LEZIONE ICO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE ICO 12-10-2009"

Transcript

1 LEZIONE ICO Argomento: introduzione alla piattaforma Matlab. Risoluzione numerica di problemi di minimo liberi e vincolati. Lucia Marucci

2 x/optim/optim.shtml

3 Definizione funzione obiettivo in Matlab Definizione della funzione obiettivo : creazione di una MATLAB function: Input Output Modi di scrivere la funzione obiettivo: 1. Creare una funzione anonima nella riga di comando 2. Scrivere un M-file 3. Utilizzo del comando Inline

4 1.Creare una funzione anonima nella riga di comando esempio >>f 2*x^2-3*x+4; >>f(3) ans = 13 >>f 2*x*y; >>f(2,2) ans = 8 Si utilizza quando la f è semplice o quando non si userà in una successiva sessione di MATLAB

5 2. Usando il comando inline Utilizzando il comando inline: Crea una funzione nella linea di comando: Sintassi: f = inline( expr, n ) con >f = inline('2*x^2-3*x+4','x'); >>f(3) ans = 13 >> f = inline('2*x*y', 'x', 'y'); >> f(2,2) ans = 8

6 3. Scrivere un M-file Bisogna aprire un file di Matlab editor function [out1, out2,...] = funname(in1,in2,...) esempio: nell editor square.m function f = square(x) f = x.^2; Nella command window si richiama la square per creare una funzione handle per square. Si può usare questo metodo quando la f(x) è complicata o se si intende riutilizzare la funzione. NOTA BENE attenzione ai path!

7 MINIMIZZAZIONE NON VINCOLATA: fminunc Scopo: trovare il minimo di una funzione multivariabile non vincolata: Sintassi: x è un vettore ed f(x) è una funzione che ritorna uno scalare

8 [x,fval,exitflag,output,grad,hessian] = fminunc(fun,x0,options) INPUT x 0 è punto iniziale di ricerca, scalare, vettore o matrice fun è la funzione obiettivo options: crea attraverso il comando optmiset parametri di ottimizzazione (numero di iterazioni, tolleranza dell algoritmo,ecc..) OUTPUT fval valore della funzione obiettivo nel punto di minimo Exitflag: descrive le condizioni di uscita Output: genera una struttura di uscita che riporta informazioni circa l operazione di ottimizzazione grad: ritorna il valore del gradiente di fun alla soluzione x hessian: ritorna il valore dell hessiano di fun alla soluzione x

9 Input >>x = fminunc (myfun,x0) x0=scelta iniziale; myfun è una Matlab function, ovvero: x = function f = myfun(x) f =...

10 Input >>x = fminunc (myfun,x0,options) Options: Sintassi: options=optimset('param1',value1,'param2',value2,...)

11 Algoritmi utilizzati da fminunc Per default fminunc utilizza algoritmi : Quasi Newton method con BFGS, steepest discendent medium scale: se poniamo nell opzione LargeScale off nel comando optimset Trust region method, Newton method e gradiente coniugato large scale: se l opzione GradObj è on nel comando optimset

12

13

14 Output x: valore ottimo (soluzione del problema) fval: valore della funzione nel punto ottimo exitflag: descrive le condizioni di uscita:» se>0 la funzione converge ad una soluzione x» se=0 l algoritmo non è in grado di ottenere una soluzione nel numero di iterazioni stabilite» se <0 la funzione non converge alla soluzione x output: informazioni circa il processo di ottimizzazione» Iterations: numero di iterazione dell algoritmo» funccount : numero di valutazioni della funzione» Algorithm: algoritmo usato» Step-size» Firstorderopt: norma del gradiente nella soluzione

15

16 Esempio 1: Unconstrained Minimization Problema di minimizzazione della funzione: Passi da effettuare: Generare un M-file che ritorni il valore della funzione Invocare la routine di risoluzione fminunc

17 Step 1: scrittura dell M-file myfun.m Step 2: nella command window chiamo fminunc >>x0=[1 1]; >>[x,fval] =

18 Quasi_Newton

19

20 Minimizziamo con un altro algoritmo: Modifichiamo l M-file:myfun.m fornendo gradiente Creazione di una struttura options

21 trust-region Newton

22 Limiti dell fminunc La funzione da minimizzare deve essere continua Potrebbe determinare soluzioni locali Ottimizzazione di funzioni di variabili reali: x deve essere una variabile reale

23 MINIMIZZAZIONE NON VINCOLATA fminsearch Trova il minimo di una funzione obiettivo multivariabile in assenza di vincoli SENZA CALCOLARE GRADIENTE ALGORITMO: Nelder-Mead simplex direct search Sintassi:

24 x= fminsearch (fun,x0), partendo da un punto di ricerca iniziale tenta di trovare il minimo di fun fun è una funzione descritta nella linea di comando, dal comando inline o da un M.file x= fminsearch (fun,x0,options), tenta la minimizzazione usando il parametro options. Usare optimset per stabilire le opzioni dell algoritmo

25 [x,fval]=fminsearch( ), riporta in fval il valore il valore della funzione obiettivo fun nel valore x [x,fval,exitflag]=fminsearch( ), riporta un valore exitflag che descrive le condizioni di uscita di fminsearch [x,fval,exitflag,output]=fminsearch( ), riporta in output le informazioni inerenti il processo di ottimizzazione. [x,fval,exitflag,output]=fminsearch( P1,P2 ), dove P1 Pn sono parametri della funzione obiettivo

26 Input arguments fun: funzione da minimizzare fun può essere: M.file: con myfun Matlab function Funzione anonima nella linea di comando Options: valgono le stesse considerazioni per fminunc.. ma i più usati sono:

27 Options

28 Output Arguments

29 Esempio 1 Minimizzazione della funzione di Rosenbrock: x0=[-1.2, 1] Presenta minimo (1,1) ed fval=0 -Scriviamo l M.file: function f= myfun(x) f= 100*(x(2)-x(1)^2)^2+(1-x(1))^2; -Passiamo dall M.file alla routine di ottimizzazione: [x,fval] = fminsearch (f, [-1.2, 1] ) OPPURE La definiamo nella command window

30

31 Esempio 2 Se la funzione obiettivo è parametrica: >>f= inline('100*(x(2)-x(1)^2)^2+(a-x(1))^2','x','a') >>a=2; >>options= optimset ('Display','iter','TolX',1e-8); >>[x,fval]= fminsearch (f,[1 2],options,a)

32 Vantaggi e limiti Vantaggi: se f(x) è discontinua, fminsearch è un comando robusto Svantaggi: è in genere meno efficiente di fminunc per problemi di ottimizzazione di ordine maggiore di 2 Ottimizzazione di funzioni di variabili reali: x deve essere una variabile reale

33 MINIMIZZAZIONE VINCOLATA fmincon dove x; b; beq; lb; ub sono vettori, A; Aeq sono matrici; c(x) e ceq(x) sono funzioni vettoriali (cioe ad ogni vettore x associano un vettore) e f e una funzione scalare (cioe ad ogni vettore x associa un numero reale). Le funzioni f(x), c(x) e ceq(x) possono essere non lineari.

34 sintassi input min F(x) vincoli: A*x <= b, Aeq*x= beq C(x) <= 0, Ceq(x) = 0 LB <= x<= UB x=fmincon(fun,x0,a,b) partendo da x0 cerca il minimo x della funzione fun sotto i vincoli lineari A*x <= b. x0 può essere uno scalare, un vettore o una matrice. x=fmincon(fun,x0,a,b,aeq,beq) vincoli lineari Aeq*x = beq e anche A*x <= b. (A=[ ] and B=[ ] se non ci sono disuguaglianze)

35 min F(x) vincoli: A*x <= b, Aeq*x= beq C(x) <= 0, Ceq(x) = 0 LB <= x<= UB x=fmincon(fun,x0,a,b,aeq,beq,lb,ub) Definisce un set di lower e upper per la variabile x, di modo che la soluzione sia trovata nel range LB <= x <= UB. Porre LB(i) = -Inf se x(i) é illimitata inferiormente; porre UB(i) = Inf se x(i) é illimitata superiormente. x = fmincon(fun,x0,a,b,aeq,beq,lb,ub,nonlcon,options) se ci sono anche dei vincoli non lineari definiti in nonlcon e delle opzioni specificate con optimset.

36 sintassi output [x,fval] = fmincon(...) ritorna il valore della funzione Obiettivo raggiunto [x,fval,exitflag] = fmincon(...) [x,fval,exitflag,output] = fmincon(...) [x,fval,exitflag,output,lambda] = fmincon(...) Ritorna una struttura lambda i cui campi contengono I moltiplicatori di Lagrange alla soluzione x [x,fval,exitflag,output,lambda,grad,hessian] =fmincon(...)

37 ALGORITMI -active-set (DEFAULT) -interior-point -trust-region-reflective SE SPECIFICATO MA BISOGNA DARE IL JACOBIANO

38 Esempio 1 Minimizzare f(x)=-x1x2x3 x0 = [10; 10; 10] Vincolo: 0 x1 + 2x2 + 2x Scrivo m file myfun_vin.m function f = myfun_vin(x) f = -x(1) * x(2) * x(3);

39 2. Riscrivo il vincolo riportandolo a due minorazioni x1 2x2 2x3 0 0 x1+ 2x2+ 2x3 72 x + 2x + 2x In questo modo posso formulare i due vincoli, entrambi lineari, come A*X <= b A=[ ; 1 2 2]; b=[0;72]; min F(x) vincoli: A*x <= b, Aeq*x= beq C(x) <= 0, Ceq(x) = 0 LB <= x<= UB

40 3. Chiamo routine fmincon dalla command window >> A=[ ;1 2 2]; >> b=[0;72]; >> x0 = [10; 10; 10]; % Starting guess at the solution >> [x,fval] =

41 Esempio 2 C=10; V=6; X0=[1 1 1]; Mfile nlcon.m per il vincolo non lineare function [C,Ceq]=nlcon(x) C=[ ]; Ceq=[x(1)*x(2)*x(3)-6]; min F(x) vincoli: A*x <= b, Aeq*x= beq C(x) <= 0, Ceq(x) = 0 LB <= x<= UB

42 >>[x,fval,exitflag,output,lambda,grad,hessian]= fmincon(inline('2*10*(x(1)*x(2)+x(1)*x(3)+x(2)*x(3)), x ),[ 1;1;1],[ ],[ ],[ ],[

43

44 Esempio 3

45 M-files: Command window

46 Risoluzione di sistemi di equazioni fsolve e fzero: fsolve : risoluzione di sistemi non lineari di equazioni: con x vettore e F(X) che ritorna un valore vettoriale (determinazione delle radici (zero) di un sistema non lineare di equazioni) Sintassi

47 Input Argument fun: sistema di equazioni non lineari da risolvere: accetta un vettore x e ritorna un vettore F, equazioni non lineari valutate in x. fun può essere richiamata da : M.file: funzione anonima: Jacobiano: in tal modo la funzione fun richiama in un secondo output il valore della matrice J in x.

48 Output Arguments exitflag: Caratteristiche dell algoritmo utilizzato

49 Output: Informazioni circa il processo di ottimizzazione Algoritmo Per default viene utilizzato Trust-region dogleg. Alternativamente, si puo scegliere Levenberg-Marquardt oppure Gauss-Newton.

50 Esempio 1 Sistema di equazioni in 2 incognite: x 0 =[-5, 5,-5] 5] Risolviamo in x: Scriviamo un M.file: Routine di ottimizzazione:

51 Esempio 2 Trovare una matrice X tale che: con x 0 =[1,1;1,1] (matrice) Scrittura dell M.file: Invochiamo la routine di ottimizzazione: x= fval= exitflag=1

52 Limiti Le funzioni del sistema devono essere continue Le variabili devono essere reali Fsolve potrebbe convergere ad un punto che non e uno stazionario; in tal caso converrebbe variare le condizioni iniziali.

53 fzero Soluzioni di una funzione continua di una variabile Sintassi: Descrizione: x=fzero(fun,xo), determina lo zero di fun vicino ad xo, se xo è uno scalare. fun è una funzione descritta da M.file o da una funzione anonima. Il valore x determinato da fzero è vicino al punto per cui la funzione fun cambia segno, o NaN se la ricerca non ammette risultato.

54 Input arguments fun: funzione da risolvere M.file richiamata nella routine dal con Attraverso una funzione anonima: Options: cambiando i valori attraverso il comando optimiset. Ovvero:

55 Options

56 Output arguments

57 Esempi Calcolare il valore di determinando lo zero della funzione seno vicino al punto 3 Trovare lo zero della funzione coseno nell intervallo [1 2]

58 Trovare lo zero della funzione: Scriviamo un M.file: Per calcolare lo zero vicino a 2 : Dal momento che questa è una funzione polinomiale, è possibile usare il comando roots ([ ]), che determina lo stesso zero reale e coppie di zero coniugate

59 Limiti Il comando è in grado di trovare un punto dove la funzione cambia segno. Se la funzione è continua, tale punto è anche un punto per cui la funzione si avvicina al suo zero Se la funzione non è continua, il comando trova punti di discontinuità invece cha la soluzione. Inoltre, la funzione determina lo zero come punto di intersezione di fun con l asse x. Punti per cui la funzione tocca l asse, ma non lo intercetta non sono considerati zero. Esempio la funzione x^2 è una parabola che tocca l asse x nello zero. Non attraversando l asse x, il punto non viene visto come soluzione.

Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali

Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali Tesina di Ottimizzazione Anno Accademico 2011/2012 Optimization Toolbox di Matlab: Studio delle più importanti funzioni

Dettagli

Optimization Toolbox di MATLAB

Optimization Toolbox di MATLAB Università degli studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali Optimization Toolbox di MATLAB Tesina di Ottimizzazione Studente: Prof. Giancarlo Raiconi Anno Accademico 2011/2012 Gianluca

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Introduzione all Optimization Toolbox di MATLAB. Barbara Panicucci Massimo Pappalardo Mauro Passacantando

Introduzione all Optimization Toolbox di MATLAB. Barbara Panicucci Massimo Pappalardo Mauro Passacantando Introduzione all Optimization Toolbox di MATLAB Barbara Panicucci Massimo Pappalardo Mauro Passacantando Indice 1 Introduzione a MATLAB 5 1.1 Avviare MATLAB................................. 5 1.2 Come

Dettagli

Il Toolbox di ottimizzazione di Matlab. Mauro Gaggero

Il Toolbox di ottimizzazione di Matlab. Mauro Gaggero Mauro Gaggero I Toolbox di Matlab I Toolbox di Matlab sono pacchetti software utili per risolvere problemi specifici. Questi pacchetti non fanno parte del kernel vero e proprio di Matlab. Si tratta di

Dettagli

Selezione di un portafoglio di titoli in presenza di rischio. Testo

Selezione di un portafoglio di titoli in presenza di rischio. Testo Selezione di un portafoglio di titoli in presenza di rischio Testo E ormai pratica comune per gli operatori finanziari usare modelli e metodi basati sulla programmazione non lineare come guida nella gestione

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Documentazione esterna al software matematico sviluppato con MatLab

Documentazione esterna al software matematico sviluppato con MatLab Documentazione esterna al software matematico sviluppato con MatLab Algoritmi Metodo di Gauss-Seidel con sovrarilassamento Metodo delle Secanti Metodo di Newton Studente Amelio Francesco 556/00699 Anno

Dettagli

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri Stima di parametri Il gestore di un sito turistico dove si pratica il bungee-jumping deve fornire alla sovrintendenza municipale un documento che riguarda la sicurezza del servizio fornito. Il documento

Dettagli

Grafici tridimensionali

Grafici tridimensionali MatLab Lezione 3 Grafici tridimensionali Creazione di un Grafico 3D (1/4) Si supponga di voler tracciare il grafico della funzione nell intervallo x = [0,5]; y=[0,5] z = e -(x+y)/2 sin(3x) sin(3y) Si può

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

Equazione di Keplero (eqz. nonlineari).

Equazione di Keplero (eqz. nonlineari). Equazione di Keplero (eqz. nonlineari). Risolvere col metodo di Newton, col metodo di bisezione e di punto fisso l equazione di Keplero: E = M + e sin(e) dove e è l eccentricità del pianeta, M l anomalia

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI Ingegneria Meccatronica CONTROLLI AUTOMATICI e AZIONAMENTI ELETTRICI INTRODUZIONE A MATLAB Ing. Alberto Bellini Tel. 0522 522626 e-mail: alberto.bellini@unimore.it

Dettagli

LABORATORIO DI ANALISI DEI SISTEMI

LABORATORIO DI ANALISI DEI SISTEMI LABORATORIO DI ANALISI DEI SISTEMI Si utilizzerà, come strumento di lavoro, un foglio elettronico, il più diffuso Excel o anche quello gratuito di OpenOffice (www.openoffice.org). Tale scelta, pur non

Dettagli

Vuoi ottimizzare? Fallo con Scilab!

Vuoi ottimizzare? Fallo con Scilab! 5 agosto Vuoi ottimizzare? Fallo con Scilab! 20 11 In questo tutorial vi facciamo vedere come Scilab possa essere considerato a tutti gli effetti un potente software di ottimizzazione multiobiettivo e

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Appunti delle esercitazioni di Ricerca Operativa

Appunti delle esercitazioni di Ricerca Operativa Appunti delle esercitazioni di Ricerca Operativa a cura di P. Detti e G. Ciaschetti 1 Esercizi sulle condizioni di ottimalità per problemi di ottimizzazione non vincolata Esempio 1 Sia data la funzione

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Bisezione Metodo di Newton-Raphson

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

Rette e curve, piani e superfici

Rette e curve, piani e superfici Rette e curve piani e superfici ) dicembre 2 Scopo di questo articolo è solo quello di proporre uno schema riepilogativo che metta in luce le caratteristiche essenziali delle equazioni di rette e curve

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2011-2012 Lezione 6 Indice 1 Il metodo bootstrap 2 Esercitazione 3 Interpolazione

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Introduzione al MATLAB c Parte 1

Introduzione al MATLAB c Parte 1 Introduzione al MATLAB c Parte 1 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 1-2 maggio 2007 Outline 1 Cos è il MATLAB Componenti principali di MATLAB 2 Avvio Avviare

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Data una funzione f : [a, b] R si cerca α [a, b] tale che f (α) = 0. I metodi numerici per la risoluzione di questo problema sono metodi iterativi. Teorema Data una funzione continua

Dettagli

Laboratorio Algoritmi 2014 Secondo Semestre

Laboratorio Algoritmi 2014 Secondo Semestre Laboratorio Algoritmi 2014 Secondo Semestre Lunedì 14:30 17:30 Aula 2. Ricevimento: inviare e-mail a frasca@di.unimi.it. 44 ore (9 CFU) Linguaggio di programmazione: MATLAB Esame : progetto e/o prova scritta

Dettagli

INTRODUZIONE A EXCEL ESERCITAZIONE I

INTRODUZIONE A EXCEL ESERCITAZIONE I 1 INTRODUZIONE A EXCEL ESERCITAZIONE I Corso di Idrologia e Infrastrutture Idrauliche Prof. Roberto Guercio Cos è Excel 2 Foglio di calcolo o foglio elettronico è formato da: righe e colonne visualizzate

Dettagli

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A

MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A MATEMATICA GENERALE - (A-D) Prova d esame del 7 febbraio 2012 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Massimi e minimi delle funzioni di più variabili Indice 1 Massimi e minimi liberi 1 Massimi e minimi vincolati 7 3 Soluzioni degli esercizi

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi. Giochi ed equilibri di Nash Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.it 1 1 Notazione e definizione di equilibrio di Nash Si supponga

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

Finestre grafiche. >> figure >> figure(n)

Finestre grafiche. >> figure >> figure(n) Finestre grafiche MATLAB ha anche la possibilità di lavorare con delle finestre grafiche sulle quali si possono fare disegni bidimensionali o tridimensionali. Una finestra grafica viene aperta con il comando

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab

Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla

Dettagli

Matlab: Funzioni. Informatica B. Daniele Loiacono

Matlab: Funzioni. Informatica B. Daniele Loiacono Matlab: Funzioni Informatica B Funzioni A cosa servono le funzioni? 3 x = input('inserisci x: '); fx=1 for i=1:x fx = fx*x if (fx>220) y = input('inserisci y: '); fy=1 for i=1:y fy = fy*y A cosa servono

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Funzioni di più variabili

Funzioni di più variabili Funzioni di più variabili Introduzione Funzioni reali di più variabili reali Una unzione reale di due variabili è una unzione : D R dove il dominio D è un sottoinsieme di R. ESEMPI: - / ln. Considerazioni

Dettagli

Facoltà di Ingegneria Industriale. Matlab/Octave - Esercitazione 3

Facoltà di Ingegneria Industriale. Matlab/Octave - Esercitazione 3 Facoltà di Ingegneria Industriale Laurea in Ingegneria Energetica, Meccanica e dei Trasporti Matlab/Octave - Esercitazione 3 funzioni definizione ed invocazione delle funzioni semantica dell invocazione

Dettagli

Scilab: I Polinomi - Input/Output - I file Script

Scilab: I Polinomi - Input/Output - I file Script Scilab: I Polinomi - Input/Output - I file Script Corso di Informatica CdL: Chimica Claudia d'amato claudia.damato@di.uniba.it Polinomi: Definizione... Un polinomio è un oggetto nativo in Scilab Si crea,

Dettagli

Advanced level. Corso Matlab :

Advanced level. Corso Matlab : Advanced level Corso Matlab : Quinta lezione (Esercitazione, 18/10/13) Samuela Persia, Ing. PhD. Sommario Richiami Teoria Cenni File.m Debug Cenni Financial Toolbox Esercizi: Utilizzo degli m file Utilizzo

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2 3.1 Ottimizzazione lungo direzioni coniugate. Risolvere il seguente problema: minimize f(x 1,x 2 ) = 12x 2 + 4x 2 1 + 4x 2 2 4x 1 x 2 manualmente, utilizzando il metodo delle direzioni coniugate: determinare

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Introduzione allo Scilab Parte 1: numeri, variabili ed operatori elementari

Introduzione allo Scilab Parte 1: numeri, variabili ed operatori elementari Introduzione allo Scilab Parte 1: numeri, variabili ed operatori elementari Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro 6 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33 Docente: Laura Palagi Homework in Ricerca Operativa gruppo n 33 Turni del Personale Martina Conti

Dettagli

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net

LEZIONE DI MATLAB 2.0. Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net LEZIONE DI MATLAB 2.0 Ing.Irene Tagliente E-mail: irene.tagliente@opbg.net Cos è Matlab Il programma MATLAB si è imposto in ambiente ingegneristico come strumento per la simulazione e l'analisi dei sistemi

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

Support Vector Machines introduzione. Vittorio Maniezzo Università di Bologna

Support Vector Machines introduzione. Vittorio Maniezzo Università di Bologna 7 Support Vector Machines introduzione Vittorio Maniezzo Università di Bologna 1 SVM - introduzione Le SV machinessono state sviluppate negli AT&T Bell Laboratoriesda Vapnike colleghi (Boseret al., 1992,

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Introduzione a Matlab

Introduzione a Matlab Introduzione a Matlab 1 Introduzione Matlab (MATrix LABoratory) è un software per il calcolo scientifico, particolarmente sviluppato per quanto riguarda la gestione ed elaborazione di vettori e matrici.

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Indirizzo Giuridico Economico Aziendale

Indirizzo Giuridico Economico Aziendale Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali necessari per il raggiungimento degli obiettivi

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007 Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

MATLAB (1) Introduzione e Operazioni con array

MATLAB (1) Introduzione e Operazioni con array Laboratorio di Informatica per Ingegneria elettrica A.A. 2010/2011 Prof. Sergio Scippacercola MATLAB (1) Introduzione e Operazioni con array N.B. le slide devono essere utilizzate solo come riferimento

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

Esercizi di Matematica. Funzioni e loro proprietà

Esercizi di Matematica. Funzioni e loro proprietà www.pappalardovincenzo.3.it Esercizi di Matematica Funzioni e loro proprietà www.pappalardovincenzo.3.it ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO ESERCIZIO www.pappalardovincenzo.3.it ESERCIZIO

Dettagli

Condizionamento di sistemi lineari.

Condizionamento di sistemi lineari. Condizionamento di sistemi lineari. Ángeles Martínez Calomardo e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata 10 dicembre 2012 Ángeles Martínez Calomardo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Versione 11/03/2004 Contenuto e scopo esercitazione Contenuto esempi di problema di programmazione

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Miglioramento dell analisi di immagine in GRASS tramite segmentazione

Miglioramento dell analisi di immagine in GRASS tramite segmentazione Segmentazione in GRASS Miglioramento dell analisi di immagine in GRASS tramite segmentazione Alfonso Vitti e Paolo Zatelli Dipartimento di Ingegneria Civile ed Ambientale Università di Trento Italy FOSS4G-it

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli