Reti complesse modelli e proprietà

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Reti complesse modelli e proprietà"

Transcript

1 Reti complesse Modelli e proprietà Applicazioni di rete 2 A.A

2 Outline Modello di Erdös Rényi 1 Modello di Erdös Rényi Denizione Proprietà 2 Introduzione Modello Barabási Albert Altri modelli 3 Piccoli mondi Watts Strogatz Kleinberg

3 Denizione Proprietà I gra casuali di Erdös Rényi (reprise) Il modello G n,p n : numero di vertici 0 p 1 Per ogni coppia di nodi i e j, genera l'arco (i, j) con probabilità p in modo indipendente. Errata corrige Il grado medio è z = np, non n/p come scritto nell'ultima lezione.

4 Studio asintotico Modello di Erdös Rényi Denizione Proprietà n, p costante Al crescere di n il grado medio np va ad innito. Un'unica componente connessa per qualsiasi p 0. Diametro 2. Modello poco realistico. n, p(n) variabile in funzione di n Caratteristiche più interessanti, e meno facili da caratterizzare: vedremo principalmente questo modello.

5 Distribuzione del grado Denizione Proprietà Caratterizzazione p(k) : Somma di n variabili booleane con probabilità p di avere valore 1. Legge binomiale: p(k) = B(n, k, p) = ( n k) p k (1 p) n k. Distribuzione poissoniana Se si ssa il grado medio z = np, quando n la binomiale si approssima con la distribuzione poissoniana P(k, z) = z k k! e z. Coda esponenziale: questo modello non soddisfa la power law.

6 Distribuzione poissoniana Denizione Proprietà

7 Clustering Modello di Erdös Rényi Denizione Proprietà Esercizio Qual è il valore del clustering C (1) in un grafo casuale G(n, p)? Ricordiamo: C (1) (G) = Soluzione 3 numero di triangoli in G triple ordinate connesse in G C (1) (G) corrisponde alla probabilità che, data una tripla connessa a, b, c, a sia collegato a c. Per denizione, la probabilità che due vertici siano connessi è proprio p! Per z = np costante, il clustering è p = z, quindi tende a 0 n per n. In molte reti complesse, il clustering tende invece ad un valore maggiore di 0 per n.

8 Proprietà quasi certamente valide Denizione Proprietà Se 0 < p < 1, qualsiasi grafo con n vertici è una possibile realizzazione di grafo G(n, p). Abbiamo bisogno di una nozione per caratterizzare le proprietà che si ottengono quasi sicuramente al crescere di n. Denizione Dato un evento E ed una dimensione n, diciamo che l'evento E è asintoticamente quasi sicuro (asymptotically almost sure o valid with high probablility) se lim n P(E, n) = 1. Nel nostro caso, E sarà una proprietà a proposito di un grafo G, ed n sarà la dimensione di G.

9 Funzioni soglia Modello di Erdös Rényi Denizione Proprietà Richiamo matematico f O(g) se c R, N N per cui n N, f (n) c g(n). f Ω(g) se c R, N N per cui n N, f (n) c g(n). f Θ(g) se f O(g) e f Ω(g). Funzioni soglia Esistono proprietà caratterizzate da una funzione soglia f : sono asintoticamente quasi sicure se la probabilità p(n) / Ω(f ) (p cresce più velocemente di f ), è asintoticamente quasi sicura la negazione se p(n) / O(f ) (p cresce più lentamente di f ). Prendendo spunto dalla sica, si parla di transizione di fase: proprietà che appaiono all'improvviso.

10 Grafo connesso Modello di Erdös Rényi Denizione Proprietà Transizione di fase: f = log n è una funzione soglia per la n proprietà G è un grafo connesso. Intuizione: se p(n) / O(f ) abbiamo probabilità 1 di avere nodi isolati; se p(n) / Ω(f ) probabilità 0.

11 Comparsa di alberi Modello di Erdös Rényi Denizione Proprietà Proprietà La funzione soglia per la comparsa di alberi di dimensione k è p(n) = n k 1 k

12 Comparsa di alberi Modello di Erdös Rényi Denizione Proprietà Intuizione k = 2 (esistenza di archi): la probabilità che due vertici siano collegati è p, il numero dei possibili archi è n(n 1) Θ ( n 2). 2 Se p / O ( n 2) abbiamo quasi sicuramente degli archi, se p / Ω ( n 2) è vero il contrario. k qualsiasi: il numero di possibili n-ple di archi è Θ ( n k), la probabilità che esistano k 1 archi che li collegano è Θ ( p k 1). Se p k 1 / O ( n k) gli alberi esistono, se p k 1 / Ω ( n k) non esistono.

13 Componente gigante Modello di Erdös Rényi Denizione Proprietà Denizione Parliamo di componente gigante quando la dimensione della componente più grande di un grafo tende ad innito al crescere di n.

14 Componenti giganti Modello di Erdös Rényi Denizione Proprietà La presenza di componenti giganti garantisce che la rete ha un'alta connettività: alcuni nodi possono rimanere isolati, ma molti di essi sono collegati tra di loro. Transizione di fase: p(n) = 1 n. I cicli di qualsiasi dimensione cominciano ad apparire solo quando p(n) = 1 n.

15 Denizione Proprietà Ricapitolando: evoluzione di G(n, p)

16 Ricapitolando... Modello di Erdös Rényi Denizione Proprietà I gra casuali sono una teoria elegante, basata su un modello semplice. Studiati in maniera estremamente approfondita: esistono risultati che quanticano quasi ogni tipo di proprietà. Problemi Molte reti reali hanno caratteristiche che non sono rispecchiate dalle reti casuali. È necessario trovare modelli che spieghino le caratteristiche scale-free e small-world.

17 Power law (reprise) Modello di Erdös Rényi Introduzione Modello Barabási Albert Altri modelli La distribuzione dei gradi in molte reti reali segue la power law p(k) c k α. Osservazione Siamo abituati ad ottenere distribuzioni simili alla distribuzione normale (gaussiana). La power law è radicalmente diversa: Ha una frazione non trascurabile di nodi con grado molto alto (hubs) Non ha scala caratteristica (proprietà scale-free): il valor medio è poco informativo.

18 Power law ovunque... Introduzione Modello Barabási Albert Altri modelli

19 ... ma non tutto è power law! Introduzione Modello Barabási Albert Altri modelli Varie distribuzioni diuse su molti ordini di grandezza non sono power law.

20 Proprietà scale-free Modello di Erdös Rényi Introduzione Modello Barabási Albert Altri modelli La power law è l'unica distribuzione che resta uguale a prescindere dalla scala a cui la si osserva. Data una distribuzione di probabilità p(x), esiste g(b) per cui p(bx) = g(b)p(x) per ogni b ed x. Esempio Se i le grandi 2KB sono 4 volte più comuni di quelli grandi 1KB, allora i le di 2MB sono 4 volte più comuni di quelli grandi 1MB. Stesso comportamento cambiando scala da KB a MB.

21 Modello di Barabàsi Albert Introduzione Modello Barabási Albert Altri modelli Preferential attachment Modello in evoluzione: i ricchi diventano sempre più ricchi. Si parte con una rete semplice (es., due nodi ed un arco che li collega). Ogni volta che un nuovo nodo arriva, si collega a m nodi con probabilità proporzionale al loro grado: Π (k i ) = k i j V k j.

22 Modello Barabási Albert Introduzione Modello Barabási Albert Altri modelli Il modello di Barabàsi ed Albert prende in considerazione il fatto che le reti si evolvono. Il preferential attachment riette il fatto che l'essere ricco aumenta le possibilità di arricchirsi. Valido per il WWW e le reti sociali: i link fanno da pubblicità. Un modello molto simile è stato proposto da Simon (1955!) per spiegare la distribuzione power-law delle frequenze delle parole nella lingua inglese: Con probabilità α si scrive una nuova parola. Con probabilità 1 α si scrive una parola presa a caso da quelle già scritte.

23 Altri modelli power-law Introduzione Modello Barabási Albert Altri modelli Nodi disposti sullo spazio Reti power-law possono essere ottenuti come risultati di un ottimizzazione: Il nuovo nodo i si collega al nodo j che minimizza αd ij + h j d ij è la distanza euclidea tra i e j. h j è una misura di centralità (es., distanza media verso gli altri nodi) Spiega la power-law in reti tecnologiche (es., Internet, rete dei voli aerei)

24 Altri modelli power-law Introduzione Modello Barabási Albert Altri modelli Copia di nodi Un nuovo nodo quando entra nella rete: 1 Copia tutti i link di un altro nodo 2 Aggiunge un link al nodo copiato 3 Muta alcuni link Spiega la power law in reti biologiche

25 Sei gradi di separazione (reprise) Piccoli mondi Watts Strogatz Kleinberg Esperimento di Milgram (1967) Determinare la lunghezza media delle catene di conoscenti che collegano due persone (che non si conoscono) negli USA Risultato La lunghezza media di una catena di conoscenze che raggiunge la destinazione è circa sei.

26 Piccoli mondi (un passo) Piccoli mondi Watts Strogatz Kleinberg Molti dei miei amici si conoscono tra di loro...

27 Piccoli mondi (due passi) Piccoli mondi Watts Strogatz Kleinberg... ma in pochi passi riesco a raggiungere molti altri nodi.

28 Modello di Watts Strogatz Piccoli mondi Watts Strogatz Kleinberg Nodi disposti su un anello. Ogni nodio è connesso agli m nodi più vicini. Con probabilità p, un link ad un vicino è rimpiazzato da un salto casuale.

29 Watts Strogatz Modello di Erdös Rényi Piccoli mondi Watts Strogatz Kleinberg

30 Watts Strogatz cammini Piccoli mondi Watts Strogatz Kleinberg

31 Watts Strogatz cammini Piccoli mondi Watts Strogatz Kleinberg

32 Watts Strogatz cammini Piccoli mondi Watts Strogatz Kleinberg

33 Watts Strogatz cammini Piccoli mondi Watts Strogatz Kleinberg

34 Watts Strogatz risultati Piccoli mondi Watts Strogatz Kleinberg

35 Modello di Kleinberg Modello di Erdös Rényi Piccoli mondi Watts Strogatz Kleinberg Generalizzazione del modello di Watts e Strogatz. Ogni nodo ha r scorciatoie. P(uha una scorciatoia verso v) = c d(u, v) γ. Navigazione: conoscendo la posizione della destinazione, si segue il passo che porta più vicino ad essa.

36 Modello di Kleinberg (γ = 1) Piccoli mondi Watts Strogatz Kleinberg Con γ piccolo, i cammini brevi esistono, ma non si riescono a trovare.

37 Modello di Kleinberg (γ = 2) Piccoli mondi Watts Strogatz Kleinberg Con γ = 2, è possibile trovare cammini brevi dall'origine alla destinazione. Famiglia esponenziale di log d quadrati. Per passare da un quadrato al seguente sono sucienti log d passi. Cammini lunghi log 2 d passi.

38 Modello di Kleinberg (γ > 2) Piccoli mondi Watts Strogatz Kleinberg Navigazione ineciente quando γ > 2. Le scorciatoie sono troppo brevi. È dicile progredire abbastanza.

Network complessi e modelli. Rossano Gaeta Università degli Studi di Torino

Network complessi e modelli. Rossano Gaeta Università degli Studi di Torino Network complessi e modelli Rossano Gaeta Università degli Studi di Torino Sommario Introduzione Proprietà network complessi Modelli matematici per la rappresentazione Grafi regolari Grafi random Small

Dettagli

CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE

CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE Negli ultimi anni si è compreso che sistemi anche molto diversi tra loro possono essere efficacemente descritti in termini di cosiddetti "networks" o reti complesse.

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

PROPRIETÁ STATISTICHE DELLE CARATTERISTICHE TOPOLOGICHE DEL GRAFO DI UN HUB GENERATO DA UN SOCIAL NETWORK

PROPRIETÁ STATISTICHE DELLE CARATTERISTICHE TOPOLOGICHE DEL GRAFO DI UN HUB GENERATO DA UN SOCIAL NETWORK Alma Mater Studiorum Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica PROPRIETÁ STATISTICHE DELLE CARATTERISTICHE TOPOLOGICHE DEL GRAFO DI UN HUB GENERATO

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Lezione n.20 POWER LAW SCALE FREE NETWORKS

Lezione n.20 POWER LAW SCALE FREE NETWORKS Lezione n.20 POWER LAW SCALE FREE NETWORKS Materiale Didattico Van Steen, GRAPH THEORY ANDCOMPLEX NETWORKS Cap 7 8/5/2013 1 INTRODUZIONE Distribuzioni power law Che tipo di processo genera una distribuzione

Dettagli

Lezione n.15 Random Graphs, Small-Worlds, Scale-Free Networks Materiale didattico: Peer-to-Peer Systems and Applications Capitolo 6

Lezione n.15 Random Graphs, Small-Worlds, Scale-Free Networks Materiale didattico: Peer-to-Peer Systems and Applications Capitolo 6 Lezione n.15 Random Graphs, Small-Worlds, Scale-Free Networks Materiale didattico: Peer-to-Peer Systems and Applications Capitolo 6 1 SMALL WORLD NETWORKS Esperimento di Milgram: evidenza in modo empirico

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Approssimazione efficiente del diametro in reti sociali di grandi dimensioni

Approssimazione efficiente del diametro in reti sociali di grandi dimensioni Università degli Studi di Roma Tor Vergata Facoltà di Scienze Matematiche Fisiche e Naturali Dipartimento di Matematica Corso di Laurea in Informatica Tesi di Laurea Approssimazione efficiente del diametro

Dettagli

Modello dei grafi casuali

Modello dei grafi casuali RETI CASUALI Modello dei grafi casuali Un grafo casuale è un grafo con N nodi connessi da n archi, scelti casualmente tra tutte le possibili combinazioni di collegamenti On Random Graphs, Erdos and Renyi,

Dettagli

Reti complesse Ranking

Reti complesse Ranking Reti complesse Ranking dellamico@disi.unige.it Applicazioni di rete 2 A.A. 2006-07 Outline 1 Ricerca sul web Ranking 2 L'ago nel pagliaio Ricerca sul web Ranking Immaginiamo di avere una biblioteca con

Dettagli

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3 CAPITOLO 3 Successioni e serie 3. Successioni Un caso particolare di applicazione da un insieme numerico ad un altro insieme numerico è quello delle successioni, che risultano essere definite nell insieme

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Metodi Computazionali

Metodi Computazionali Metodi Computazionali Elisabetta Fersini fersini@disco.unimib.it A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle

Dettagli

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 8 luglio, 2010 CP110 Probabilità: Esame del 3 giugno 2010 Testo e soluzione 1. (6 pts 12 monete da 1 euro vengono distribuite tra

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Sistemi dinamici - Attività 3 I sistemi preda-predatore e le equazioni di Volterra

Sistemi dinamici - Attività 3 I sistemi preda-predatore e le equazioni di Volterra Sistemi dinamici - Attività 3 I sistemi preda-predatore e le equazioni di Volterra Paolo Lazzarini - p.lazzarini@tin.it E il momento di occuparci di un modello matematico discreto più realistico (quindi

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Analisi di una Rete Sociale

Analisi di una Rete Sociale 2012 Analisi di una Rete Sociale Alessandro Lovati Matricola 626053 Comunicazione Digitale ord. F47 26/01/2012 Indice : 1. Obiettivo del progetto 2. Realizzazione 3. Analisi dei risultati 3.1. Numero di

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Serie numeriche. 1 Definizioni e proprietà elementari

Serie numeriche. 1 Definizioni e proprietà elementari Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

