Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano"

Transcript

1 Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano

2 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S R n La natura e la difficoltà di risoluzione dipendono dalle caratteristiche di f e dalla struttura della regione ammissibile X = {x S : g i (x) 0, 1 i m}. In genere si suppone che f e g i siano almeno continuamente differenziabili. PNL vincolato se X R n e non vincolato se X = R n. In alcuni casi (ad es. programmazione lineare e ottimizzazione combinatoria) è possibile determinare una soluzione ottima in numero finito, anche se elevato, di iterazioni. Efficienza dipende da come il numero di iterazioni necessarie cresce con la dimensione dell istanza (polinomiale versus esponenziale). 1

3 La maggior parte dei metodi di PNL sono algoritmi iterativi che - partono da x 0 X e - generano (in base a x k precedenti, f e alle sue derivate) una successione {x k } k 0 che converge ad un punto dell insieme Ω delle soluzioni desiderate. Se f(x k+1 ) < f(x k ) per ogni k, sono dei metodi di discesa. Significato di converge e di soluzioni desiderate varia a seconda del tipo di problema: x k tale che x k Ω, la successione {x k } k 0 converge ad un punto di Ω, un punto di accumulazione di {x k } k 0 che appartiene a Ω (siamo in grado di ottenere una buona stima dopo un numero sufficiente di iterazioni). Ω = insieme degli ottimi globali, Ω = insieme dei punti candidati che soddisfano le condizioni necessarie di ottimalità del 1 o ordine ( f(x) = 0 se X = R n ). 2

4 Siamo interessati a metodi affidabili ed efficienti: 1) Affidabilità associata al concetto di convergenza globale Definizione: Un algoritmo converge globalmente se {x k } k 0 soddisfa una delle proprietà precedenti per qualsiasi punto iniziale x 0 X. Un algoritmo converge localmente se proprietà valida solo per x 0 in un opportuno intorno di un x Ω. 2) Efficienza caratterizzata da vari tipi di rapidità di convergenza (comportamento asintotico) Ipotesi: lim k x k = x con x Ω non necessariamente ottimo globale Definizione: {x k } k 0 converge ad x con ordine p 1 se r > 0 e k 0 N tale che x k+1 x r x k x p k k 0. Il più grande valore di p è l ordine di convergenza e il più piccolo valore di r > 0 è il tasso di convergenza. Se p = 1 e r < 1 la convergenza è lineare, se p = 1 e r 1 convergenza sublineare. N.B.: Se p = 1 la distanza rispetto a x decresce ad ogni iterazione di un fattore costante r. Esempio: k 1 con r = 1 e k 1 con r = 1 2 3

5 Definizione: La convergenza è superlineare se esiste {r k } k 0 con lim k r k = 0 tale che Esempio: k k x k+1 x r k x k x k k 0. Definizione: Se p = 2 (e r non necessariamente < 1), la convergenza è quadratica. Esempio: k 4

6 4.4 Metodi basati su direzioni di ricerca Problema di ottimizzazione non vincolata: min x R n f(x) con f : R n R di classe C 1 o C 2 e limitata inferiormente. Gli algoritmi iterativi di PNL partono da x 0 R n e generano (in base a x k precedenti, f e alle sue derivate) una sequenza infinita {x k } k 0 che converge ad un punto dell insieme Ω delle soluzioni desiderate. In genere Ω = {x R n Ottimalità del 2 o ordine. : f(x) = 0}, a volte punti che soddisfano anche le Condizioni Necessarie di Spesso ma non sempre metodi di discesa: f(x k+1 ) < f(x k ) per ogni k 5

7 1) Schema generale Scegliere x 0 e ε > 0, porre k := 0 Ripetere Scegliere direzione di ricerca d k R n Determinare il passo α k > 0 lungo d k tale che min α 0 φ(α) = f(x k + αd k ) Porre x k+1 := x k + α k d k e k := k + 1 finché condizione di arresto è soddisfatta Condizione di arresto: f(x k ) < ε o f(x k ) f(x k+1 ) < ε o x k+1 x k < ε In genere α k è determinato in modo approssimato t. c. f(x k+1 ) < f(x k ) for all k = 0, 1,... Molta flessibilità nella scelta delle direzioni d k e dei passi α k, l efficienza dipende da entrambi! 6

8 2) Direzioni di ricerca In molti algoritmi iterativi basati su direzioni di ricerca con D k matrice n n definita positiva. d k = D k f(x k ) In tal caso d k è una direzione di discesa poiché t f(x k )d k = t f(x k )D k f(x k ) < 0 7

9 Esempio 1: Metodo del gradiente Sia f C 1 Considerare l approssimazione lineare di f(x k + d) intensa come funzione del solo vettore d l k (d) := f(x k ) + t f(x k )d e scegliere la direzione d k R n che minimizza l k (d) sulla sfera di raggio f(x k ) : min t f(x k )d (1) s.v. d = f(x k ) Poiché t f(x k )d = t f(x k ) d cos(θ), t f(x k )d = t f(x k ) 2 cos(θ) e (1) è minimizzata quando cos(θ) = 1, ossia θ = π. Direzione di massima discesa: ovvero D k = I n. d k = f(x k ) Chiaramente direzione d k è di discesa se f(x k ) 0 8

10 Esempio 2: Metodo di Newton Sia f C 2 e H(x k ) = 2 f(x k ) Considerare l approssimazione quadratica di f(x k + d) intorno a x k come funzione di d: q k (d) := f(x k ) + t f(x k )d dt H(x k )d e scegliere la direzione (e il passo) che portano ad un punto stazionario di q k (d). Poiché d q k (d) = 0 implica t f(x k ) + d t H(x k ) = 0, se H 1 (x k ) esiste la direzione di Newton è: ovvero D k = H 1 (x k ). d k = H 1 (x k ) f(x k ) Se H(x k ) è definita positiva e f(x k ) 0, d k è di discesa t f(x k )d k = t f(x k )H 1 (x k ) f(x k ) σ k f(x k ) 2 < 0 per un σ k > 0, visto che y t H 1 (x k )y σ k y 2 per ogni y R n. Se H(x k ) non è definita positiva la direzione di Newton può non essere definita (quando H 1 (x k ) non esiste) o non essere una direzione di discesa! 9

11 3) Lunghezza del passo In genere per determinare il passo α k lungo direzione d k non conviene risolvere il problema di ricerca unidimensionale min α 0 φ(α) = f(x k + αd k ) in modo esatto, basta una soluzione approssimata per garantire la convergenza globale. vari metodi (con e senza derivate) che generano una sequenza di valori di α e che si fermano quando alcune condizioni sono soddisfatte. Condizioni di arresto molto semplici, soddisfatte dopo un numero molto limitato di tentativi. Una semplice riduzione f(x k + α k d k ) < f(x k ) non basta, ci vuole una riduzione sufficiente! Principi fondamentali: - passo α non deve essere troppo piccolo (per evitare convergenza prematura) - passo α non deve essere troppo grande (rischio di oscillazioni) 10

12 Condizioni di Wolfe: Riduzione sufficiente: φ(α) φ(0) + c 1 αφ (0) con c 1 [0, 1] che equivale a f(x k + αd k ) f(x k ) + c 1 α t f(x k )d k (criterio di Armijo) φ (0) < 0 perché d k è di discesa, c 1 1/2 così è soddisfata dal minimo di una φ(α) quadratica convessa Per evitare passi troppo piccoli (e quindi fare progressi ragionevoli) si considera anche la condizione: che equivale a φ (α) c 2 φ (0) con c 2 (c 1, 1) t f(x k + αd k )d k c 2 t f(x k )d k in genere c 2 = 0.9 per (quasi)-newton e c 2 = 0.1 per gradienti coniugati non-lineari Condizioni di Wolfe deboli: con 0 < c 1 < c 2 < 1 φ(α) φ(0) + c 1 αφ (0) (2) φ (α) c 2 φ (0) (3) 11

13 Condizioni di Wolfe forti: φ(α) φ(0) + c 1 αφ (0) (4) φ (α) c 2 φ (0) (5) con 0 < c 1 < c 2 < 1 Unica differenza: non si considerano i valori di α con derivata φ (α) troppo positiva, si escludono quindi i valori lontani dai punti stazionari di φ. Le condizioni di Wolfe sono invarianti rispetto a moltiplicazione della funzione obiettivo con costante o trasformazione affine delle variabili. Proprietà: Sia f : R n R di classe C 1 e d k una direzione di discesa in x k t.c. f è limitata inferioremente lungo il raggio {x k + αd k : α > 0}. Allora se 0 < c 1 < c 2 < 1 esistono degli intervalli di passi che soddisfano le condizioni di Wolfe (deboli e forti). Semplice conseguenza del teorema del valore medio 12

14 Condizioni di Goldstein: con 0 < c < 1/2. φ(0) + (1 c)αφ (0) φ(α) φ(0) + cαφ (0) Svantaggio: certi valori di c possono escludere il minimo di g. Adatte per metodi di tipo Newton ma non per quasi-newton che mantengono un approssimazione d.p. della matrice Hessiana. Ricerca 1-D basata su backtracking Se α determinato con un approccio di tipo backtracking basta una riduzione sufficiente Dati α > 0, fattore di contrazione ρ (0, 1) e c (0, 1/2) Scegliere α k = ρ h α dove h è il più piccolo intero non negativo che soddisfa il criterio di Armijo. Geometricamente si sceglie come α k il più grande valore α {ρ i α : i = 0, 1,... } per cui φ(α) giace al di sotto della retta che passa per (0, φ(0)) e di pendenza cφ (0). Vari modi per scegliere α (ad es. α = 1 per metodo di Newton). Questo procedimento backtracking garantisce un passo non troppo lungo e non troppo corto. Funziona bene per metodo di Newton ma non per quasi-newton e gradienti coniugati non lineari. 13

15 4) Convergenza globale dei metodi di discesa Per garantire che {x k } abbia almeno un punto di accumulazione, si suppone di conoscere un x 0 R tale che l insieme di livello L 0 = {x R n : f(x) f(x 0 )} sia compatto. Stabiliamo la convergenza globale dei metodi di discesa sotto opportune ipotesi che riguardano non solo i passi α k ma anche le direzioni di ricerca d k. θ k = angolo tra d k e la direzione di massima discesa f(x k ) cos(θ k ) = t f(x k )d k f(x k ) d k Risultato generale che indica di quanto d k può discostarsi da f(x k ) garantendo comunque la convergenza globale. Consideriamo le condizioni di Wolfe deboli ma risultati analoghi per quelle di Wolfe forti e di Goldstein. 14

16 Teorema: (Zoutendijk) Metodo basato su direzioni di discesa d k e con α k che soddisfano le condizioni di Wolfe. f limitata inf. su R n, f C 1 su N aperto che contiene L 0 = {x R n : f(x) f(x 0 )} e f soddisfa le condizioni di Lipschitz su N, ovvero L > 0 t.c. f(x) f(y) L x y x, y N. Allora cos 2 (θ k ) f(x k ) 2 < + (6) k 0 La condizione di Zoutendijk (6) implica cos 2 (θ k ) f(x k ) 2 0 quando k, se cos θ k δ > 0 k 0 allora (6) implica che lim k f(x k ) = 0 per qualsiasi x 0. In particolare, il metodo del gradiente ( cos θ k = 1 ) che soddisfa Wolfe è globalmente convergente Se D k simmetriche e d.p. k 0 e costante M t.c. si può verificare che D k D 1 k M k 0 cos θ k 1/M In tal caso i metodi Newton e quasi-newton hanno convergenza globale 15

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

Appunti delle esercitazioni di Ricerca Operativa

Appunti delle esercitazioni di Ricerca Operativa Appunti delle esercitazioni di Ricerca Operativa a cura di P. Detti e G. Ciaschetti 1 Esercizi sulle condizioni di ottimalità per problemi di ottimizzazione non vincolata Esempio 1 Sia data la funzione

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Data una funzione f : [a, b] R si cerca α [a, b] tale che f (α) = 0. I metodi numerici per la risoluzione di questo problema sono metodi iterativi. Teorema Data una funzione continua

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

I appello - 26 Gennaio 2007

I appello - 26 Gennaio 2007 Facoltà di Ingegneria - Corso di Laurea in Ing. Informatica e delle Telecom. A.A.006/007 I appello - 6 Gennaio 007 Risolvere gli esercizi motivando tutte le risposte. (N.B. il quesito teorico è obbligatorio)

Dettagli

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri Stima di parametri Il gestore di un sito turistico dove si pratica il bungee-jumping deve fornire alla sovrintendenza municipale un documento che riguarda la sicurezza del servizio fornito. Il documento

Dettagli

Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2

Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2 Esercitazioni di Calcolo Numerico 23-30/03/2009, Laboratorio 2 [1] Metodo di Bisezione gli estremi a e b di un intervallo reale trovi uno zero della funzione f(x) nell intervallo [a, b] usando il metodo

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati In problemi di massimo e minimo vincolato viene richiesto di ricercare massimi e minimi di una funzione non definita su tutto R n, ma su un suo sottoinsieme proprio. Esempio:

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Una funzione reale di una variabile reale f di dominio A è una legge che ad ogni x A associa un numero reale che denotiamo con f(x). Se A = N, la f è detta successione di numeri reali.

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

Elementi Finiti: stime d errore e adattività della griglia

Elementi Finiti: stime d errore e adattività della griglia Elementi Finiti: stime d errore e adattività della griglia Elena Gaburro Università degli studi di Verona Master s Degree in Mathematics and Applications 05 giugno 2013 Elena Gaburro (Università di Verona)

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica.

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica. 8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica la nuova successione {s n } definita come s 1 = a 1, s 2 = a 1 + a 2, s 3

Dettagli

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi. Giochi ed equilibri di Nash Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.it 1 1 Notazione e definizione di equilibrio di Nash Si supponga

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Massimi e minimi delle funzioni di più variabili Indice 1 Massimi e minimi liberi 1 Massimi e minimi vincolati 7 3 Soluzioni degli esercizi

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Definizione: Si chiama successione numerica una funzione definita su IN a valori in IR, cioè una legge che associa ad ogni intero n un numero reale a n. Per abuso di linguaggio, si

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2 3.1 Ottimizzazione lungo direzioni coniugate. Risolvere il seguente problema: minimize f(x 1,x 2 ) = 12x 2 + 4x 2 1 + 4x 2 2 4x 1 x 2 manualmente, utilizzando il metodo delle direzioni coniugate: determinare

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Funzioni con dominio in R n

Funzioni con dominio in R n 0.1 Punti e vettori di R n Politecnico di Torino. Funzioni con dominio in R n Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto Molto spesso risulta che una quantita

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

1.1. Spazi metrici completi

1.1. Spazi metrici completi SPAZI METRICI: COMPLETEZZA E COMPATTEZZA Note informali dalle lezioni 1.1. Spazi metrici completi La nozione di convergenza di successioni è centrale nello studio degli spazi metrici. In particolare è

Dettagli

Corso di Laurea in Ingegneria Gestionale. Anno Accademico 2013 2014. Appunti dalle lezioni di OTTIMIZZAZIONE GLOBALE.

Corso di Laurea in Ingegneria Gestionale. Anno Accademico 2013 2014. Appunti dalle lezioni di OTTIMIZZAZIONE GLOBALE. UNIVERSITÀ di ROMA LA SAPIENZA Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013 2014 Appunti dalle lezioni di OTTIMIZZAZIONE GLOBALE Stefano Lucidi Dipartimento di Informatica e Sistemistica

Dettagli

Capitolo Sedicesimo CENNO SULLE SUPERFICI

Capitolo Sedicesimo CENNO SULLE SUPERFICI Capitolo Sedicesimo CENNO SULLE SUPERFICI 1. L A N O Z I O N E D I S U P E R F I C I E In tutto il Capitolo, chiameremo dominio un sottoinsieme di  2 che sia la chiusura di un aperto connesso. Sono tali,

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

Condizionamento del problema

Condizionamento del problema Condizionamento del problema x 1 + 2x 2 = 3.499x 1 + 1.001x 2 = 1.5 La soluzione esatta è x = (1, 1) T. Perturbando la matrice dei coefficienti o il termine noto: x 1 + 2x 2 = 3.5x 1 + 1.002x 2 = 1.5 x

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

Fondamenti di Elaborazione di Immagini Estrazione dei Bordi e Segmentazione. Raffaele Cappelli raffaele.cappelli@unibo.it

Fondamenti di Elaborazione di Immagini Estrazione dei Bordi e Segmentazione. Raffaele Cappelli raffaele.cappelli@unibo.it Fondamenti di Elaborazione di Immagini Estrazione dei Bordi e Segmentazione Raffaele Cappelli raffaele.cappelli@unibo.it Contenuti Estrazione dei bordi Calcolo del gradiente Operatori di Roberts Operatori

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Introduzione. Modellizzazione: descrizione di un fenomeno fisico (biologico) con linguaggio matematico.

Introduzione. Modellizzazione: descrizione di un fenomeno fisico (biologico) con linguaggio matematico. Introduzione Modellizzazione: descrizione di un fenomeno fisico (biologico) con linguaggio matematico. Alcuni aspetti da tenere presenti: * range di validita del modello; * "profondita " o "risoluzione"

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3 CAPITOLO 3 Successioni e serie 3. Successioni Un caso particolare di applicazione da un insieme numerico ad un altro insieme numerico è quello delle successioni, che risultano essere definite nell insieme

Dettagli

Metodi incrementali. ² Backpropagation on-line. ² Lagrangiani aumentati

Metodi incrementali. ² Backpropagation on-line. ² Lagrangiani aumentati Metodi incrementali ² Backpropagation on-line ² Lagrangiani aumentati 1 Backpropagation on-line Consideriamo un problema di addestramento di una rete neurale formulato come problema di ottimizzazione del

Dettagli

Successioni di funzioni reali

Successioni di funzioni reali E-school di Arrigo Amadori Analisi I Successioni di funzioni reali 01 Introduzione. In questo capitolo applicheremo i concetti di successione e di serie alle funzioni numeriche reali. Una successione di

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14

SVM. Veronica Piccialli. Roma 11 gennaio 2010. Università degli Studi di Roma Tor Vergata 1 / 14 SVM Veronica Piccialli Roma 11 gennaio 2010 Università degli Studi di Roma Tor Vergata 1 / 14 SVM Le Support Vector Machines (SVM) sono una classe di macchine di che derivano da concetti riguardanti la

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

Serie numeriche. 1 Definizioni e proprietà elementari

Serie numeriche. 1 Definizioni e proprietà elementari Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s

Dettagli

LABORATORIO DI ANALISI DEI SISTEMI

LABORATORIO DI ANALISI DEI SISTEMI LABORATORIO DI ANALISI DEI SISTEMI Si utilizzerà, come strumento di lavoro, un foglio elettronico, il più diffuso Excel o anche quello gratuito di OpenOffice (www.openoffice.org). Tale scelta, pur non

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 5 La dualità nella Programmazione Lineare In questo capitolo verrà introdotto un concetto di fondamentale importanza sia per l analisi dei problemi di Programmazione Lineare, sia per lo sviluppo

Dettagli

Esercizi di PNL vincolata

Esercizi di PNL vincolata Esercizi di PNL vincolata Esercizio 1. Trovare massimi e minimi della funzione sull insieme {x R : x 1 + x + x = 0}. fx 1, x = x x 1 Il vincolo è regolare? Esercizio. Eseguire un passo del metodo di Frank-Wolfe

Dettagli

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere) Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

Tecniche di analisi multivariata

Tecniche di analisi multivariata Tecniche di analisi multivariata Metodi che fanno riferimento ad un modello distributivo assunto per le osservazioni e alla base degli sviluppi inferenziali - tecniche collegate allo studio della dipendenza

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato

Dettagli

Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Sequenze CAPITOLO II

Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Sequenze CAPITOLO II CAPITOLO II 2. - PROBLEMI DI SEQUENZA I problemi di sequenza si presentano ogni qualvolta vi sono delle attività che richiedono delle risorse limitate ed indivisibili e bisogna definire l'ordine secondo

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 sostituscono le pagg. 50-58 (fino alle eq. 5.28) Come già visto è stato scelto l'ellissoide come riferimento planimetrico sul quale proiettare tutti i punti

Dettagli

Rette e curve, piani e superfici

Rette e curve, piani e superfici Rette e curve piani e superfici ) dicembre 2 Scopo di questo articolo è solo quello di proporre uno schema riepilogativo che metta in luce le caratteristiche essenziali delle equazioni di rette e curve

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Alcune note sulle serie di potenze 1

Alcune note sulle serie di potenze 1 Alcune note sulle serie di potenze Contents G. Falqui Preliminari 2 Serie di potenze 3 3 Rappresentazione di funzioni mediante serie di potenze 7 3. Esempi notevoli........................... 9 3.2 Formula

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

LEZIONE ICO 12-10-2009

LEZIONE ICO 12-10-2009 LEZIONE ICO 12-10-2009 Argomento: introduzione alla piattaforma Matlab. Risoluzione numerica di problemi di minimo liberi e vincolati. Lucia Marucci marucci@tigem.it http://www.mathworks.com/access/helpdesk/help/toolbo

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Funzioni di più variabili

Funzioni di più variabili Funzioni di più variabili Introduzione Funzioni reali di più variabili reali Una unzione reale di due variabili è una unzione : D R dove il dominio D è un sottoinsieme di R. ESEMPI: - / ln. Considerazioni

Dettagli

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007)

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Nome... Cognome... 1 Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Si consideri la funzione f(x) = 4x 2 1 + 6x 4 2 2x 2 1x 2. Si applichi per un iterazione il metodo del gradiente a partire dai

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Successioni e serie di funzioni A. Albanese, A. Leaci, D. Pallara In questa dispensa generalizzeremo la trattazione delle successioni e delle serie al caso in cui i termini delle stesse siano non numeri

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Funzioni con dominio in R 2

Funzioni con dominio in R 2 0.1 Grafici e curve di livello Politecnico di Torino. Funzioni con dominio in R 2 Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto Il dominio U di una funzione f e

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli