Impianto di Sollevamento Acqua

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Impianto di Sollevamento Acqua"

Transcript

1 CORSO DI FISICA TECNICA e SISTEMI ENERGETICI Esercitazione 3 Proff. P. Silva e G. Valenti - A.A. 2009/2010 Impianto di Sollevamento Acqua Dimensionare un impianto di sollevamento acqua in grado di soddisfare i dati di progetto sotto riportati. Oltre alle specifiche dell'impianto, si indicano valori di coefficienti e grandezze geometriche, fisiche e meccaniche necessari al progetto dell impianto. Caratteristiche dell'impianto portata volumetrica: Q = 68 m 3 /h prevalenza geodetica: h g = 45 m campo di temperatura di funzionamento: T = 5 40 C Proprietà termofisiche dell'acqua viscosità dell'acqua a 5 C: μ = 1.52*10-3 Ns/m 2 tensione di vapore a 40 C: p v = 7375 Pa pressione dei gas in soluzione nell'acqua: p g = 5100 Pa Caratteristiche dei condotti scabrezza assoluta: ε = 0.09 mm Condotto di aspirazione lunghezza: l a = 10 m altezza di aspirazione: h a = 2.25 m 1 valvola di fondo, coefficiente di perdita di carico: ξ = curve a 90 r/d = 1.5, coefficiente di perdita di carico: ξ = 0.17 velocità media dell'acqua nel condotto: v a 1.5 m/s Condotto di mandata lunghezza: l m = 65 m numero tubi in parallelo n tp = 2 1 valvola di ritegno, coefficiente di perdita di carico: ξ = valvola di regolazione, con coefficiente di perdita di carico a piena apertura: ξ = curve a 90 r/d = 1.5, coefficiente di perdita di carico: ξ = 0.17 velocità media dell'acqua nel condotto: v m 2.5 m/s Caratteristiche elettropompa centrifuga numero di giri del motore elettrico: n = 2900 giri/min Si richiede: 1. scelta dei condotti di aspirazione e di mandata 2. scelta della pompa 3. determinazione del punto di funzionamento 4. calcolo del rendimento globale e della potenza della pompa nel punto di funzionamento 5. verifica alla cavitazione Versione del 5 febbraio

2 Versione del 5 febbraio

3 Versione del 5 febbraio

4 Versione del 5 febbraio

5 Premessa In questa esercitazione si deve dimensionare un impianto di sollevamento acqua, ove per dimensionamento si intende: la scelta da catalogo le tubazioni di diametro normato per il condotto di aspirazione e quello di mandata; la scelta da catalogo della famiglia, del modello e della girante della pompa da installare nell impianto verificando che essa non operi in zona di cavitazione. È consigliato svolgere i calcoli in ambiente Excel. Si richiede di indicare sempre le unità di misura. 1 Considerazioni generali 1.1 Prevalenza L equazione dell energia scritta per un sistema aperto al flusso di massa attraverso un unico ingresso (indicato con A) ed un unica uscita (indicata con B) per un fluido a comportamento volumetrico incomprimibile è: 2 2 relazione che prende il nome di equazione di Bernoulli. Dividendo le perdite in due categorie, quelle che avvengono nei condotti, [m] e quelle nelle pompe, [m], essa diviene:, 2 2, Si definisce quindi prevalenza della pompa (o delle pompe se più di una), [m], il termine di sinistra: e prevalenza dell impianto, [m], quello di destra:, 2 2, 2, ove [m] è detto salto geodetico ed è pari alla differenza di quota tra sezione di uscita e quella di ingresso del volume di controllo esaminato: La prevalenza della pompa è quindi il lavoro specifico (verso il fluido elaborato) depurato delle perdite del processo interno alla pompa. In altre parole, la prevalenza è il lavoro specifico (verso il fluido) nel caso in cui la pompa sia reversibile (cioè senza perdite). 1.2 Perdite nelle tubazioni Le perdite in una generica tubazione, [m], sono divise in due tipologie, concentrate e distribuite, tali che: Le perdite distribuite, [m], sono calcolate secondo la relazione: 2 ove è la velocità media del flusso nel tubo [m/s], e la lunghezza ed il diametro interno del tubo stesso [m], e [adimensionale] il coefficiente di attrito. Tale coefficiente è calcolato dal diagramma di Moody osservando che il numero di Reynolds, [adimensionale], per il moto in un condotto è pari a: e la scabrezza relativa, [adimensionale], per un tubo è: Versione del 5 febbraio

6 con la densità del fluido [kg/m 3 ], la viscosità dinamica [Pa s] e la scabrezza assoluta [m]. Le perdite concentrate, [m], sono: con è il coefficiente di perdita di carico concentrata. La sommatoria è estesa a tutte le perdite di carico concentrate lungo la tubazione; in particolare, se sono presenti più perdite dello stesso tipo, quindi aventi lo stesso coefficiente, esse dovranno essere sommate tante volte quante avvengono. Il rapporto tra il quadrato della velocità e il doppio dell accelerazione gravitazione è detto altezza cinetica. 1.3 Curve caratteristiche La prevalenza della pompa e quella dell impianto sono funzione della portata volumetrica attraverso il sistema, [m 3 /h]. I grafici delle prevalenze in funzione della portata sono detti curva caratteristica della pompa e curva caratteristica dell impianto rispettivamente. L intersezione delle due curve su un medesimo diagramma è il punto di funzionamento, cioè è il punto per il quale vale: Nel caso in cui la sezione A e la sezione B sono i peli liberi di due bacini atmosferici, le pressioni alle sezioni sono (pressoché) identiche (e pari a quella atmosferica), come pure le velocità. Conseguentemente: 2, per bacini atmosferici Invece, nel caso in cui le due sezioni coincidano cioè il circuito idraulico è un circuito chiuso (ad esempio una rete di teleriscaldamento), tutti i termini si elidono a meno delle perdite:, per circuito chiuso Nel caso di serbatoi in pressione invece tutti i termini in generale rimangono. 1.4 Verifica della cavitazione Un problema operativo delle macchine e degli impianti a fluido liquido è la cavitazione, cioè la formazione in un punto a pressione sufficientemente bassa di bolle di vapore che, muovendosi in una zona a pressione superiore, implodono generando onde meccaniche di pressione attraverso il fluido che, se nate in prossimità di superfici, causano l erosione del materiale. Nel caso di un pompe, la verifica della cavitazione avviene tramite il calcolo detto NPSH (dall acronimo inglese di Net Pressure Suction Head), di seguito esposto. La pressione a cui avviene la cavitazione,, è pari a: ove [Pa] è la pressione di saturazione del fluido elaborato, e [Pa] la pressione parziale dei cosiddetti gas disciolti nel fluido (ad esempio, ossigeno in acqua), entrambe funzione della temperatura del liquido. Considerano una generica sezione, indicata con A, del condotto di aspirazione e la sezione di ingresso alla pompa, 1 (ad esempio la flangia), l equazione di Bernoulli è: 2 2 risolvibile rispetto a : 2 2 La pressione più bassa è tipicamente in un punto interno alla pompa. Indicando con la diminuzione di pressione dalla sezione 1 a quella del punto di pressione minima, perché non avvenga la cavitazione deve valere: Versione del 5 febbraio