Algoritmi Genetici. e programmazione genetica

Algoritmi Genetici. e programmazione genetica Algoritmi Genetici e programmazione genetica Algoritmi Genetici Algoritmi motivati dall analogia con l evoluzione biologica Lamarck: le specie trasmutano nel tempo Darwin e Wallace: variazioni consistenti

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

Corso di Analisi Matematica Serie numeriche

Corso di Analisi Matematica Serie numeriche Corso di Analisi Matematica Serie numeriche Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 25 1 Definizione e primi esempi 2 Serie a

Dettagli

DNA sequence alignment

DNA sequence alignment DNA sequence alignment - Introduzione: un possibile modello per rappresentare il DNA. Il DNA (Acido desossiribonucleico) è una sostanza presente nei nuclei cellulari, sia vegetali che animali; a questo

Dettagli

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizi test ipotesi Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Appendice B: Reti di code

Appendice B: Reti di code Appendice B: Reti di code B. INTRODUZIONE ALLE RETI DI CODE B.. Generalità La trattazione della teoria delle code effettuata fino ad ora ha sempre considerato singoli sistemi a coda. Tuttavia, molto spesso

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Introduzione alla scienza della comunicazione (E. T. Jaynes)

Introduzione alla scienza della comunicazione (E. T. Jaynes) Introduzione alla scienza della comunicazione (E T Jaynes) S Bonaccorsi Department of Mathematics University of Trento Corso di Mathematical model for the Physical, Natural and Social Sciences Outline

Dettagli

http://users.dimi.uniud.it/~massimo.franceschet/te... Who Shall Survive? Misure di centralità su reti sociali

http://users.dimi.uniud.it/~massimo.franceschet/te... Who Shall Survive? Misure di centralità su reti sociali Who Shall Survive? Misure di centralità su reti sociali Una rete sociale (social network) è una struttura fatta di persone e relazioni tra le persone. I sociologi chiamano attori (actors) le persone della

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Incentivi alla cooperazione Introduzione

Incentivi alla cooperazione Introduzione Incentivi alla cooperazione dellamico@disi.unige.it Sistemi Distribuiti P2P A.A. 2007-08 6-7 dicembre 2007 Outline 1 Cooperazione e free riding Free riding Reciprocità 2 Eliminazione iterata 3 Forma iterata

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

REGIONE PIEMONTE. Asse MATEMATICO (prova 1) Codice corso: Allievo: Cod. fiscale: ASSE CULTURALE MATEMATICO. Questionario

REGIONE PIEMONTE. Asse MATEMATICO (prova 1) Codice corso: Allievo: Cod. fiscale: ASSE CULTURALE MATEMATICO. Questionario Pagina 1 di 15 REGIONE PIEMONTE ASSE CULTURALE MATEMATICO Questionario Asse MATEMATICO (prova 1) Codice corso: Allievo: Cod. fiscale: Pagina 2 di 15 Modalità di erogazione Se la somministrazione della

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

Social Network & Social Network Analisys. Social media management Proff. Giovanni Ciofalo, Stefano Epifani a.a. 2014/2015

Social Network & Social Network Analisys. Social media management Proff. Giovanni Ciofalo, Stefano Epifani a.a. 2014/2015 Social Network & Social Network Analisys Social media management Proff. Giovanni Ciofalo, Stefano Epifani a.a. 2014/2015 Rete? L insieme delle relazioni. esistenti tra entità Social Network, Social Network

Dettagli

Esercizi per il corso di Algoritmi, anno accademico 2014/15

Esercizi per il corso di Algoritmi, anno accademico 2014/15 1 Esercizi per il corso di Algoritmi, anno accademico 2014/15 Esercizi sulle Notazioni Asintotiche 1. Esercizio: Provare le seguenti relazioni, esibendo opportune costanti c 1,c 2 ed n 0. Si assuma per

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Capitolo 9 Esponenziali e logaritmi... Capitolo 0 Funzioni circolari 0. Descrizione di fenomeni periodici Tra le funzioni elementari ne esistono due atte a descrivere fenomeni che si ripetono periodicamente

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

LA STRUTTURA DELLE RETI

LA STRUTTURA DELLE RETI LA STRUTTURA DELLE RETI IN UN MONDO INTERCONNESSO Tutti sono d accordo nell ammettere che ciò che caratterizza il mondo moderno è l interdipendenza. Le strutture sociali, tecnologiche, economiche tendono

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Laboratorio sulle dinamiche Socio-Economiche

Laboratorio sulle dinamiche Socio-Economiche Laboratorio sulle dinamiche Socio-Economiche Progetto Lauree Scientifiche Giacomo Albi Dipartimento di Matematica e Informatica Università di Ferrara, Italia www.giacomoalbi.com giacomo.albi@unife.it Giacomo

Dettagli

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI IL CONCETTO DI VARIABILE CASUALE Associare una misura di probabilità al verificarsi di un certo evento (come esito di un esperimento) non sempre è sufficiente a risolvere gran parte dei problemi reali

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati Strumenti della Teoria dei Giochi per l Informatica AA 2009/10 Lecture 22: 1 Giugno 2010 Meccanismi Randomizzati Docente Vincenzo Auletta Note redatte da: Davide Armidoro Abstract In questa lezione descriveremo

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

Complessità computazionale

Complessità computazionale 1 Introduzione alla complessità computazionale Un problema spesso può essere risolto utilizzando algoritmi diversi Come scegliere il migliore? La bontà o efficienza di un algoritmo si misura in base alla

Dettagli

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Dipartimento di Ingegneria della Informazione Via Diotisalvi, 2 56122 PISA ALGORITMI GENETICI (GA) Sono usati per risolvere problemi di ricerca

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE Modelli a coda Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Sistemi a coda Gli elementi chiave di un sistema a coda

Dettagli

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ Appunti di Elettronica Capitolo 3 Parte II Circuiti limitatori di tensione a diodi Introduzione... 1 Caratteristica di trasferimento di un circuito limitatore di tensione... 2 Osservazione... 5 Impiego

Dettagli

Modellazione e Analisi di Reti Elettriche

Modellazione e Analisi di Reti Elettriche Modellazione e Analisi di eti Elettriche Modellazione e Analisi di eti Elettriche Davide Giglio Introduzione alle eti Elettriche e reti elettriche costituite da resistori, condensatori e induttori (bipoli),

Dettagli

Structural analysis of behavioral networks from the Internet

Structural analysis of behavioral networks from the Internet M. R. Meiss, F. Menczer, A. Vespignani Structural analysis of behavioral networks from the Internet De Santis Roberto La rete delle reti Successo di Internet Rete vista in termini di Fisicità Sistema complesso

Dettagli

Progetto e Ottimizzazione di Reti 1. Presentazione del Corso

Progetto e Ottimizzazione di Reti 1. Presentazione del Corso Progetto e Ottimizzazione di Reti 1. Presentazione del Corso PAOLO NOBILI (M-Z) ANTONIO SASSANO (A-L) Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria

Dettagli

La misura degli angoli

La misura degli angoli La misura degli angoli In questa dispensa introduciamo la misura degli angoli, sia in gradi che in radianti, e le formule di conversione. Per quanto riguarda l introduzione del radiante, per facilitarne

Dettagli

Sapienza, Università di Roma. Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 2009

Sapienza, Università di Roma. Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 2009 Sapienza, Università di Roma Facoltà di Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 009 1. È data una sequenza di n numeri dispari consecutivi. etto M il maggiore della sequenza ed m

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole -

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - - richiami preliminari sulle proprietà strutturali - Abbiamo visto che alcune caratteristiche dei sistemi dinamici (DES compresi) non

Dettagli

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o Sommario Sintesi di macchine a stati finiti 1 Realizzazione del ST M. avalli 2 utoma minimo di SM completamente specificate 6th June 2007 3 Ottimizzazione di SM non completamente specificate Sommario ()

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Dipartimento di Ingegneria della Informazione Via Diotisalvi, 2 56122 PISA ALGORITMI GENETICI (GA) Sono usati per risolvere problemi di ricerca

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Introduzione. Modellizzazione: descrizione di un fenomeno fisico (biologico) con linguaggio matematico.

Introduzione. Modellizzazione: descrizione di un fenomeno fisico (biologico) con linguaggio matematico. Introduzione Modellizzazione: descrizione di un fenomeno fisico (biologico) con linguaggio matematico. Alcuni aspetti da tenere presenti: * range di validita del modello; * "profondita " o "risoluzione"

Dettagli

La macchina di Turing (Alan Turing, 1936)*

La macchina di Turing (Alan Turing, 1936)* DNA-computing La macchina di Turing (Alan Turing, 1936)* Un meccanismo (finite control) si muove tra una coppia di nastri:. legge le istruzioni da un nastro (input tape). scrive il risultato sull altro

Dettagli

Simulazioni di Mercati del Credito: Il Modello di Mercato ad Agenti

Simulazioni di Mercati del Credito: Il Modello di Mercato ad Agenti UNIVERSITÀ DEGLI STUDI DI TORINO Scuola di Scienze della Natura Fisica dei Sistemi Complessi Tesi di Laurea Simulazioni di Mercati del Credito: Il Modello di Mercato ad Agenti di Marco Maria BOSCO Relatore:

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013)

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) Linguaggio matematico di base 1. Qual è l area del triangolo avente i vertici nei punti di coordinate (0,2), (4,0) e (7,6)? A 10 B 30

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Questa pagina e tutti i capitoli della guida che trovate elencati a destra costituiscono il cuore di questo sito web.

Questa pagina e tutti i capitoli della guida che trovate elencati a destra costituiscono il cuore di questo sito web. Posizionamento sui motori di ricerca. Cos'è il "posizionamento"? Per posizionamento si intente un insieme di tecniche che hanno l'obiettivo di migliorare la posizione di un sito web nei risultati delle

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Successioni ricorsive

Successioni ricorsive Capitolo 1 Successioni ricorsive Un modo spesso usato per assegnare una successione è quello ricorsivo che consiste nell assegnare alcuni termini iniziali (il primo, oppure i primi due, oppure i primi...

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

I Polinomi. Michele Buizza. L'insieme dei numeri interi lo indicheremo con Z. è domenica = non vado a scuola. signica se e solo se.

I Polinomi. Michele Buizza. L'insieme dei numeri interi lo indicheremo con Z. è domenica = non vado a scuola. signica se e solo se. I Polinomi Michele Buizza 1 Insiemi In questa prima sezione ricordiamo la simbologia che useremo in questa breve dispensa. Iniziamo innanzitutto a ricordare i simboli usati per i principali insiemi numerici.

Dettagli

Page 1. Evoluzione. Intelligenza Artificiale. Algoritmi Genetici. Evoluzione. Evoluzione: nomenclatura. Corrispondenze natura-calcolo

Page 1. Evoluzione. Intelligenza Artificiale. Algoritmi Genetici. Evoluzione. Evoluzione: nomenclatura. Corrispondenze natura-calcolo Evoluzione In ogni popolazione si verificano delle mutazioni. Intelligenza Artificiale In un ambiente che varia, le mutazioni possono generare individui che meglio si adattano alle nuove condizioni. Questi

Dettagli

La memoria - generalità

La memoria - generalità Calcolatori Elettronici La memoria gerarchica Introduzione La memoria - generalità n Funzioni: Supporto alla CPU: deve fornire dati ed istruzioni il più rapidamente possibile Archiviazione: deve consentire

Dettagli

Parte I. Relazioni di ricorrenza

Parte I. Relazioni di ricorrenza Parte I Relazioni di ricorrenza 1 Capitolo 1 Relazioni di ricorrenza 1.1 Modelli Nel seguente capitolo studieremo le relazioni di ricorrenza. Ad esempio sono relazioni di ricorrenza a n = a n 1 + n, a

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE AREA TECNICO ASSISTENZIALI

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli