 8

15 9 CM Se rapport tra resstor non sono ugual, la tensone uscta è In queste conzon, l guaagno moo comune è erso a zero Nel caso generale l guaagno fferenzale è Qun l rapporto reezone moo comune ale o c CM 0 esstenza ngresso fferenzale La resstenza tra ue termnal ngresso, resstenza ngresso fferenzale può essere alutata collegano all ngresso un generatore tensone Questo crcuto non consente ottenere nello stesso tempo alor eleat ella resstenza ngresso e el guaagno Se alor e sono gran, alor rchest a e per ottenere un guaagno eleato possono rsultare troppo gran (e qun non essere faclmente realzzabl)

16 mplfcatore fferenzale con operazonal Un amplfcatore fferenzale con prestazon mglor può essere ottenuto meante questa confgurazone Questo crcuto è noto anche come amplfcatore per strumentazone (nstrumentaton amplfer) mplfcatore fferenzale con operazonal stao stao

17 mplfcatore fferenzale con operazonal causa e cortocrcut rtual, la tensone sulla resstenza conce con la tensone fferenzale n ngresso Dato che le corrent egl ngress nertent sono nulle, la corrente n crcola anche nelle ue resstenze ll uscta el prmo stao s ha la tensone Questa tensone costtusce l ngresso el secono stao, che è un amplfcatore fferenzale realzzato con un sngolo operazonale e ha un guaagno par a /, qun o mplfcatore fferenzale con operazonal Se s applca n ngresso un segnale moo comune C, la tensone egl ngress egl operazonal el prmo stao è uguale a C La tensone è nulla, qun non crcola corrente né n né nelle resstenze ll ngresso el secono stao s ha la tensone moo comune C

18 mplfcatore fferenzale con operazonal Una tensone moo comune n ngresso ene trasferta rettamente all ngresso el secono stao Una tensone fferenzale n ngresso ene trasferta al secono stao moltplcata per l fattore Complessamente s ottene un amplfcatore fferenzale che ha lo stesso guaagno moo comune el secono stao, ma ha un guaagno fferenzale maggore S ottene un CM maggore quello el solo secono stao Inoltre, rspetto a un amplfcatore fferenzale con un solo operazonale s ha una resstenza ngresso maggore (ealmente nfnta) s ha la possbltà mofcare l guaagno mofcano l alore una sola resstenza ( ) 5 Segnal blancat e sblancat Un segnale n tensone può essere rappresentato alla tensone un noo rspetto al noo massa segnale sblancato (o sngle-ene) alla tensone tra ue no nessuno e qual conce con l noo massa segnale blancato o fferenzale I segnal sblancat n genere rcheono crcut pù semplc I segnal blancat sono pù robust ne confront sturb consentono prestazon mglor n termn lneartà n sstem realzzat meante spost non lnear n molt cas nteresse pratco rappresentano l tpo segnale sponble all uscta e trasuttor 6

19 Segnal blancat e sblancat n presenza sturb In presenza el sturbo, la tensone all ngresso el blocco b è b a Segnale sblancato a Dsturbo b In presenza el sturbo, la tensone all ngresso el blocco b è b a a a Segnale blancato a Dsturbo b Se l sturbo agsce n moo smle su ue conuttor, cn tra loro, s ha, qun è molto pccolo rspetto a e 7 Conersone tra segnal blancat e sblancat Un amplfcatore fferenzale può essere conserato un sposto che conerte un segnale blancato n uno sblancato nche la conersone n senso opposto può essere eseguta n ar mo meante amplfcator operazonal Esempo o o o o o 8

20 Conerttore corrente-tensone S f o f s E un amplfcatore a transresstenza causa el cortocrcuto rtuale la tensone e qun la corrente S sono nulle La tensone n uscta è npenente a S (l crcuto s comporta come se all ngresso fosse collegato solo l generatore eale S ) 9 Conerttore tensone-corrente L n E un amplfcatore a trasconuttanza Il carco ee essere flottante, coè non può aere termnal collegat fscamente a massa (anche se un termnale è collegato a una massa rtuale) se s collegasse a massa l ngresso nertente la corrente L s annullerebbe 0

21 Conerttore tensone-corrente con carco rferto a massa Se la resstenza carco ha un termnale a massa s può utlzzare questo crcuto Con una scelta opportuna e alor elle resstenze s può fare n moo che la corrente nel carco sa npenente al alore L Conerttore tensone-corrente con carco rferto a massa S può elmnare la penenza L a L poneno In queste conzon s ottene L L L L L L L L L

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI

MODULO 1 GLI AMPLIFICATORI OPERAZIONALI MODULO GL AMPLFCATO OPEAZONAL. PAAMET CAATTESTC D UN AMPLFCATOE OPEAZONALE Per la corretta utlzzazone un A.O. reale bsogna nterpretare at caratterstc fornt al costruttore e conoscere termn pù comunemente

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Realizzazione e studio di un oscillatore a denti di sega

Realizzazione e studio di un oscillatore a denti di sega 1 Realzzazone e stuo un oscllatore a ent sega Cenn teorc Lo scopo quest esperenza è quello stuare la cosetta tensone a ent sega, ovvero una tensone alternata, peroo T, che vara lnearmente con l tempo a

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenut del corso Parte I: Introduzone e concett ondamental rcham d teora de crcut la smulazone crcutale con PICE element d Elettronca dello stato soldo Parte II: Dspost Elettronc l dodo a gunzone transstor

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

# STUDIO DELLA FEDELTA DI RISPOSTA

# STUDIO DELLA FEDELTA DI RISPOSTA # STUDIO DELLA FEDELTA DI RISOSTA # er poter formulare n manera approprata problem sntes (progetto) sstem controllo, e necessaro a questo punto nteressarc elle loro propreta n termn feelta rsposta agl

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

IL TRANSISTOR BIPOLARE (BJT)

IL TRANSISTOR BIPOLARE (BJT) IL TRANSISTOR BIPOLARE (BJT) 1 - Introduzone La parola transstor è la contrazone d transfer resstor (resstenza d trasfermento), e tende a sottolneare come questo dspostvo s dmostr n grado d trasferre una

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Elettricità e circuiti

Elettricità e circuiti Elettrctà e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà Effetto termco della corrente esstenze n sere e n parallelo Legg d Krchoff P. Maestro Elettrctà e crcut

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

Amplificatori Operazionali

Amplificatori Operazionali Amplfcator Operazonal 3 L amplfcatore dfferenzale Per amplfcatore dfferenzale s ntende un crcuto n grado d amplfcare la dfferenza d tensone tra due segnal applcat n ngresso In atre parole un amplfcatore

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

$%&'$%()($ * +,* -. )) )/

$%&'$%()($ * +,* -. )) )/ !"# $%&'$%()($ * +,* -. )) )/ 1 0 *",13.4 5. '. 1.'$$$ 0 0 *,6 7. 4! 5.! 8 1.)&&9 0 ) ' " / : ; %! 6 " > @ # 5 &' ;" >. ;" >. >.. ; >. # 6 C "! #!#! )!*#!!#!+@

Dettagli

1. DIODO. 1.1 Caratteristica v-i di un diodo a semiconduttore

1. DIODO. 1.1 Caratteristica v-i di un diodo a semiconduttore 1 1. DIODO Il dodo è un bpolo ressto non lneare, che troa largo mpego n molte applcazon d grande nteresse, qual relator d segnal rado, conerttor d potenza (raddrzzator, moltplcator d tensone), lmtator

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I.

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I. Eserctazone ottobre 0 Trasformazon crcutal Sere e parallelo S consderno crcut n Fg e che rappresentano rspettvamente un parttore d tensone e uno d corrente v v v v Fg : Parttore d tensone Fg : Parttore

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

TORRI DI RAFFREDDAMENTO PER L ACQUA

TORRI DI RAFFREDDAMENTO PER L ACQUA TORRI DI RAFFREDDAMENTO PER ACQUA Premessa II funzonamento degl mpant chmc rchede generalmente gross quanttatv d acqua: questa, oltre ad essere utlzzata drettamente n alcune lavorazon, come lavagg, dssoluzon,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Complementi sui diodi

Complementi sui diodi Complement su o www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 26-3-2016) Coeffcente emssone L equazone hockley e / V 1 rappresenta correttamente la caratterstca el oo solo se fenomen generazone e rcombnazone

Dettagli

LA CONVERSIONE STATICA ELETTRICA/ELETTRICA

LA CONVERSIONE STATICA ELETTRICA/ELETTRICA A COVERSIOE STATICA EETTRICA/EETTRICA a conversone statca elettrca/elettrca può avvenre n due mod: converttor statc a semconduttor dspostv elettromagnetc (trasformator) I a conversone statca elettrca/elettrca

