Indice. Notazioni generali

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Indice. Notazioni generali"

Transcript

1 Indice Notazioni generali XIII 1 Derivati e arbitraggi Opzioni Finalità Problemi Leggi di capitalizzazione Arbitraggi e formula di Put-Call Parity Prezzo neutrale al rischio e valutazione d'arbitraggio Prezzo neutrale al rischio Probabilità neutrale al rischio Prezzo d'arbitraggio Una generalizzazione della Put-Call Parity Un esempio di mercato incompleto 11 2 Elementi di probabilità ed equazione del calore Spazi di probabilità Variabili aleatorie e distribuzioni Valore atteso e varianza Alcuni esempi Disuguaglianza di Markov a-algebre e informazioni Indipendenza Misura prodotto e distribuzione congiunta Equazioni paraboliche a coefficienti costanti II caso ò = 0 e a = II caso generale Dato iniziale localmente sommabile Problema di Cauchy non omogeneo Operatore aggiunto Distribuzione multi-normale e funzione caratteristica 49

2 Vili Indice 2.5 Teorema di Radon-Nikodym Attesa condizionata Proprietà dell'attesa condizionata Attesa condizionata in L Attesa condizionata e cambio di misura di probabilità Processi stocastici discreti e martingale Tempi d'arresto Disuguaglianza di Doob 70 3 Modelli di mercato a tempo discreto Mercati discreti e arbitraggi Arbitraggi e strategie ammissibili Misura martingala Derivati e prezzo d'arbitraggio Prova dei teoremi fondamentali della valutazione Cambio di numeraire Modello binomiale Proprietà di Markov Misura martingala Completezza v Algoritmo binomiale Calibrazione Modello binomiale e formula di Black&Scholes Equazione differenziale di Black&Scholes Modello trinomiale Valutazione in un mercato incompleto Opzioni Americane Prezzo d'arbitraggio Relazioni con le opzioni Europee Algoritmo binomiale per opzioni Americane Problema a frontiera libera per opzioni Americane Put Americana e Put Europea nel modello binomiale Processi stocastici a tempo continuo Processi stocastici e moto Browniano reale Legge di un processo continuo Equivalenza di processi Processi adattati e progressivamente misurabili Proprietà di Markov Moto Browniano ed equazione del calore Distribuzioni finito-dimensionali del moto Browniano Integrale di Riemann-Stieltjes Funzioni a variazione limitata Integrazione di Riemann-Stieltjes e formula di Ito Regolarità delle traiettorie di un moto Browniano 168

3 Indice 4.4 Martingale Alcuni esempi Disuguaglianza di Doob Spazi di martingale: ^# 2 2 e ^# c Ipotesi usuali Tempi d'arresto e martingale Variazione quadratica e decomposizione di Doob-Meyer Martingale a variazione limitata 188 Integrale stocastico Integrale stocastico di funzioni deterministiche Integrale stocastico di processi semplici Integrale di processi in L Integrale di Ito e integrale di Riemann-Stieltjes Integrale di Ito e tempi d'arresto Processo variazione quadratica Integrale di processi in L 2 OC Martingale locali Localizzazione e variazione quadratica Processi di Ito Formula di Itò-Doeblin Formula di Ito per il moto Browniano Formulazione generale Martingale ed equazioni paraboliche Moto Browniano geometrico Processi e formula di Ito multi-dimensionale Formula di Ito multi-dimensionale Alcuni esempi Moto Browniano correlato e martingale Estensioni della formula di Ito Formula di Ito e derivate deboli Tempo locale e formula di Tanaka Formula di Tanaka per processi di Ito Tempo locale e formula di Black&Scholes 246 Equazioni paraboliche a coefficienti variabili: unicità Principio del massimo e problema di Cauchy-Dirichlet Principio del massimo e problema di Cauchy Soluzioni non-negative del problema di Cauchy 259 Modello di Black&Scholes Strategie autofinanzianti Strategie Markoviane ed equazione di Black&Scholes Valutazione Dividendi e parametri dipendenti dal tempo 272 IX