7 o in modo equivalente: che riscritta diventa: Si definisce quindi il battente netto positivo all aspirazione disponibile, o in versione inglese NPSH disponibile nell impianto, la quantità: 2 Si definisce poi NPSH richiesto dalla pompa la quantità: 2 che è fornito dal costruttore e generalmente determinato per via sperimentale. Dunque la pompa non opera in condizione di cavitazione se: 2 Caratterizzazione delle condotte Lo schema di impianto semplificato è visualizzato in Figura 1. bacino superiore condotto aspirazione valvola ritegno condotto mandata (tubi in parallelo) pompa valvola regolazione bacino inferiore 2.1 Aspirazione Figura 1. Schema di impianto semplificato (le misure non sono in proporzione). 2.1 Scelta tubazioni I diametri interni delle tubazioni dei condotti di aspirazione e di mandata,, e, [m], sono determinati in funzione della portata di progetto, [m 3 /h], e delle velocità medie di riferimento (tutte indicate nel testo dell esercitazione) tramite il bilancio di massa (scritto per un fluido incomprimibile): Versione del 5 febbraio

8 Il condotto di aspirazione è costituito da un unico tubo, pertanto alla generica portata sopra indicata si sostituisce il valore di portata di progetto,. Matematicamente: ove deve essere espressa in m 3 /s., 4 Al contrario, il condotto di mandata è costituito da due tubi identici in parallelo. In questo caso la portata si suddivide in modo uguale su di essi, così alla generica portata si sostituisce metà della portata di progetto: Versione del 5 febbraio , 4 2 Poiché sul mercato sono disponibili a catalogo tubi con diametri interni normati che variano in modo discreto, dalla tabella allegata al testo dell esercitazione si devono scegliere i tipi di tubi, uno per l aspirazione l altro per la mandata e denominati con una sigla che inizia con DN, che hanno i diametri interni più prossimi a quelli appena stimati. Una volta scelte le tubazioni, esse rimarranno fissate nella rimanente parte dell esercitazione. 2.2 Curva caratteristica dell impianto Essendo l impianto un sistema di sollevamento acqua tra due bacini atmosferici, la sua curva caratteristica è, come dimostrato precedentemente:,,,, ove sono esplicitate tutte le perdite distribuite e concentra nelle condotte di aspirazione e mandata. Dunque una volta scelte le tubazioni, si costruisce la curva per punti, cioè: 1. fissare una portata elaborata dal sistema nel campo di interesse; 2. determinare le velocità nelle condotte di aspirazione e di mandata; 3. leggere dal diagramma di Moody il coefficiente di attrito; 4. calcolare le perdite distribuite e concentrate nelle condotte; 5. valutare la prevalenza; 6. ripetere la procedura dal passo 1 per la portata successiva. Per la condotta di mandata, essendo costituita come detto sopra, da due tubi identici in parallelo, la portata si suddivide in modo identico tra i due rami in parallelo. Quindi la perdita nel singolo tubo è calcolata con la velocità riferita a metà della portata elaborata. Inoltre si ricorda che la perdita di ogni ramo in parallelo è uguale a quelle di tutti gli altri rami; inoltre, che la perdita complessiva della condotta costituita da rami in parallelo è uguale a quelle di ogni suo ramo. In particolare, si ribadisce che le perdite di tubazioni in parallelo NON si sommano, mentre si sommano le portate! Se può essere utile, si consiglia di ragionare in similitudine con le resistenze in serie e in parallelo in ambito elettrotecnico: le resistenze in serie sono attraversate dalla stessa corrente (portata in idraulica) mentre le loro cadute di potenziale (perdite in idraulica) si sommano per dare la caduta di potenziale del sistema serie. Al contrario, le resistenze in parallelo sono attraversate da correnti in generale diverse, che si sommano a dare la corrente del sistema parallelo, mentre tutte hanno la stessa caduta di potenziale, che è anche la caduta di potenziale del sistema parallelo. 3 Caratterizzazione della pompa 3.1 Scelta della famiglia, del modello e della girante Per la portata di progetto, [m 3 /h], si determina la prevalenza dell impianto, [m]. Con la coppia di tali valori si entra nel diagramma a fazzoletti riportato nel catalogo del costruttore per determinare la famiglia (il fazzoletto sul diagramma) di pompe appropriate. Scelta la famiglia si stabilisce se acquistare un modello a numero di giri fisso oppure ad un numero di giri

9 variabile in modo discreto (cambiando il numero di poli del motore elettrico) o ad un numero di giri variabile in continuo tramite inverter. In questo caso si adotta il primo modello, che è anche quello più economico. Sempre con la coppia di valori si entra nel diagramma del modello scelto per stabilire quale girante ordinare. 3.2 Punto di funzionamento Intersecando la curva caratteristica dell impianto, costruita precedentemente, con la curva caratteristica della pompa adottata, fornita dal costruttore, si ottiene il punto di funzionamento, cioè una coppia di valori di portata di funzionamento, [m 3 /h], e di prevalenza di funzionamento, [m], in generale diversi ma prossimi a e. Nella prevalenza di funzionamento si omette il pedice in quanto quella di impianto e quella della pompa coincidono. Dal diagramma del costruttore si legge la potenza elettrica assorbita nel punto di funzionamento, [kw]. Ricordando che la prevalenza è il lavoro specifico espresso in [m] di una pompa ideale e ricordando le definizioni di rendimento isoentropico (detto anche idraulico nel caso di fluidi incomprimibili), di rendimento organico e di rendimento elettrico, si può scrivere: ove la portata deve essere in [m 3 /s] ed il fattore 1/1000 serve per restituire il risultato in [kw]. Da tale relazione si ricava dunque il rendimento totale dell elettro-pompa. 3.3 Verifica della cavitazione Il valore di NPSH richiesto dalla pompa nel punto di funzionamento dell impianto, [m], è letto dal grafico fornito dal costruttore. Quello disponibile, prendendo come sezione A il pelo libero del bacino inferiore su cui agisce la pressione atmosferica e che vede una velocità di attraversamento trascurabile, diventa:,, ove l altezza di aspirazione, [m], è pari alla differenza tra la quota dell aspirazione della pompa e la quota del pelo libero del bacino inferiore,, e, sono le perdite del solo condotta di aspirazione valutate alla portata di funzionamento,. Si nota che: all aumentare delle perdite dei tubi diminuisce il valore di NPSH disponibile, favorendo l instaurarsi della cavitazione, all aumentare della temperatura del fluido elaborato, aumentano e favorendo la cavitazione (in particolare è molto rischioso pressurizzare un liquido saturo). Versione del 5 febbraio

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante

LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante IDRAULICA LEGGE DI STEVIN (EQUAZIONE FONDAMENTALE DELLA STATICA DEI FLUIDI PESANTI INCOMPRIMIBILI) z + p / γ = costante 2 LEGGE DI STEVIN Z = ALTEZZA GEODETICA ENERGIA POTENZIALE PER UNITA DI PESO p /

Dettagli

SOLUZIONE ESAME DI STATO TEMA NR.1 TECNICO DEI SISTEMI ENERGETICI ANNO 2015

SOLUZIONE ESAME DI STATO TEMA NR.1 TECNICO DEI SISTEMI ENERGETICI ANNO 2015 SOLUZIONE ESAME DI STATO TEMA NR.1 TECNICO DEI SISTEMI ENERGETICI ANNO 2015 PREFAZIONE AL TEMA Nella parte sottostante è rappresentato lo schema circuitale dell impianto idraulico, dove, vengono raffigurate:

Dettagli

CAPITOLO 4 IMPIANTI IDRAULICI

CAPITOLO 4 IMPIANTI IDRAULICI CAPITOLO 4 IMPIANTI IDRAULICI 4.1. Introduzione In questo paragrafo verranno trattate le problematiche relative agli impianti idraulici, limitatamente al caso degli impianti di sollevamento acqua. Si parlerà

Dettagli

Pompe di circolazione per gli impianti di riscaldamento

Pompe di circolazione per gli impianti di riscaldamento Corso di IMPIANTI TECNICI per l EDILIZIAl Pompe di circolazione per gli impianti di riscaldamento Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D AnnunzioD Annunzio Pescara www.lft.unich.it Pompe

Dettagli

SOLUZIONE ESAME DI STATO ITIS INDIRIZZO MECCANICA - PROGETTO BROCCA ANNO 1996

SOLUZIONE ESAME DI STATO ITIS INDIRIZZO MECCANICA - PROGETTO BROCCA ANNO 1996 SOLUZIONE ESAME DI STATO ITIS INDIRIZZO MECCANICA - PROGETTO BROCCA ANNO 1996 PREFAZIONE AL TEMA Nella parte sottostante è rappresentato lo schema circuitale dell impianto idraulico, dove, vengono raffigurate:

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

14.4 Pompe centrifughe

14.4 Pompe centrifughe 14.4 Pompe centrifughe Le pompe centrifughe sono molto diffuse in quanto offrono una notevole resistenza all usura, elevato numero di giri e quindi facile accoppiamento diretto con i motori elettrici,

Dettagli

Indice. 8 novembre 2015. 1 La similitudine idraulica per le pompe 2. 2 Esercizi sulla similitudine idraulica 3

Indice. 8 novembre 2015. 1 La similitudine idraulica per le pompe 2. 2 Esercizi sulla similitudine idraulica 3 8 novembre 2015 Indice 1 La similitudine idraulica per le pompe 2 2 Esercizi sulla similitudine idraulica 3 3 Pompe inserite in un impianto Esercizi 5 1 1 La similitudine idraulica per le pompe L applicazione

Dettagli

Classificazione delle pompe. Pompe cinetiche centrifughe ed assiali. Pompe cinetiche. Generalità POMPE CINETICHE CLASSIFICAZIONE

Classificazione delle pompe. Pompe cinetiche centrifughe ed assiali. Pompe cinetiche. Generalità POMPE CINETICHE CLASSIFICAZIONE Pompe cinetiche centrifughe ed assiali Prof.ssa Silvia Recchia Classificazione delle pompe In base al diverso modo di operare la trasmissione di energia al liquido le pompe si suddividono in: POMPE CINETICHE

Dettagli

MACCHINE IDRAULICHE Le macchine idrauliche si suddividono in. ELEMENTI DI IDRODINAMICA (3 a PARTE)

MACCHINE IDRAULICHE Le macchine idrauliche si suddividono in. ELEMENTI DI IDRODINAMICA (3 a PARTE) ELEMENTI DI IDRODINAMICA (3 a PARTE) PERDITE DI CARICO NEI TUBI Le tubature comunemente utilizzate in impiantistica sono a sezione circolare e costante, con conseguente velocità del liquido uniforme e

Dettagli

ESERCITAZIONE N. 1 (11 Ottobre 2007) Verifica di un impianto di pompaggio

ESERCITAZIONE N. 1 (11 Ottobre 2007) Verifica di un impianto di pompaggio ESERCITAZIONE N. 1 (11 Ottobre 2007) Verifica di un impianto di pompaggio È dato un pozzo con piano campagna H posto a 90 m s.l.m., dal quale l acqua è sollevata verso un serbatoio il cui pelo libero H

Dettagli

Introduzione alle Macchine Operatrici (macchine a fluido) IV A IPS M.CARRARA

Introduzione alle Macchine Operatrici (macchine a fluido) IV A IPS M.CARRARA Introduzione alle Macchine Operatrici (macchine a fluido) IV A IPS M.CARRARA Macchine Operatrici Nel presente modulo si vogliono fornire cenni circa le principali macchine operatrici impiegate negli impianti

Dettagli

Generalità sulle elettropompe

Generalità sulle elettropompe Generalità sulle elettropompe 1) Introduzione Ne esistono diverse tipologie ma si possono inizialmente suddividere in turbopompe e pompe volumetriche. Le prime sono caratterizzate da un flusso continuo

Dettagli

Schema piezometrico di un generico impianto di sollevamento.

Schema piezometrico di un generico impianto di sollevamento. La scelta della pompa da inserire in un generico impianto di sollevamento (Figura 9-) che debba sollevare un assegnata portata non è univoca se a priori non sono assegnati anche il tipo e il diametro delle

Dettagli

CAPITOLO 6 IMPIANTI IDRAULICI ED IDROELETTRICI

CAPITOLO 6 IMPIANTI IDRAULICI ED IDROELETTRICI CAPITOLO 6 IMPIANTI IDRAULICI ED IDROELETTRICI 6.. Introduzione In questo capitolo verranno trattati due argomenti principali quali gli impianti idroelettrici e gli impianti idraulici, limitatamente al

Dettagli

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE

Corso di Componenti e Impianti Termotecnici LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE LE RETI DI DISTRIBUZIONE PERDITE DI CARICO LOCALIZZATE 1 PERDITE DI CARICO LOCALIZZATE Sono le perdite di carico (o di pressione) che un fluido, in moto attraverso un condotto, subisce a causa delle resistenze

Dettagli

SISTEMA DI POMPAGGIO (introduzione)

SISTEMA DI POMPAGGIO (introduzione) SISTEMA DI POMPAGGIO (introduzione) Si utilizzano le pompe, per il sollevamento dell acqua dai pozzi e per inviarla ai serbatoi o inviarla ad una rete di distribuzione e comunque per trasferire l acqua

Dettagli

Pompe di circolazione

Pompe di circolazione Corso di IMPIANTI TECNICI per l EDILIZIA Pompe di circolazione per gli impianti di riscaldamento Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D Annunzio Pescara www.lft.unich.it Pompe di circolazione

Dettagli

Fisica Tecnica Ambientale

Fisica Tecnica Ambientale Università degli Studi di Perugia Sezione di Fisica Tecnica Fisica Tecnica Ambientale Lezione del aprile 05 Ing. Francesco D Alessandro dalessandro.unipg@ciriaf.it Corso di Laurea in Ingegneria Edile e

Dettagli

COMUNE DI CHIUSI (PROVINCIA DI SIENA)

COMUNE DI CHIUSI (PROVINCIA DI SIENA) COMUNE DI CHIUSI (PROVINCIA DI SIENA) PROGETTO ESECUTIVO Depurazione di Chiusi, Sarteano e Cetona Ampliamento impianto di depurazione e collettori fognari al servizio della località Querce al Pino DIMENSIONAMENTO

Dettagli

Formulario di Fisica Tecnica Matteo Guarnerio 1

Formulario di Fisica Tecnica Matteo Guarnerio 1 Formulario di Fisica Tecnica Matteo Guarnerio 1 CONVENZIONI DI NOTAZIONE Calore scambiato da 1 a 2. Calore entrante o di sorgente. Calore uscente o ceduto al pozzo. CONVERSIONI UNITÀ DI MISURA PIÙ FREQUENTI

Dettagli

ver 3.1.4 VERSIONE BASE VERSIONE AVANZATA MANUALE UTENTE (01/10/2006 12.25)

ver 3.1.4 VERSIONE BASE VERSIONE AVANZATA MANUALE UTENTE (01/10/2006 12.25) ver 3.1.4 VERSIONE BASE VERSIONE AVANZATA MANUALE UTENTE (01/10/2006 12.25) Sommario 1 DESCRIZIONE... 2 1.1 LIMITI VERSIONE DIMOSTRATIVA... 2 1.2 INSTALLAZIONE... 2 1.2.1 Installazione completa...2 1.2.2

Dettagli

Esercitazioni del corso di MACCHINE. per Allievi Energetici. a.a. 2013/14

Esercitazioni del corso di MACCHINE. per Allievi Energetici. a.a. 2013/14 Corso di Macchine a fluido Dipartimento di Energia, Politecnico di Milano Esercitazioni del corso di MACCHINE per Allievi Energetici a.a. 2013/14 Indice 1 Equazioni di conservazione 3 2 Impianti di sollevamento

Dettagli

Le pompe (Febbraio 2009)

Le pompe (Febbraio 2009) Le pompe (Febbraio 2009) Sommario Premessa 2 Classificazione e campi d impiego delle pompe 3 Prevalenza della pompa 4 Portata della pompa 6 Potenza della pompa 6 Cavitazione 6 Perdite di carico 6 Curve

Dettagli

UNIVERSITA' DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE. Macchine operatrici idrauliche

UNIVERSITA' DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE. Macchine operatrici idrauliche UNIVERSITA' DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE Macchine operatrici idrauliche Prevalenza Si definisce prevalenza manometrica (H m ) di una pompa l'energia di pressione per unità di peso che

Dettagli

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia

Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione. Foronomia Idrostatica Correnti a pelo libero (o a superficie libera) Correnti in pressione Foronomia In idrostatica era lecito trascurare l attrito interno o viscosità e i risultati ottenuti valevano sia per i liquidi

Dettagli

MACCHINE Lezione 7 Impianti di pompaggio

MACCHINE Lezione 7 Impianti di pompaggio MACCHINE Lezione 7 Impianti di pompaggio Dr. Paradiso Berardo Laboratorio Fluidodinamicadelle delle Macchine Dipartimento di Energia Politecnico di Milano Generalità Un impianto di pompaggio ha la funzione

Dettagli

Regolazione delle Pompe Centrifughe. Dispense per il corso di Macchine e Sistemi Energetici Speciali

Regolazione delle Pompe Centrifughe. Dispense per il corso di Macchine e Sistemi Energetici Speciali Regolazione delle Pompe Centrifughe Dispense per il corso di Macchine e Sistemi Energetici Speciali Corso di Laurea in Scienze ed Ingegneria dei Materiali Aggiornamento al 19/09/2006 Ing Amoresano Amedeo

Dettagli

Pompe. Testi di Riferimento. Versione: 2.0. Ultimo aggiornamento: 18 Maggio 2014

Pompe. Testi di Riferimento. Versione: 2.0. Ultimo aggiornamento: 18 Maggio 2014 Versione: 2.0 Pompe Ultimo aggiornamento: 18 Maggio 2014 Testi di Riferimento Japikse, D. Centrifugal Pump Design and Performance, ISBN 0-933283-09-1 Pag. 1 Argomenti: Pompe centrifughe pompe assiali Potenza

Dettagli

Idraulica delle correnti: definizioni

Idraulica delle correnti: definizioni Idraulica delle correnti: definizioni Assumiamo un asse z verticale, positivo verso l alto, avente origine su un piano di riferimento orizzontale (nei calcoli per gli acquedotti si assume come riferimento

Dettagli

Turbine idrauliche 1/8. Classificazione

Turbine idrauliche 1/8. Classificazione Classificazione Turbine idrauliche 1/8 Una turbina è una macchina che estrae energia da un fluido in possesso di un carico idraulico sufficientemente elevato. Tale carico (o caduta) è generato dal dislivello

Dettagli

Impianti di sollevamento

Impianti di sollevamento Idraulica Agraria. a.a. 2008-2009 Impianti di sollevamento Idraulica Agraria-prof. A. Capra 1 Impianto di sollevamento Nel campo gravitazionale, per effetto del dislivello piezometrico esistente tra due

Dettagli

Valvole di regolazione

Valvole di regolazione Valvole di Regolazione Valvole di regolazione Sono attuatori che servono a modulare la portata di fluido (liquido o gassoso) nei circuiti idraulici Diffusissime nel controllo di processo industriale (es:

Dettagli

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine

Politecnico di Torino Laurea a Distanza in Ingegneria Meccanica Corso di Macchine 5.5 LE TURBOPOMPE Le turbopompe sono turbomacchine idrauliche operatrici, per le quali, quindi, il lavoro massico interno compiuto sul fluido può essere calcolato mediante l equazione seguente: L i = u'

Dettagli

PSICROMETRIA DELL ARIA UMIDA

PSICROMETRIA DELL ARIA UMIDA PSICROMETRIA DELL ARIA UMIDA 1. PROPRIETÀ TERMODINAMICHE DEI GAS PERFETTI Un modello di comportamento interessante per la termodinamica è quello cosiddetto d i gas perfetto. Il gas perfetto è naturalmente

Dettagli

3 Il progetto idraulico

3 Il progetto idraulico Il progetto idraulico 3 Il progetto idraulico 3.1 Introduzione, 3.2 La scelta dei diametri della tubolatura, 3.3 La curva di resistenza del sistema, 3.4 Le linee con ramificazioni, 3.5 Le linee con autoclavi,

Dettagli

CORSO di. MACCHINE e SISTEMI ENERGETICI. per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI.

CORSO di. MACCHINE e SISTEMI ENERGETICI. per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI. CORSO di MACCHINE e SISTEMI ENERGETICI per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI con soluzione 5 Aprile 2004 AA: 2003-2004 DOMANDE TEORICHE 1. Descrivere molto

Dettagli

Esercizi non risolti

Esercizi non risolti Esercizi non risolti 69 Turbina idraulica (Pelton) Effettuare il dimensionamento di massima di una turbina idraulica con caduta netta di 764 m, portata di 2.9 m 3 /s e frequenza di rete 60 Hz. Turbina

Dettagli

Esercizi sui Compressori e Ventilatori

Esercizi sui Compressori e Ventilatori Esercizi sui Compressori e Ventilatori 27 COMPRESSORE VOLUMETRICO (Appello del 08.06.1998, esercizio N 2) Testo Un compressore alternativo monocilindrico di cilindrata V c = 100 cm 3 e volume nocivo V

Dettagli

RESISTENZA DEL MEZZO [W] [kw] Velocità m/s. Adimensionale Massa volumica kg/m 3. Sezione maestra m 2 POTENZA ASSORBITA DALLA RESISTENZA DEL MEZZO:

RESISTENZA DEL MEZZO [W] [kw] Velocità m/s. Adimensionale Massa volumica kg/m 3. Sezione maestra m 2 POTENZA ASSORBITA DALLA RESISTENZA DEL MEZZO: RSISTZA D MZZO R m 1 C X ρ A v Adimensionale Massa volumica kg/m 3 Velocità m/s Sezione maestra m Valori medi dei coefficienti: Superfici piane normali al moto: acqua: K9,81 60, aria: K9,81 0,08 1 K C

Dettagli

δ = F i CAPITOLO 8 TEORIA DELLA SIMILITUDINE Premessa.

δ = F i CAPITOLO 8 TEORIA DELLA SIMILITUDINE Premessa. CAPITOLO 8 TEORIA DELLA SIMILITUDINE Premessa. La teoria della similitudine ha una duplice fondamentale importanza nel campo delle macchine in quanto, da una parte, consente di mettere in relazione le

Dettagli

Revision Date Description Paragraph TickRef 01 11-05-15 New release All #8416

Revision Date Description Paragraph TickRef 01 11-05-15 New release All #8416 Document Title Business Unit Product Line Controllo Multimotore Power Controls IRIS BLUE Revision Date Description Paragraph TickRef 01 11-05-15 New release All #8416 INDICE 1 Introduzione... 2 2 Controllo

Dettagli

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI

Pressione. Esempio. Definizione di pressione. Legge di Stevino. Pressione nei fluidi EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Pressione EQUILIBRIO E CONSERVAZIONE DELL ENERGIA NEI FLUIDI Cos è la pressione? La pressione è una grandezza che lega tra di loro l intensità della forza e l aerea della superficie su cui viene esercitata

Dettagli

Il trasporto dei liquidi

Il trasporto dei liquidi ISTITUTO TECNICO INDUSTRIALE G. MARCONI TECNOLOGIE CHIMICHE INDUSTRIALI CLASSE 3ACH Il trasporto dei liquidi (PAG 159 DEL LIBRO DI TESTO) Prof. Roberto Riguzzi 1 INTRODUZIONE Il trasporto dei liquidi e

Dettagli

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013 Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola

Dettagli

HQ03. pompa singola a palette tipo. 20 a 23 gpm) a 1000 rpm e 7 bar.

HQ03. pompa singola a palette tipo. 20 a 23 gpm) a 1000 rpm e 7 bar. HQ3 Descrizione generale Pompa a palette a cilindrata fissa, idraulicamente bilanciata, con portata determinata dal tipo di cartuccia utilizzato e dalla velocità di rotazione. La pompa è disponibile in

Dettagli

L uso delle pompe negli interventi di Protazione Civile

L uso delle pompe negli interventi di Protazione Civile 1 Pompe Le pompe, più propriamente chiamate macchine idrauliche operatrici, sono quei macchinari che, opportunamente azionati da motrici di diverso tipo, comunicano energia ad un fluido per sollevarlo

Dettagli

ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA IMPIANTO DI POMPAGGIO PER IL TRAVASO DI LIQUIDI CARBURANTI PER AUTOCARRI DOTATI DI CISTERNA

ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA IMPIANTO DI POMPAGGIO PER IL TRAVASO DI LIQUIDI CARBURANTI PER AUTOCARRI DOTATI DI CISTERNA ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA SECONDA FACOLTA DI INGEGNERIA CON SEDE A CESENA Sede di Forlì IMPIANTO DI POMPAGGIO PER IL TRAVASO DI LIQUIDI CARBURANTI PER AUTOCARRI DOTATI DI CISTERNA ELABORATO

Dettagli

EIETTORE A GETTO DI GAS PER VUOTO PER POMPE AD ANELLO LIQUIDO. Aspirazione e compressione di gas e vapore. Modello GES.

EIETTORE A GETTO DI GAS PER VUOTO PER POMPE AD ANELLO LIQUIDO. Aspirazione e compressione di gas e vapore. Modello GES. EIETTORE A GETTO DI GAS PER VUOTO PER POMPE AD ANELLO LIQUIDO Aspirazione e compressione di gas e vapore Modello GES Eiettore in AISI 316 Gli eiettori a getto di gas per vuoto per pompe ad anello liquido

Dettagli

III ESONERO DI IDRAULICA

III ESONERO DI IDRAULICA III ESONERO DI IDRAULICA Politecnico di Bari, II Facoltà di Ingegneria - Taranto, Corso di Idraulica, A.A. 010-011 Ingegneria Civile e per l Ambiente e il Territorio ESERCIZIO 1 Data la rete aperta riportata

Dettagli

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli1415.html SISTEMI ELEMENTARI Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

PLUS Comune di Monterotondo (RM) Intervento n 3: Nuova sostenibilità del verde

PLUS Comune di Monterotondo (RM) Intervento n 3: Nuova sostenibilità del verde 0 Indice 0 Indice... 2 1 Premessa... 3 2 Impianto termico... 3 3 Impianto idrico sanitario... 4 3.1 Descrizione impianto acqua potabile... 4 3.2 Dati di progetto impianto distribuzione acqua potabile...

Dettagli

Indice. XI Prefazione

Indice. XI Prefazione Indice XI Prefazione 3 Capitolo 1 Introduzione alle macchine a fluido e ai sistemi energetici 3 1.1 Introduzione storica 9 1.2 Fonti di energia 19 1.3 Macchine a fluido e sistemi energetici 25 Capitolo

Dettagli

MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche

MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche MACCHINE Lezione 8 Impianti idroelettrici e Turbine Idrauliche Dr. Paradiso Berardo Laboratorio Fluidodinamicadelle delle Macchine Dipartimento di Energia Politecnico di Milano Generalità Impianti idroelettrici

Dettagli

PIER GINO MEGALE DISPENSE TRATTE DALLE LEZIONI DI IDRAULICA AGRARIA TENUTE PRESSO LA FACOLTÀ DI AGRARIA DELL UNIVERSITÀ DI PISA

PIER GINO MEGALE DISPENSE TRATTE DALLE LEZIONI DI IDRAULICA AGRARIA TENUTE PRESSO LA FACOLTÀ DI AGRARIA DELL UNIVERSITÀ DI PISA PIER GINO MEGALE UADERNI DI IDRAULICA AGRARIA DISPENSE TRATTE DALLE LEZIONI DI IDRAULICA AGRARIA TENUTE PRESSO LA FACOLTÀ DI AGRARIA DELL UNIVERSITÀ DI PISA ANNO ACCADEMICO 006 007 SECONDA EDIZIONE AGGIORNATA

Dettagli

Soluzione del prof. Paolo Guidi

Soluzione del prof. Paolo Guidi Soluzione del prof. Paolo Guidi Lo schema elettrico del sistema formato dalla dinamo e dal motore asincrono trifase viene proposto in Fig. 1; Il motore asincrono trifase preleva la tensione di alimentazione

Dettagli

Università di Roma Tor Vergata

Università di Roma Tor Vergata Università di Roma Tor Vergata Facoltà di Ingegneria Dipartimento di Ingegneria Industriale Corso di: TERMOTECNICA 1 IMPIANTI DI RISCALDAMENTO AD ACQUA: GENERALITÀ E COMPONENTI Ing. G. Bovesecchi gianluigi.bovesecchi@gmail.com

Dettagli

Università di Roma Tor Vergata

Università di Roma Tor Vergata Università di oma Tor Vergata Facoltà di Ingegneria Dipartimento di Ingegneria Industriale Corso di: TEMOTECNIC 1 IMPINTI DI ISCLDMENTO D CQU: DIMENSIONMENTO Ing. G. Bovesecchi gianluigi.bovesecchi@gmail.com

Dettagli

Pompe autoadescanti. Materiali Componenti NG B-NG Corpo pompa Coperchio con raccordo Parete del diffusore

Pompe autoadescanti. Materiali Componenti NG B-NG Corpo pompa Coperchio con raccordo Parete del diffusore Esecuzione Elettropompe centrifughe monoblocco autoadescanti con eiettore incorporato. NG: versione con corpo pompa e raccordo in ghisa. B-NG: versione con corpo pompa e raccordo in bronzo. Le pompe in

Dettagli

1. determinare la potenza convenzionale di 10 prese monofasi da 10 A, V=220V determinare la potenza convenzionale di 5 prese trifasi da 16 A, V=400V

1. determinare la potenza convenzionale di 10 prese monofasi da 10 A, V=220V determinare la potenza convenzionale di 5 prese trifasi da 16 A, V=400V 1 1. determinare la potenza convenzionale di 10 prese monofasi da 10 A, V=220V determinare la potenza convenzionale di 5 prese trifasi da 16 A, V=400V 2. determinare la potenza convenzionale di 5 motori

Dettagli

Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ]

Idrogeologia. Velocità media v (m/s): nel moto permanente è inversamente proporzionale alla superficie della sezione. V = Q [m 3 /s] / A [m 2 ] Idrogeologia Oltre alle proprietà indici del terreno che servono a classificarlo e che costituiscono le basi per utilizzare con facilità l esperienza raccolta nei vari problemi geotecnici, è necessario

Dettagli

Bruno Jannamorelli, traduzione ed edizione critica La potenza motrice del fuoco di Sadi Carnot, Cuen 1996, pp. 19 e 20. 2

Bruno Jannamorelli, traduzione ed edizione critica La potenza motrice del fuoco di Sadi Carnot, Cuen 1996, pp. 19 e 20. 2 LA LEZIONE Lo studio di una macchina termica ideale [ ] Si può paragonare molto bene la potenza motrice del calore a quella di una cascata d acqua: entrambe hanno un massimo che non si può superare, qualunque

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 20/2 Appello del 29/0/203. Tempo a disposizione: 2h30. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

L E L E G G I D E I G A S P A R T E I

L E L E G G I D E I G A S P A R T E I L E L E G G I D E I G A S P A R T E I Variabili di stato Equazioni di stato Legge di Boyle Pressione, temperatura, scale termometriche Leggi di Charles/Gay-Lussac Dispense di Chimica Fisica per Biotecnologie

Dettagli

Ventilatori. Generalità e classificazione VENTILATORI. Apparecchi per il trasporto degli aeriformi (pneumofore) e pompe da vuoto

Ventilatori. Generalità e classificazione VENTILATORI. Apparecchi per il trasporto degli aeriformi (pneumofore) e pompe da vuoto Generalità e classificazione Apparecchi per il trasporto degli aeriformi (pneumofore) e pompe da vuoto MACCHINE PNEUMOFORE BASSE P applicano energia cinetica Elicoidali In base al moto dell aria Centrifughi

Dettagli

Dimensionamento di massima di una compressore volumetrico alternativo

Dimensionamento di massima di una compressore volumetrico alternativo Dimensionamento di massima di una compressore volumetrico alternativo Giulio Cazzoli Giugno 2013 v1.0 Si chiede di eettuare il dimensionamento di massima di un compressore volumetrico alternativo che aspiri

Dettagli

Aspetti energetici. Capitolo 2

Aspetti energetici. Capitolo 2 Capitolo 2 Aspetti energetici 2.1 2.1 Introduzione Un impianto è costituito da componenti uniti fra di loro tramite collegamenti nei quali avviene un trasferimento di potenza esprimibile attraverso il

Dettagli

Progettazione e calcolo di

Progettazione e calcolo di Nicola Taraschi Progettazione e calcolo di * Calcolo delle reti aerauliche con il software CANALI * Le trasformazioni dell aria umida ed il software PSICRO * I ventilatori * Le batterie alettate ed il

Dettagli

Università degli Studi di Perugia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Anno Accademico 2010-2011

Università degli Studi di Perugia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Anno Accademico 2010-2011 Università degli Studi di Perugia Facoltà di Ingegneria Corso di Laurea in Ingegneria Industriale Anno Accademico 00-0 Esercizi di Fisica Tecnica ) Individuare sul diagramma P-v, punti e trasformazioni

Dettagli

IDRAULICA. H89.8D - Banco Idraulico

IDRAULICA. H89.8D - Banco Idraulico IDRAULICA H89.8D - Banco Idraulico 1. Generalità Il banco H89.8D con i suoi equipaggiamenti ausiliari è stato progettato per permettere un ampia gamma di esperienze nella meccanica dei fluidi. È di costruzione

Dettagli

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE

Classificazione delle pompe. Pompe rotative volumetriche POMPE ROTATIVE. POMPE VOLUMETRICHE si dividono in... VOLUMETRICHE Classificazione delle pompe Pompe rotative volumetriche POMPE VOLUMETRICHE si dividono in... POMPE ROTATIVE VOLUMETRICHE Pompe rotative volumetriche Principio di funzionamento Le pompe rotative sono caratterizzate

Dettagli

11. Macchine a corrente continua. unità. 11.1 Principio di funzionamento

11. Macchine a corrente continua. unità. 11.1 Principio di funzionamento 11. Macchine a corrente continua unità 11.1 Principio di funzionamento Si consideri una spira rotante con velocità angolare costante e immersa in un campo magnetico costante come in figura 11.1. I lati

Dettagli

Il lavoro nelle macchine

Il lavoro nelle macchine Il lavoro nelle macchine Corso di Impiego industriale dell energia Ing. Gabriele Comodi I sistemi termodinamici CHIUSO: se attraverso il contorno non c è flusso di materia in entrata ed in uscita APERTO:

Dettagli

TESTO. Art. 2. Sono abrogati i decreti ministeriali 10 gennaio 1950 e 2 agosto 1956. ALLEGATO

TESTO. Art. 2. Sono abrogati i decreti ministeriali 10 gennaio 1950 e 2 agosto 1956. ALLEGATO Decreto del Presidente della Repubblica n 1208 del 05/09/1966 Modifiche alla vigente disciplina normativa in materia di apparecchi di alimentazione per generatori di vapore aventi potenzialità specifica

Dettagli

Meccanica dei fluidi. Soluzione dei problemi Capitolo 8. McGraw-Hill

Meccanica dei fluidi. Soluzione dei problemi Capitolo 8. McGraw-Hill Yunus A. Çengel John M. Cimbala per l edizione italiana Giuseppe Cozzo Cinzia Santoro Meccanica dei fluidi Seconda edizione Soluzione dei problemi Capitolo 8 McGraw-Hill Indice Introduzione e concetti

Dettagli

Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Impianti e Sistemi Aerospaziali CALCOLO D IMPIANTO IDRAULICO

Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Impianti e Sistemi Aerospaziali CALCOLO D IMPIANTO IDRAULICO Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Impianti e Sistemi Aerospaziali CALCOLO D IMPIANTO IDRAULICO 1 1. Premessa La presente relazione riporta il calcolo della rigidezza del comando

Dettagli

1. RETI ANTINCENDIO AD IDRANTI... pag. 2. 1.1 Riferimenti Normativi... pag. 2. 1.2 Generalità sull Impianto... pag. 3

1. RETI ANTINCENDIO AD IDRANTI... pag. 2. 1.1 Riferimenti Normativi... pag. 2. 1.2 Generalità sull Impianto... pag. 3 INDICE 1. RETI ANTINCENDIO AD IDRANTI.................................... pag. 2 1.1 Riferimenti Normativi........................................ pag. 2 1.2 Generalità sull Impianto.......................................

Dettagli

Software Intesys PumpTest

Software Intesys PumpTest Software Intesys PumpTest Descrizione Pagina Banco (Sinottico): visualizzazione stato e misure in tempo reale e comandi manuali: Impostazione manuale dei sensori del banco: range pressione, range portata,

Dettagli

Esercizio 20 - tema di meccanica applicata e macchine a fluido- 2002

Esercizio 20 - tema di meccanica applicata e macchine a fluido- 2002 Esercizio 0 - tema di meccanica applicata e macchine a fluido- 00 er regolare il regime di rotazione di un gruppo elettrogeno, viene calettato sull albero di trasmissione del motore un volano in ghisa.

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

ANALISI E VALUTAZIONE DEL RISPARMIO ENERGETICO SULLE POMPE CENTRIFUGHE REGOLATE MEDIANTE INVERTER

ANALISI E VALUTAZIONE DEL RISPARMIO ENERGETICO SULLE POMPE CENTRIFUGHE REGOLATE MEDIANTE INVERTER ANALISI E VALUTAZIONE DEL RISPARMIO ENERGETICO SULLE POMPE CENTRIFUGHE REGOLATE MEDIANTE INVERTER Drivetec s.r.l. Ufficio Tecnico INTRODUZIONE Riferendoci ad una macchina operatrice centrifuga come una

Dettagli

CONSERVAZIONE DELL ENERGIA MECCANICA

CONSERVAZIONE DELL ENERGIA MECCANICA CONSERVAZIONE DELL ENERGIA MECCANICA L introduzione dell energia potenziale e dell energia cinetica ci permette di formulare un principio potente e universale applicabile alla soluzione dei problemi che

Dettagli

I costi di esercizio negli impianti per le acque reflue - e come ridurli al minimo

I costi di esercizio negli impianti per le acque reflue - e come ridurli al minimo Grundfos Water Journal I costi di esercizio negli impianti per le acque reflue - e come ridurli al minimo Perché preoccuparsi dei costi di esercizio? Perché preoccuparsi dei costi di esercizio degli impianti

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

R.2.3 Relazione tecnica idraulica

R.2.3 Relazione tecnica idraulica Via XXV Aprile, 18 - Rovato COMUNE DI PALAZZOLO SULL OGLIO PROVINCIA DI BRESCIA UPGRADING DEL DEPURATORE COMUNALE DI PALAZZOLO SULL OGLIO PROGETTO DEFINITIVO R.2.3 Relazione tecnica idraulica Rovato, novembre

Dettagli

PIER GINO MEGALE DISPENSE TRATTE DALLE LEZIONI DI IDRAULICA AGRARIA TENUTE PRESSO LA FACOLTÀ DI AGRARIA DELL UNIVERSITÀ DI PISA

PIER GINO MEGALE DISPENSE TRATTE DALLE LEZIONI DI IDRAULICA AGRARIA TENUTE PRESSO LA FACOLTÀ DI AGRARIA DELL UNIVERSITÀ DI PISA PIER GINO MEGALE UADERNI DI IDRAULICA AGRARIA DISPENSE TRATTE DALLE LEZIONI DI IDRAULICA AGRARIA TENUTE PRESSO LA FACOLTÀ DI AGRARIA DELL UNIVERSITÀ DI PISA ANNO ACCADEMICO 006-007 I moderni sistemi di

Dettagli

L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI. Il punto materiale e il corpo rigido. L equilibrio del punto materiale

L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI. Il punto materiale e il corpo rigido. L equilibrio del punto materiale L EQUILIBRIO 1. L EQUILIBRIO DEI SOLIDI Il punto materiale e il corpo rigido Un corpo è in equilibrio quando è fermo e continua a restare fermo. Si intende, per punto materiale, un oggetto così piccolo

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

I VANTAGGI DELLA VARIAZIONE DI VELOCITA NEGLI IMPIANTI DI POMPAGGIO E VENTILAZIONE. Stefano PANI

I VANTAGGI DELLA VARIAZIONE DI VELOCITA NEGLI IMPIANTI DI POMPAGGIO E VENTILAZIONE. Stefano PANI I VANTAGGI DELLA VARIAZIONE DI VELOCITA NEGLI IMPIANTI DI POMPAGGIO E VENTILAZIONE c/o Schneider Electric S.p.A. Via Orbetello 140 10148 TORINO Stefano PANI Sommario 1. Consumo d elettricità 2. Il motore

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

L H 2 O nelle cellule vegetali e

L H 2 O nelle cellule vegetali e L H 2 O nelle cellule vegetali e il suo trasporto nella pianta H 2 O 0.96 Å H O 105 H 2s 2 2p 4 tendenza all ibridizzazione sp 3 H δ+ O δ- δ+ 1.75 Å H legame idrogeno O δ- H H δ+ δ+ energia del legame

Dettagli

Esame di Stato di Istituto Tecnico Industriale A.S. 2004/2005

Esame di Stato di Istituto Tecnico Industriale A.S. 2004/2005 Esame di Stato di Istituto Tecnico Industriale A.S. 2004/2005 Indirizzo: Elettrotecnica e automazione Tema di: Elettrotecnica Una macchina in corrente continua, funzionante da dinamo con eccitazione indipendente,

Dettagli

Le centrali idroelettriche

Le centrali idroelettriche Le centrali idroelettriche 1 Una centrale idroelettrica può definirsi una macchina in grado di trasformare l'energia potenziale dell'acqua, legata al fatto che l'acqua si trova ad un livello superiore

Dettagli

Statica e dinamica dei fluidi. A. Palano

Statica e dinamica dei fluidi. A. Palano Statica e dinamica dei fluidi A. Palano Fluidi perfetti Un fluido perfetto e incomprimibile e indilatabile e non possiede attrito interno. Forza di pressione come la somma di tutte le forze di interazione

Dettagli

Unità automatica di scarico e pompaggio APT14, APT14HC e APT14SHC

Unità automatica di scarico e pompaggio APT14, APT14HC e APT14SHC Pagina 1 di 5 TI-P612-02 ST Ed. 7 IT - 2009, HC e SHC Descrizione Le unità automatiche di scarico e pompaggio Spirax Sarco, HC e SHC funzionano come pompe volumetriche e hanno attacchi filettati o flangiati

Dettagli

Valutazioni di massima sui motori a combustione interna

Valutazioni di massima sui motori a combustione interna Valutazioni di massima sui motori a combustione interna Giulio Cazzoli v 1.0 Maggio 2014 Indice Elenco dei simboli 3 1 Motore ad accensione comandata 4 1.1 Dati........................................

Dettagli

GAS. I gas si assomigliano tutti

GAS. I gas si assomigliano tutti I gas si assomigliano tutti Aeriforme liquido solido GAS Descrizione macroscopica e microscopica degli stati di aggregazione della materia Fornendo energia al sistema, le forze di attrazione tra le particelle

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

UNI 10531 Ventilatori Industriali: Metodi di prova e di accettazione

UNI 10531 Ventilatori Industriali: Metodi di prova e di accettazione CORSO DI SPERIMENTAZIONE E PROVE SULLE MACCHINE Docente Prof. L. Postrioti UNI 10531 Ventilatori Industriali: Metodi di prova e di accettazione 1- Generalità La Norma descrive le procedure di prova delle

Dettagli

Esercizi di Fisica Tecnica 2013-2014. Termodinamica

Esercizi di Fisica Tecnica 2013-2014. Termodinamica Esercizi di Fisica Tecnica 2013-2014 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas ( = 1,29 ed R * = 190 J/(kg K)) si espande da 5 bar e 90 C ad 1 bar. Nell'ipotesi che la trasformazione

Dettagli