Dettagli

Introduzione... 2 Connessione serie-parallelo... 3 Esempio: stadio inseguitore di tensione a BJT... 8 Osservazione: calcolo diretto degli effetti di

Introduzione... 2 Connessione serie-parallelo... 3 Esempio: stadio inseguitore di tensione a BJT... 8 Osservazione: calcolo diretto degli effetti di Appunt d lettronca Captolo 3 parte Amplfcator reazonat ntroduzone... Connessone sereparallelo... 3 sempo: stado nsegutore d tensone a BJT... 8 sserazone: calcolo dretto degl effett d carco... Concetto

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

Diodi. (versione del ) Diodo ideale

Diodi.  (versione del ) Diodo ideale Dod www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6-3-26) Dodo deale Il dodo deale è un componente la cu caratterstca è defnta a tratt nel modo seguente per (polarzzazone nersa) per (polarzzazone

Dettagli

Soluzioni per lo scarico dati da tachigrafo innovativi e facili da usare. http://dtco.it

Soluzioni per lo scarico dati da tachigrafo innovativi e facili da usare. http://dtco.it Soluzon per lo scarco dat da tachgrafo nnovatv e facl da usare http://dtco.t Downloadkey II Moble Card Reader Card Reader Downloadtermnal DLD Short Range and DLD Wde Range Qual soluzon ho a dsposzone per

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

Ottica. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica

Ottica. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica Roberto Cro Corso Laurea n Chmca e Tecnologa Farmaceutche Anno accaemco 2007 2008 Corso Fsca La lezone ogg La luce Rflessone e rfrazone Interferenza e ffrazone Fbre ottche L occho e le lent Fsca a.a. 2007/8

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

CORSO DI STUDI E VALUTAZIONI AMBIENTALI A.A

CORSO DI STUDI E VALUTAZIONI AMBIENTALI A.A CORSO DI STUDI E VALUTAZIONI AMBIENTALI A.A. 2012-2013 1 INDICE 1 STIMA DELLA DOMANDA DI TRASPORTO 3 1.1 Moello generazone 3 1.2 Moello strbuzone 4 1.3 Moello scelta moale 5 1.4 Stma elle sottomatrc scambo

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio Codce d Stoccaggo Captolo 7 Blancamento e rentegrazone dello stoccaggo 7.4 Corrspettv per servz d stoccaggo L UTENTE è tenuto a corrspondere a STOGIT, per la prestazone de servz, gl mport dervant dall

Dettagli

Capitolo V. Amplificatori operazionali

Capitolo V. Amplificatori operazionali Captolo V Amplfcator operazonal Sebbene gl amplfcator operazonal (op amp) sano n uso da molto tempo, le prme applcazon sono state nell ambto del calcolo analogco e della strumentazone. I prm amplfcator

Dettagli

7 Verifiche di stabilità

7 Verifiche di stabilità 7 Verfche d stabltà 7.1 Generaltà Note tutte le azon agent sul manufatto, vanno effettuate le verfche d stabltà dell opera d sostegno. Le azon da consderare sono fornte dalla spnta del terrapeno a monte,

Dettagli

Ombra una scaletta ue gran avente uno spgolo vertcale appartenente al PV. 2 S assegnano le lettere a vertc ella fgura. A" D" B" C" I" L" N" M" 3 Se possble, s sfruttano anche le conzon parallelsmo tra

Dettagli

Stage estivo 2004 L. Lucci, A. Giacomini, R. Botti, R. Vaccaro, L. Contiguglia, U. Sassi, M. Battisti Penta

Stage estivo 2004 L. Lucci, A. Giacomini, R. Botti, R. Vaccaro, L. Contiguglia, U. Sassi, M. Battisti Penta Stage estvo 4 L. Lucc, A. Gacomn, R. Bott, R. accaro, L. Contgugla, U. Sass, M. Battst Penta Tutor LNF G. Corrad & D. Lenc I programm d smulazone crcutale costtuscono uno strumento d fondamentale utltà

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

DIPLOMA A DISTANZA IN INGEGNERIA ELETTRICA CORSO DI ELETTRONICA INDUSTRIALE DI POTENZA II Lezione 35

DIPLOMA A DISTANZA IN INGEGNERIA ELETTRICA CORSO DI ELETTRONICA INDUSTRIALE DI POTENZA II Lezione 35 DIPOMA A DISTANZA IN INGEGNERIA EETTRICA CORSO DI EETTRONICA INDUSTRIAE DI POTENZA II ezone 35 Compensator Statc d Potenza Reattva Seconda Parte Paolo Mattavell Dpartmento d Ingegnera Elettrca Unverstá

Dettagli

Capitolo 33 TRASPORTO IN PRESSIONE

Capitolo 33 TRASPORTO IN PRESSIONE Captolo 33 TRASPORTO IN PRESSIONE 1 INTRODUZIONE I sstem d condotte n pressone destnat all'approvvgonamento drco comprendono: - gl acquedott estern, che adducono l'acqua dalle font d'almentazone alle zone

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Principio di sostituzione - I

Principio di sostituzione - I 67 Prncpo d sosttuzone - I In una rete elettrca (lneare o non-lneare) un coponente elettrco, o un nsee d coponent elettrc (lnear o non lnear), può essere sosttuto con un altro coponente o nsee d coponent

Dettagli

Relazioni costitutive e proprietà dei componenti. Reti algebriche

Relazioni costitutive e proprietà dei componenti. Reti algebriche 43 Relazon costtute e propretà de component Ret algebrce Un componente elettrco (a 2 o pù morsett) s dce pro d memora (o senza memora, o adnamco) se la sua relazone costtuta esprme un legame tra tenson

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Prova scritta di Esperimentazioni II del

Prova scritta di Esperimentazioni II del Prova scrtta Espermentazon II el 9--98 Un amplcatore a transstor ha lo schema presentato n gura. Calcolare la tensone el collettore Vc, sapeno che l transstor ha un h FE 0. Calcolare la potenza sspata

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Appunti Sui Transistor A Giunzione Bipolare

Appunti Sui Transistor A Giunzione Bipolare ..S.. Matte San Donato Mlanee Appunt Su Trantor A Gunzone polare A cura d Galao Omar Appunt del coro d lettronca del prof.. Azzmont A.S. 2009-2010 ed approfondment ttuto ndutrale Statale. Matte San Donato

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Misure su sistemi trifasi

Misure su sistemi trifasi Msure su sstem trfas - Msure su sstem trfas - Tp d collegamento Collegamento a stella Un sstema trfase è caratterzzato n generale da tre fl d lnea (L L L ) pù un eventuale quarto conduttore L detto conduttore

Dettagli

impianti di prima pioggia

impianti di prima pioggia SHUNT ITALIANA TECHNOLOGY S.r.l. dvsone depurazone acque mpant d prma pogga un futuro per l acqua... 0867 CAPONAGO (MB) - Va G. Galle, - Tel. 0.95.96.6 - Fax 0.95.74..54 - dvacque@shunt.t - www.shunt.t

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

2. La base monetaria e i mercati dei depositi e del credito

2. La base monetaria e i mercati dei depositi e del credito 2. La base monetara e mercat e epost e el creto Esercz svolt Eserczo 2.1 (a) Conserate l moello che rappresenta l equlbro el mercato ella base monetara e el mercato e epost (fate l potes che coe cent c;

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati:

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati: Captolo 1 1.1 Ientfcazone el campo operatvtà un motore AC bruhle Sa ato un motore AC bruhle otropo cu ano not eguent at: Vn = 190 V In = 3.5 A Tn =.6 N n pol = R = 1 Ω L = 8 mh Ke = Kt = 0.4 S etermn l

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

COMUNE DI SANTA VENERINA

COMUNE DI SANTA VENERINA COMUNE DI SANTA VENERINA Provnca Catana ORDINANZA SINDACALE n. 13 el 21 agosto 2014 OGGETTO: Mofca el calenaro raccolta porta a porta a partre a gorno 8 settembre 2014. PREMESSO che l Comune Santa Venerna

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Lavoro, Energia e stabilità dell equilibrio II parte

Lavoro, Energia e stabilità dell equilibrio II parte Lavoro, Energa e stabltà dell equlbro II parte orze conservatve e non conservatve Il concetto d Energa potenzale s aanca per mportanza a quello d Energa cnetca, perché c permette d passare dallo studo

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

I simboli degli elementi di un circuito

I simboli degli elementi di un circuito I crcut elettrc Per mantenere attvo l flusso d carche all nterno d un conduttore, è necessaro che due estrem d un conduttore sano collegat tra loro n un crcuto elettrco. Le part prncpal d un crcuto elettrco

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Corso di Automazione Industriale 1. Capitolo 7

Corso di Automazione Industriale 1. Capitolo 7 1 Corso d Automazone Industrale 1 Captolo 7 Teora delle code e delle ret d code Introduzone alla Teora delle Code La Teora delle Code s propone d svluppare modell per lo studo de fenomen d attesa che s

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Amplificatori operazionali

Amplificatori operazionali ppunt d ELETTNIC Captolo mplcator operazonal Introduzone... Caratterstche deal... pplcazon lnear...5 amplcatore operazonale n congurazone nertente...5 Guadagno d tensone...6 esstenze d ngresso e d uscta...

Dettagli

GeoStru Software www.geostru.com geostru@geostru.com SOMMARIO

GeoStru Software www.geostru.com geostru@geostru.com SOMMARIO GeoStru Software www.geostru.om geostru@geostru.om SOMMARIO PORTAZA E CEIMETI I FOAZIOI SUPERFICIALI... CARICO LIMITE I FOAZIOI SU TERREI... Metoo Terzagh (1955)... 3 Formula Meyerhof (1963)... 5 Formula

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

TRANSISTOR BIPOLARE (BJT): AMPLIFICATORE E INTERRUTTORE

TRANSISTOR BIPOLARE (BJT): AMPLIFICATORE E INTERRUTTORE CAP.4 TRANSISTOR BIPOARE (BJT): AMPIICATORE E INTERRUTTORE 1. Transstore bpolare a gunzone (BJT). 2. Retta d carco e punto d laoro 3. Modell DC a largo segnale. 4. Crcut d polarzzazone. 5. Crcuto equalente

Dettagli

Capitolo III. Transistori bipolari a giunzione

Capitolo III. Transistori bipolari a giunzione Captolo III Transstor bpolar a gunzone Il dodo è un dsposto a due termnal, mentre transstor bpolar sono a tre termnal. I dspost a tre termnal sono quell pù usat perché possono essere utlzzat n una molttudne

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2)

10-7-2009. GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA Serie generale - n. 158. ALLEGATO 1 (Allegato A, paragrafo 2) ALLEGATO 1 (Allegato A, paragrafo 2) Indcazon per l calcolo della prestazone energetca d edfc non dotat d mpanto d clmatzzazone nvernale e/o d produzone d acqua calda santara 1. In assenza d mpant termc,

Dettagli

COLLANA I Quaderni Tecnici di Fibre Net QUADERNO TECNICO SISTEMA FIBREBUILD RETICOLA

COLLANA I Quaderni Tecnici di Fibre Net QUADERNO TECNICO SISTEMA FIBREBUILD RETICOLA COLLANA I Quadern Tecnc d Fbre Net QUADERNO TECNICO SISTEMA FIBREBUILD RETICOLA La collana I Quadern Tecnc d Fbre Net vuole essere un utle e pratco strumento d lavoro per l mondo professonale e delle mprese

Dettagli

Newsletter "Lean Production" Autore: Dott. Silvio Marzo

Newsletter Lean Production Autore: Dott. Silvio Marzo Il concetto d "Produzone Snella" (Lean Producton) s sta rapdamente mponendo come uno degl strument pù modern ed effcac per garantre alle azende la flessbltà e la compettvtà che l moderno mercato rchede.

Dettagli

Richiami di Termodinamica Applicata

Richiami di Termodinamica Applicata Unverstà degl Stud d aglar ors d Studo n Ingegnera hca ed Elettrca Rcha d Terodnaca Applcata Il ro rncpo della Terodnaca, o rncpo d onservazone dell Energa, n tern dfferenzal e con rferento all untà d

Dettagli

Edifici a basso consumo energetico: tra ZEB e NZEB

Edifici a basso consumo energetico: tra ZEB e NZEB Edfc a basso consumo energetco: tra ZEB e NZEB Prof. Ing. Percarlo Romagnon Dpartmento d Progettazone e Panfcazone n Ambent Compless Unverstà IUAV d Veneza Dorsoduro 2206 30123 Veneza perca@uav.t Modell

Dettagli