4 X Indice Ammissibilità e assenza d'arbitraggi Analisi di Black&Scholes: approcci euristici Prezzo di mercato del rischio Copertura Le greche Robustezza del modello Gamma e vega hedging Opzioni Asiatiche Media aritmetica Media geometrica Equazioni paraboliche a coefficienti variabili: esistenza Soluzione fondamentale e problema di Cauchy Metodo della parametrice di Levi 30Ù Stime Gaussiane e operatore aggiunto Problema con ostacolo Soluzioni forti Metodo della penalizzazione Problema con ostacolo sulla striscia di R iv Equazioni differenziali stocastiche Soluzioni forti Unicità Esistenza Proprietà delle soluzioni Soluzioni deboli Esempio di Tanaka Esistenza: il problema delle martingale Unicità Stime massimali Stime massimali per martingale Stime massimali per diffusioni Formule di rappresentazione di Feynman-Kac Tempo di uscita da un dominio limitato Equazioni ellittico-paraboliche e problema di Dirichlet Equazioni di evoluzione e problema di Cauchy-Dirichlet Soluzione fondamentale e densità di transizione Problema con ostacolo e arresto ottimo Equazioni stocastiche lineari Condizione di Kalman Equazioni di Kolmogorov e condizione di Hormander Esempi 365

5 Indice XI 10 Modelli di mercato a tempo continuo Cambio di misura di probabilità Martingale esponenziali Teorema di Girsanov Rappresentazione delle martingale Browniane Valutazione Misure martingale e prezzi di mercato del rischio Esistenza di una misura martingala equivalente Strategie ammissibili e arbitraggi Valutazione d'arbitraggio Formule di parity Mercati completi Caso Markoviano Analisi della volatilità Volatilità locale e volatilità stocastica Opzioni Americane Valutazione e copertura nel modello di Black&Scholes Cali e put Americane nel modello di Black&Scholes Valutazione e copertura in un mercato completo Metodi numerici Metodo di Eulero per equazioni ordinarie Schemi di ordine superiore Metodo di Eulero per equazioni stocastiche Schema di Milstein Metodo delle differenze finite per equazioni paraboliche Localizzazione ^-schemi per il problema di Cauchy-Dirichlet Problema a frontiera libera Metodo Monte Carlo Simulazione Calcolo delle greche Analisi dell'errore Introduzione al calcolo di Malliavin Derivata stocastica Esempi Regola della catena Dualità Formula di Clark-Ocone Integrazione per parti e calcolo delle greche Altri esempi 465

6 XII Indice Appendice 469 A.l Teoremi di Dynkin 469 A.2 Topologie e «r-algebre 473 A.3 Generalizzazioni del concetto di derivata 475 A.3.1 Derivata debole in IR 476 A.3.2 Spazi di Sobolev e teoremi di immersione 479 A.3.3 Distribuzioni 480 A.3.4 Mollificatori 485 A.4 Trasformata di Fourier 487 A.5 Convergenza di variabili aleatorie 490 A.5.1 Funzione caratteristica e convergenza 491 A.5.2 Uniforme integrabilità 495 A.6 Separazione di convessi 497 Bibliografia 499 Indice analitico 511

BOZZA NON DEFINITIVA. Indice

BOZZA NON DEFINITIVA. Indice Indice 1 Introduzione... 1 1.1 Unpo distoria:glialbori... 1 1.1.1 La probabilitàcomefrequenza... 2 1.1.2 La probabilitàclassica... 2 1.1.3 IlparadossodiBertrand... 5 1.2 La teoria della probabilità diventa

Dettagli

Modelli Stocastici per la Finanza e le Assicurazioni

Modelli Stocastici per la Finanza e le Assicurazioni Modelli Stocastici per la Finanza e le Assicurazioni CORSO DI LAUREA SPECIALISTICA IN METODI QUANTITATIVI PER LA FINANZA A.A. 2007/2008 DOCENTE: Marco Minozzo CREDITI (CFU): 10 PROGRAMMA (definitivo) Spazi

Dettagli

Prelazione. Lista delle Figure. Lista delle Tabelle

Prelazione. Lista delle Figure. Lista delle Tabelle Indice Prelazione Indice Lista delle Figure Lista delle Tabelle VI IX XV XVI 1 Nozioni Introduttive 1 1.1 Inferenza Statistica 1 1.2 Campionamento 5 1.3 Statistica e Probabilità 7 1.4 Alcuni Problemi e

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Finanza matematica - Lezione 01

Finanza matematica - Lezione 01 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

Modelli Stocastici per la Finanza

Modelli Stocastici per la Finanza Modelli Stocastici per la Finanza A.A. 2011/2012 (primo semestre) CREDITI (CFU): 9 CORSO DI LAUREA MAGISTRALE IN BANCA E FINANZA DOCENTE: Marco Minozzo ORARIO DI RICEVIMENTO: martedì 12.00 13.00 TELEFONO:

Dettagli

Il calore nella Finanza

Il calore nella Finanza Il calore nella Finanza Franco Moriconi Università di Perugia Facoltà di Economia Perugia, 12 Novembre 2008 Quotazioni FIAT Serie giornaliera dal 6/11/2007 al 6/11/2008 F. Moriconi, Il calore nella Finanza

Dettagli

ANALISI non Lineare. Diego Averna

ANALISI non Lineare. Diego Averna ANALISI non Lineare Ovvero: presentazione di Analisi non Lineare Diego Averna Dipartimento di Matematica e Informatica Facoltà di Scienze MM.FF.NN. Via Archirafi, 34-90123 Palermo (Italy) diego.averna@unipa.it

Dettagli

Indice Richiami di Matematica Finanziaria Fattore di Rischio e Principio di Arbitraggio

Indice Richiami di Matematica Finanziaria Fattore di Rischio e Principio di Arbitraggio Indice 1 Richiami di Matematica Finanziaria 17 1.1 Introduzione............................ 18 1.2 Il valore del denaro nel tempo.................. 18 1.2.1 Obbligazioni........................ 20 1.3

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare.

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare. Prof.ssa Diomeda Lorenza Maria Professore Ordinario Dipartimento di Scienze Economiche Area Matematica Facoltà di Economia, Via C.Rosalba 53- Bari Tel. 080-5049169 Fax 080-5049207 E-mail diomeda@matfin.uniba.it

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

Modelli Stocastici per la Finanza

Modelli Stocastici per la Finanza Modelli Stocastici per la Finanza A.A. 2013/2014 (primo semestre) CREDITI (CFU): 9 CORSO DI LAUREA MAGISTRALE IN BANCA E FINANZA (curriculum Finanza Quantitativa) DOCENTE: Marco Minozzo ORARIO DI RICEVIMENTO:

Dettagli

On Lévy Processes for Option Pricing

On Lévy Processes for Option Pricing Numerical Methods and Calibration to Index Options Relatore: Chiar.ma Prof.ssa Maria Cristina Recchioni Università Politecnica delle Marche - Facoltà di Economia Giorgio Fuà 18 Aprile 2008 Indice Introduzione

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: LICEO SCIENTIFICO MATERIA: MATEMATICA ANNO SCOLASTICO: 2014-2015 PROF: MASSIMO BANFI

Dettagli

REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE)

REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE) REGISTRO LEZIONI A.A. 2013/2014 (INGEGNERIA GESTIONALE) 30/09/2013 ore 3 I numeri naturali, relativi, razionali e loro proprieta'. Incompletezza del campo dei numeri razionali. I numeri reali come allineamenti

Dettagli

I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche

I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche Mediobanca (Milano, 11 luglio 2003) Indice 1. Perché i fisici in finanza? 2. Il problema 3. I modelli della fisica in finanza

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

Ringraziamenti dell editore. Introduzione. Parte I MODELLISTICA 1

Ringraziamenti dell editore. Introduzione. Parte I MODELLISTICA 1 romane.pdf 24-07-2008 18:14:24-7 - ( ) Prefazione Ringraziamenti dell editore Introduzione XIII XVI XVII Parte I MODELLISTICA 1 1 Modelli di trasferimento di risorse 3 1.1 Variabili di stato e variabili

Dettagli

Il modello binomiale ad un periodo

Il modello binomiale ad un periodo Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere)

Dettagli

Valore equo di un derivato. Contingent claim

Valore equo di un derivato. Contingent claim Contingent claim Ci occuperemo ora di determinare il prezzo equo di un prodotto derivato, come le opzioni, e di come coprire il rischio associato a questi contratti. Assumeremo come dinamica dei prezzi

Dettagli

PROBABILITA e STATISTICA

PROBABILITA e STATISTICA PROBABILITA e STATISTICA Perché scegliere corsi di probabilità o statistica? Formazione matematica Utilità pratica (ovvero, spendibilità nel mondo del lavoro) Una ulteriore ragione, che però vale per qualsiasi

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

Il Progetto Matematica Elementare

Il Progetto Matematica Elementare 2 settembre 2012 Genesi del progetto Il progetto Matematica Elementare nasce ad aprile 2012, all interno del Dipartimento di Matematica di Pisa, sotto la spinta propulsiva di due idee piuttosto distanti:

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Un seminario sull analisi statistica di formiche virtuali

Un seminario sull analisi statistica di formiche virtuali Un seminario sull analisi statistica di formiche virtuali Dr. Andrea Fontana Universita di Pavia http://www.pv.infn.it/~fontana/formiche Numeri casuali Tests di casualita Distribuzione uniforme in C e

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2015/16)

Diario del corso di Analisi Matematica 1 (a.a. 2015/16) Diario del corso di Analisi Matematica (a.a. 205/6) 4 settembre 205 ( ora) Presentazione del corso. 6 settembre 205 (2 ore) Numeri naturali, interi, razionali, reali. 2 non è razionale. Introduzione alle

Dettagli

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Capitolo 4 Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Quanto è ragionevole pagare per entrare in un contratto d opzione? Per affrontare questo problema

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli

Metodi Monte Carlo in Finanza

Metodi Monte Carlo in Finanza Metodi Monte Carlo in Finanza Lucia Caramellino Indice 1 Metodi Monte Carlo: generalità Simulazione di un moto Browniano e di un moto Browniano geometrico 3 3 Metodi numerici Monte Carlo per la finanza

Dettagli

CLASSI PRIME tecnico 4 ORE

CLASSI PRIME tecnico 4 ORE PIANO ANNUALE a.s. 2012/2013 CLASSI PRIME tecnico 4 ORE Settembre Ottobre Novembre dicembre dicembre gennaio- 15 aprile 15 aprile 15 maggio Somministrazione di test di ingresso. Insiemi numerici Operazioni

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei

PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa Gli assiomi dei numeri reali Alcune conseguenze degli assiomi dei PREFAZIONE pag. 15 Capitolo 1 I NUMERI E LE FUNZIONI REALI 1. Premessa 23 2. Gli assiomi dei numeri reali 24 3. Alcune conseguenze degli assiomi dei numeri reali 25 4. Cenni di teoria degli insiemi 30

Dettagli

LA TRASFORMATA DI LAPLACE: UN METODO RAPIDO ED EFFICIENTE PER IL PRICING DI OPZIONI

LA TRASFORMATA DI LAPLACE: UN METODO RAPIDO ED EFFICIENTE PER IL PRICING DI OPZIONI POLITECNICO DI MILANO SCUOLA DI INGEGNERIA INDUSTRIALE E DELL INFORMAZIONE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MATEMATICA LA TRASFORMATA DI LAPLACE: UN METODO RAPIDO ED EFFICIENTE PER IL PRICING DI

Dettagli

Modelli finanziari per i tassi di interesse

Modelli finanziari per i tassi di interesse MEBS Lecture 3 Modelli finanziari per i tassi di interesse MEBS, lezioni Roberto Renò Università di Siena 3.1 Modelli per la struttura La ricerca di un modello finanziario che descriva l evoluzione della

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA PROGRAMMA DI MATEMATICA A.S. 2014-2015 CLASSE IV SEZ. B INDIRIZZO SIA PROF. Orlando Rocco Carmelo ODULO MODULO ORD. ARGOMENT O 1 SEZ 1 FUNZIONI E LIMITIDI FUNZIONI ARGOMENTO 1 TOMO E SEZ 1 FUNZIONI E LIMITIDI

Dettagli

Prologo La fiducia come asset

Prologo La fiducia come asset Ringraziamenti Prefazione, di Fabio Cerchiai Introduzione Prologo La fiducia come asset 1 Il nuovo regime di solvibilità: obiettivi, linee guida, implicazioni strategiche 1.1 LÕevoluzione della disciplina

Dettagli

MODELLI DISCRETI PER OPZIONI AMERICANE

MODELLI DISCRETI PER OPZIONI AMERICANE Alma Mater Studiorum Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Matematica MODELLI DISCRETI PER OPZIONI AMERICANE Tesi di Laurea in Matematica

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul

VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul 1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5

Dettagli

Appendici Definizioni e formule notevoli Indice analitico

Appendici Definizioni e formule notevoli Indice analitico Indice 1 Serie numeriche... 1 1.1 Richiami sulle successioni................................. 1 1.2 Serie numeriche........................................ 4 1.3 Serie a termini positivi...................................

Dettagli

Prefazione. Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1

Prefazione. Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1 Prefazione XV Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1 Capitolo 2 Il mercato delle opzioni azionarie 11 2.1 Le opzioni sui singoli titoli azionari 11 2.2 Il mercato telematico delle

Dettagli

Opzioni con Barriera

Opzioni con Barriera Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Specialistica in Matematica Tesi di Laurea Specialistica Opzioni con Barriera Candidato: Lorenzo Balducci Relatore: Prof. Maurizio Pratelli

Dettagli

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo Università degli Studi di Perugia Laurea specialistica in Finanza a.a. 2009-10 Corso di Laboratorio di calcolo finanziario prof. Franco Moriconi Esperienza MBG Il moto browniano geometrico. Proprietà teoriche

Dettagli

Il Processo Stocastico Martingala e sue Applicazioni in Finanza

Il Processo Stocastico Martingala e sue Applicazioni in Finanza Il Processo Stocastico Martingala e sue Applicazioni in Finanza Rosa Maria Mininni a.a. 2014-2015 1 Introduzione Scopo principale della presente dispensa é quello di illustrare i concetti matematici fondamentali

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Note sulle Opzioni Americane

Note sulle Opzioni Americane Note sulle Opzioni Americane Wolfgang J. Runggaldier Universitá di Padova June 16, 2007 Si fornisce qui una traccia sull argomento delle opzioni americane a tempo discreto (dette anche Bermudean options)

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

ASSE MATEMATICO. Competenze Abilità Conoscenze

ASSE MATEMATICO. Competenze Abilità Conoscenze Competenze di base a conclusione del I Biennio Confrontare ed analizzare figure geometriche del piano e dello spazio individuando invarianti e relazioni. Analizzare, correlare e rappresentare dati. Valutare

Dettagli

Programma di Analisi Matematica 2

Programma di Analisi Matematica 2 Programma di Analisi Matematica 2 Corso di Laurea in Matematica A.A. 2015/16 1. Integrali impropri del primo tipo 2. Integrali impropri del secondo tipo 3. Teorema del confronto per gli integrali impropri

Dettagli

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS V ERSA RI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo LICEO TECNICO MATERIA M ATEMATICA APPLICATA ANNO SCOLASTICO 2011-2012 PROF PIZZILEO

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

call europea viene esercitata, consentendo un guadagno pari a

call europea viene esercitata, consentendo un guadagno pari a INTRODUZIONE Un opzione è un contratto derivato che conferisce al proprio detentore il diritto di disporre del titolo sottostante ad esso. Più precisamente, l acquisto di un opzione call (put) conferisce

Dettagli

MATEMATICA FINANZIARIA P-Z (CFU 6) (1 semestre) Prof. Cristina GOSIO

MATEMATICA FINANZIARIA P-Z (CFU 6) (1 semestre) Prof. Cristina GOSIO MATEMATICA FINANZIARIA P-Z (CFU 6) (1 semestre) Il corso si propone di fornire la formalizzazione e la modellazione matematica di operazioni finanziarie, cioè di operazioni di scambio aventi per oggetto

Dettagli

1 Le equazioni di Maxwell e le relazioni costitutive 1 1.1 Introduzione... 1 1.2 Richiami sugli operatori differenziali...... 4 1.2.1 Il gradiente di uno scalare... 4 1.2.2 La divergenza di un vettore...

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

Alessandro Ramponi Lezioni di Finanza Matematica

Alessandro Ramponi Lezioni di Finanza Matematica A01 185 Alessandro Ramponi Lezioni di Finanza Matematica Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti.

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti. Pagina 1 di 9 DISCIPLINA: MATEMATICA APPLICATA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 4 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 Ripasso Retta e coniche;

Dettagli

Opzioni americane. Capitolo 5. 5.1 Il modello

Opzioni americane. Capitolo 5. 5.1 Il modello Capitolo 5 Opzioni americane 5. Il modello Consideriamo un modello di mercato finanziario così come descritto nel Paragrafo 4.2. Il mercato è quindi formato da d+ titoli di prezzi S 0 n, S n,..., S d n,

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

Prefazione all edizione originale. Prefazione all edizione italiana

Prefazione all edizione originale. Prefazione all edizione italiana Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento

Dettagli

T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo

T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo In un mercato finanziario le opzioni a comprare (Call) o a vendere (Put) un titolo costituiscono il diritto, in un determinato periodo

Dettagli

Università degli Studi di Trento Facoltà di Scienze Cognitive. Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata

Università degli Studi di Trento Facoltà di Scienze Cognitive. Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Università degli Studi di Trento Facoltà di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Commenti alle lezioni del CORSO DI ANALISI MATEMATICA a.a. 2005/2006

Dettagli

-3-2 -1 0 1 2 3. Time. white noise Questo processo viene utilizzato spesso per descrivere un disturbo casuale.

-3-2 -1 0 1 2 3. Time. white noise Questo processo viene utilizzato spesso per descrivere un disturbo casuale. Lezione 7 Processi stocastici Scopo di questa lezione è presentare: il concetto generale di processo stocastico (tempo discreto e tempo continuo) random walk, white noise, dinamiche discrete il moto browniano

Dettagli

Indice Elementi di analisi delle matrici I fondamenti della matematica numerica

Indice Elementi di analisi delle matrici I fondamenti della matematica numerica Indice 1. Elementi di analisi delle matrici 1 1.1 Spazivettoriali... 1 1.2 Matrici... 3 1.3 Operazionisumatrici... 4 1.3.1 Inversadiunamatrice... 6 1.3.2 Matricietrasformazionilineari... 7 1.4 Tracciaedeterminante...

Dettagli

Analisi Matematica II

Analisi Matematica II Claudio Canuto, Anita Tabacco Analisi Matematica II Teoria ed esercizi con complementi in rete ^ Springer Indice 1 Serie numeriche 1 1.1 Richiami sulle successioni 1 1.2 Serie numeriche 4 1.3 Serie a termini

Dettagli

Metodi di previsione statistica

Metodi di previsione statistica Metodi di previsione statistica Francesco Battaglia Metodi di previsrone statisttca ~ Springer FRANCESCO BATTAGLIA Dipartimento di Statistica, Probabilita e Statistiche Applicate Universita La Sapienza

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO AMM FIN E MARKETING

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO AMM FIN E MARKETING http://suite.sogiscuola.com/documenti_web/vris017001/documenti/9.. 1 di 7 04/12/2013 118 PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO TECNICO AMM FIN E MARKETING ANNO SCOLASTICO2013/2014

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

I Metodi statistici utili nel miglioramento della qualità 27

I Metodi statistici utili nel miglioramento della qualità 27 Prefazione xiii 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento della qualità 1 1.1.1 Le componenti della qualità 2 1.1.2 Terminologia

Dettagli

Modelli di Lévy. Indice. 1 Introduzione 2. 2 Processi di Lévy 4. 3 Modelli di Lévy puramente discontinui 6. 4 Il processo Variance-Gamma 7

Modelli di Lévy. Indice. 1 Introduzione 2. 2 Processi di Lévy 4. 3 Modelli di Lévy puramente discontinui 6. 4 Il processo Variance-Gamma 7 Modelli di Lévy R. Marfé Indice 1 Introduzione 2 2 Processi di Lévy 4 3 Modelli di Lévy puramente discontinui 6 4 Il processo Variance-Gamma 7 5 Modelli di mercato 9 6 Applicazione in VBA 11 1 1 Introduzione

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

8.8 Modificare i file di testo I processi La stampa Accesso alle periferiche 176

8.8 Modificare i file di testo I processi La stampa Accesso alle periferiche 176 INDICE i Statistica ed analisi dei dati 1 1 Propagazione degli errori. Parte I 5 1.1 Terminologia 5 1.2 Propagazione dell incertezza massima (errore massimo) 7 1.2.1 Somma 8 1.2.2 Differenza 9 1.2.3 Prodotto

Dettagli

Matematica generale con il calcolatore

Matematica generale con il calcolatore Matematica generale con il calcolatore M. Impedovo Matematica generale con il calcolatore MICHELE IMPEDOVO Istituto Metodi Quantitativi Università Bocconi - Milano In copertina: definizione con Mathcad

Dettagli

Università di Pisa - Corso di Laurea in Matematica Corso di Analisi Matematica 1 Informazioni

Università di Pisa - Corso di Laurea in Matematica Corso di Analisi Matematica 1 Informazioni Università di Pisa - Corso di Laurea in Matematica Corso di Analisi Matematica 1 Informazioni Supporto alla didattica Il corso avrà il supporto di un giovane collaboratore (raggiungibile sul web alla pagina

Dettagli

Processi stocastici. variabile casuale: funzione da uno spazio campione S a valori nello spazio E R X(t) : S E. spazio degli stati del processo

Processi stocastici. variabile casuale: funzione da uno spazio campione S a valori nello spazio E R X(t) : S E. spazio degli stati del processo Processi stocastici Processo stocastico: famiglia di variabili casuali {X(t) t T} definite su uno spazio di probabilità indiciate dal parametro t (tempo) X(t) variabile casuale: funzione da uno spazio

Dettagli

Augusto Freddi Teoria del rischio. Per le assicurazioni P&C

Augusto Freddi Teoria del rischio. Per le assicurazioni P&C A13 Augusto Freddi Teoria del rischio Per le assicurazioni P&C Copyright MMXIV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065

Dettagli

Statistica. A.A. 2014/2015 CREDITI (CFU): 9 CORSO DI LAUREA IN ECONOMIA E COMMERCIO (Verona)

Statistica. A.A. 2014/2015 CREDITI (CFU): 9 CORSO DI LAUREA IN ECONOMIA E COMMERCIO (Verona) Statistica A.A. 2014/2015 CREDITI (CFU): 9 CORSO DI LAUREA IN ECONOMIA E COMMERCIO (Verona) DOCENTE: Marco Minozzo (marco.minozzo@univr.it) TELEFONO: 045-8028234 ORARIO DI RICEVIMENTO: martedì 12:00 13:00

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Computazione per l interazione naturale: Modelli dinamici

Computazione per l interazione naturale: Modelli dinamici Computazione per l interazione naturale: Modelli dinamici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361

9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361 Indice 1 Nozioni di base... 1 1.1 Insiemi... 1 1.2 Elementi di logica matematica... 5 1.2.1 Connettivi logici... 5 1.2.2 Predicati... 7 1.2.3 Quantificatori... 7 1.3 Insiemi numerici... 9 1.3.1 L ordinamento

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze PROGRAMMAZIONE DIDATTICA DISCIPLINARE Indirizzo: ITC Anno scolastico Materia Classi 22 23 MATEMATICA Terze. Competenze al termine del percorso di studi Padroneggiare il linguaggio formale e i procedimenti

Dettagli

BOLLETTINO UNIONE MATEMATICA ITALIANA

BOLLETTINO UNIONE MATEMATICA ITALIANA BOLLETTINO UNIONE MATEMATICA ITALIANA Sezione A La Matematica nella Società e nella Cultura Giovanni Becchere Valutazione e copertura di opzioni Americane in mercati incompleti: strategie di rischio minimo

Dettagli

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet.

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet. Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Dottorato di Ricerca in Statistica e Finanza Quantitativa - XXI Ciclo Sergio Salvino

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO FACOLTA DI INGEGNERIA DEI SISTEMI Corso di Laurea Specialistica in Ingegneria Matematica PRICING AMERICAN OPTIONS UNDER STOCHASTIC VOLATILITY AND JUMP-DIFFUSION DYNAMICS WITH THE

Dettagli

Introduzione all Option Pricing

Introduzione all Option Pricing Introduzione all Option Pricing Arturo Leccadito Corso di Matematica Finanziaria 3 Anno Accademico 2008 2009 1 Il Modello Binomiale Si supponga che oggi (epoca 0) sia disponibile un titolo azionario il

Dettagli

Indice Equazioni fondamentali Dissipazioni di energia nelle correnti idriche

Indice Equazioni fondamentali Dissipazioni di energia nelle correnti idriche Indice 1 Equazioni fondamentali... 1 1.1 Introduzione... 1 1.2 Equazionedicontinuità... 2 1.3 Principio di conservazione della quantità di moto.... 5 1.4 Principiodiconservazionedellaenergia... 8 1.5 Considerazioniconclusive...

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

MODELLI IN EXCEL PER LA VALUTAZIONE DEGLI STRUMENTI FINANZIARI COMPLESSI. Calcolo del fair value e misurazione dei rischi

MODELLI IN EXCEL PER LA VALUTAZIONE DEGLI STRUMENTI FINANZIARI COMPLESSI. Calcolo del fair value e misurazione dei rischi Corso tecnico - pratico MODELLI IN EXCEL PER LA VALUTAZIONE DEGLI STRUMENTI FINANZIARI COMPLESSI Calcolo del fair value e misurazione dei rischi Modulo 1 (base): 22-23 aprile 2015 Modulo 2 (avanzato):

Dettagli

CALIBRAZIONE DI MODELLI A VOLATILITÀ STOCASTICA SU ARCHITETTURA PARALLELA

CALIBRAZIONE DI MODELLI A VOLATILITÀ STOCASTICA SU ARCHITETTURA PARALLELA POLITECNICO DI MILANO FACOLTÀ DI INGEGNERIA DEI SISTEMI CORSO DI LAUREA IN INGEGNERIA MATEMATICA CALIBRAZIONE DI MODELLI A VOLATILITÀ STOCASTICA SU ARCHITETTURA PARALLELA Relatore: Dr. Marazzina DANIELE

Dettagli

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa

Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa Programma del corso di Analisi Matematica 1 Corso di Laurea in Matematica Prof. A. Garroni - Canale Dl-Pa 1. Elementi di spazi metrici e di topologia 1.1 Completezza di R. Richiami: Estremo superiore,

Dettagli

Prof. Gabriele Vezzosi... Settore Inquadramento MAT03...

Prof. Gabriele Vezzosi... Settore Inquadramento MAT03... UNIVERSITÀ DEGLI STUDI Registro dell insegnamento Anno Accademico 2014/2015 Facoltà Ingegneria....................................... Insegnamento Matematica................................ Settore Mat03............................................

Dettagli

Metodi di controllo stocastico per la valutazione del prezzo dei contratti di opzione nei mercati incompleti

Metodi di controllo stocastico per la valutazione del prezzo dei contratti di opzione nei mercati incompleti Università degli studi di Roma Tre Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Matematica Tesi di Laurea in Matematica di Giorgia Maria Blasi Metodi di controllo stocastico per

Dettagli