GENERAZIONE DI NUMERI PSEUDOCASUALI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "GENERAZIONE DI NUMERI PSEUDOCASUALI"

Transcript

1 Esame di laboratorio di crittografia Lorenzi Stefano matricola GENERAZIONE DI NUMERI PSEUDOCASUALI 1

2 Indice generale GENERAZIONE DI NUMERI CASUALI...3 Introduzione...3 ALGORITMI DI GENERAZIONE DI NUMERI PSEUDOCASUALI...5 Panoramica sugli algoritmi esistenti...5 Metodo della congruenza lineare...5 Ansi X Blum Blum Shub...8 LibMTPRNG...9 SOFTWARE...10 Presentazione del software...10 Attacchi agli algoritmi...13 Attacco all'algoritmo a congruenza lineare...13 Attacco all'algoritmo Ansi X Input-Base attacks...13 Crittoanalisi...14 Attacco a Blum Blum Shub...14 Bibliografia

3 GENERAZIONE DI NUMERI CASUALI Introduzione Un generatore di numeri casuali è uno strumento capace di fornire una sequenza di numeri casuali, ovvero non deterministici. Questi numeri sono idealmente infiniti e non sono influenzabili da alcun fattore esterno. Tali numeri ricoprono un ruolo importante nella crittografia, basta pensare agli schemi di autenticazione reciproca e nello scambio delle chiavi, dove per prevenire attacchi a replay dei pacchetti vengono utilizzati dei numeri nonce. Un altro esempio di tale importanza è la generazione della chiave pubblica nell'algoritmo RSA. Queste applicazioni danno origine a due requisiti distinti e non necessariamente compatibili: Casualità Imprevedibilità Casualità Un elaboratore non ha la possibilità di generare una sequenza casuale, bensì l unico modo è utilizzare opportuni algoritmi che generano numeri apparentemente casuali. Questi vengono, quindi, chiamati numeri pseudo-casuali, poiché venendo a conoscenza dell algoritmo e del seme (primo elemento) utilizzati è possibile determinare la sequenza che verrà generata. Tali algoritmi per essere considerati generatori casuali in senso statistico devono avere due caratteristiche: Distribuzione uniforme: Generando una quantità elevata di numeri, ognuno di essi deve apparire con una frequenza simile. Indipendenza: non deve essere possibile determinare l'ennesimo numero, guardando gli n-1 numeri. Se è semplice verificare se una sequenza segue o meno una distribuzione uniforme, non è altrettanto semplice dimostrarne l'indipendenza. Per definire l'indipendenza è possibile eseguire diversi test che aiutano ad avere una certa possibilità che i numeri generati siano indipendenti. Nell'ambito della crittografia, la progettazione di algoritmi di numeri che sembrano statisticamente casuali ricoprono un ruolo fondamentale: un esempio è la generazione di numeri primi nella creazione della chiave pubblica in RSA. Per la generazione di tali numeri, un approccio a forza bruta prevede la divisione del numero N per ogni interno dispari minore di N. Ma se N è un numero molto grande (nell'ordine di ), i tempi richiesti sarebbero troppo alti, e questa è una situazione piuttosto comune nella crittografia. 3

4 Per risolvere tale problema esistono algoritmi in grado di verificare se un numero è primo, ad esempio producendo una sequenza di numeri casuali ed eseguendo semplici calcoli. Se tale sequenza è sufficientemente lunga, sarà possibile determinare con una buona sicurezza se un numero è primo. Imprevedibilità Se da una parte è importante generare numeri apparentemente casuali, dall'altra è fondamentale che, data una sequenza, sia impossibile determinare i numeri successivi. In altre parole, ogni numero generato è statisticamente indipendente dai precedenti. Prendiamo come esempio due serie di 1 e 0. 0, 1, 0, 1, 0, 1, 0, 1, 0, , 1, 0, 1, 0, 1, 1, 0, 0, 1,... Apparentemente si è portati a definire la prima sequenza deterministica, poiché si riconosce una certa periodicità o un algoritmo capace di generarla; la seconda sembra essere più casuale e non si trova alcuna regola capace di formarla (quindi non è prevedibile). 4

5 ALGORITMI DI GENERAZIONE DI NUMERI PSEUDOCASUALI Panoramica sugli algoritmi esistenti Esistono diversi algoritmi per la generazione di numeri pseudo-casuali, che si differenziano per il tipo di algoritmo usato. Alcuni si basano su calcoli matematici, altri su sistemi crittografici. Nella quasi totalità, essi producono una sequenza di numeri interi uniformemente distribuiti tra 0 e un certo valore massimo, oppure di numeri reali tra 0 e 1. Questi ultimi si possono sempre ottenere dai primi semplicemente dividendo per il valore massimo, come ad esempio alcune librerie dei linguaggi di programmazione. Prima di essere usato, un generatore deve essere inizializzato assegnando un opportuno valore a un parametro numerico, o gruppo di parametri, che viene chiamato seme (in inglese seed). Ogni volta che si usa lo stesso seme, si otterrà sempre la stessa identica sequenza. Un'attenta analisi matematica è richiesta per assicurare che i numeri generati abbiano le necessarie proprietà statistiche. Robert R. Coveyou dell'oak Ridge National Laboratory ha intitolato un articolo: "La generazione dei numeri casuali è troppo importante per essere lasciata al caso." Metodo della congruenza lineare Tale metodo permette, dato un valore iniziale x0 detto seme, di ottenere una sequenza di numeri pseudo-casuali mediante l applicazione ripetuta della seguente formula: dove: a c m xi x i+1 = (a * x i + c) (MOD m) è un coefficiente intero positivo detto moltiplicatore è un coefficiente intero non negativo detto incremento è un coefficiente intero positivo detto modulo è il generico numero della sequenza Il metodo prende il nome dalla seguente definizione: due numeri x e y si dicono congrui modulo m, e scriveremo x y (mod m), se essi differiscono per un multiplo intero di m, ossia se x (mod m) y (mod m). Il metodo è detto moltiplicativo se c=0, misto se c 0. Se a=1, il metodo è detto additivo. Facciamo degli esempi: partiamo attribuendo le seguenti assegnazioni: 5

6 a=3 c=5 m=11 Se X 0 =3, la sequenza che si ottiene applicando la formula della congruenza modulare è [3, 3, 3, 3,], ossia una sequenza assolutamente non casuale. Le cose cambiano se scegliamo X 0 =1; in questo caso, la sequenza ottenuta è la seguente: 1, 8, 7, 4, 6, 1, 8, 7, 4, 6, 1,... Possiamo notare che i primi 5 numeri vengono riprodotti interamente. Infine, se X 0 =2, si ottiene: 2, 0, 5, 9, 10, 2, 0, 5, 9, 10, 2,...; Anche in questo caso otteniamo una sequenza di 5 numeri ripetuti. Se modifichiamo il valore di a assegnandogli il valore 12, e poniamo X 0 =1, ottieniamo: 1, 6, 0, 5, 10, 4, 9, 3, 8, 2, 7, 1, 6, 0, 5,... Essa è una sequenza di periodo 11 e cioè pari a m, e senza ripetizione di numeri. In questo ultimo esempio è interessante osservare che non solo generiamo 11 numeri tutti diversi e che copriamo l'intero periodo, ma la sequenza si ripete. Questo ci permette di poter generare molti numeri con una distribuzione uniforme. Quindi possiamo sostenere che questo algoritmo ha le seguenti proprietà: 1. l'algoritmo genera l'intero periodo di numeri, ossia prima di ripetersi ha generato tutti i numeri compresi tra 0 e m. 2. La sequenza generata è apparentemente casuale. 3. I calcoli sono eseguiti facilmente da un calcolatore. Come abbiamo potuto osservare, questo algoritmo funziona bene se sono stati scelti dei parametri opportuni. Per quanto riguarda l'implementazione di questo algoritmo su un elaboratore è importante impostare m al valore del massimo intero rappresentabile da quel processore, in modo tale che la sequenza generata abbia un periodo molto ampio, ricordando che il bit più significativo rappresenta il segno. Per processori a 32 bit, un valore utile di m è Per rappresentare tutto il periodo occorre però fare attenzione alla scelta di a e c. Si può dimostrare però che se m è primo e c = 0, allora vengono generati m-1 valori con la sola assenza del valore 0 ( è un numero primo). Purtroppo degli oltre 2 miliardi di numeri a disposizione, solo pochi possono essere scelti per il parametro a (un valore spesso utilizzato per a è 7 5 = 16807) Da tutto ciò si possono ricavare le seguenti osservazioni: La lunghezza massima raggiungibile dalla sequenza generata senza ripetizione 6

7 vale m Particolari scelte di a e c possono ridurre notevolmente la lunghezza utile della sequenza Il valore di X 0 (seme) può essere determinante dalla lunghezza della sequenza E' fondamentale che il periodo sia il più ampio possibile per rendere l'algoritmo più sicuro da eventuali attacchi. E allora necessario individuare dei criteri per assegnare ad a, c, m e al seme dei valori in modo che la sequenza riprodotta sia la più lunga possibile. Alcuni studiosi hanno approfondito tale aspetto e hanno individuato i seguenti criteri necessari e sufficienti che garantiscono l'ottimalità del metodo: 1. I parametri c e m devono essere coprimi cioè MCD(c,m) = 1 2. Ogni divisore primo di m deve dividere (a-1) 3. Se m è multiplo di 4, anche (a-1) lo deve essere. Questi studiosi hanno individuato quindi i seguenti valori nel rispetto dei suddetti criteri: KNUTH m = 2 31 ; a = int (π * 10 8 ) ; c = GOODMAN e MILLER m = ; a = 7 5 ; c = 0 GORDON m = 2 31 ; a = 5 13 ; c = 0 LEORMONT e LEWIS m = 2 31 ; a = ; c = 0 Ansi X9.17 E' uno dei generatori più forti dal punto di vista crittografico. Esso fa uso del Triple-Des in modalità EDE (Encrypt-Decrypt-Encrypt); come input ha un numero random e segreto (generalmente la data e ora del dell'elaboratore) di 64 bit. Infine, ha un valore intero m (random) come seme, e due chiavi per il triple-des. La robustezza di questo algoritmo sta nel fatto che è usato il triple-des per tre volte ed una chiave da 112 bit: questo equivale a nove crittografie DES. Quindi, un ipotetico attaccante dovrebbe violare una grossa quantità di dati. Tale algoritmo può essere rappresentato nel seguente modo R = E[E(T) XOR V] V = E[E(T) XOR R] dove E() = è il TripleDes DT i = Timestamp V i = Initialization Vector R i = random number to be generated 7

8 Blum Blum Shub Questo algoritmo, molto usato, è sostanzialmente un generatore di bit, ed ha dato forse la più forte prova di potenza crittografica. Il funzionamento è il seguente: 1. Bisogna generare due numeri p e q, numeri primi (molto grandi) diversi tra loro e ciascuno congruente a 3 modulo 4 (ossia p e q divisi per 4 avranno resto 3) 2. Si imposta n come p*q 3. Si seleziona il seme,ossia un numero random s, tale che 1<=s<=n-1. Inoltre s deve essere coprimo con n [ossia gcd(s,n)=1] 4. Quindi x 0 s 2 mod n. 5. X i = (X i-1 ) 2 mod n 6. B i = x i mod 2 7. Concatenando i bit ottenuti al punto precedente, si genera un numero della dimensione desidarata. Come per l'algoritmo a congruenza lineare questo algoritmo per essere sicuro deve avere un valore di n molto grande, nell'ordine di 1024 bits. 8

9 LibMTPRNG Matthew Davis e Sameer Niphadkar propongono un algoritmo senza seed, basato sul multithreading e sul non-determinismo. Il loro ragionamento si basa sul fatto che lo scheduling dei thread all'interno di un processo è abbastanza casuale, non esiste una priorità e lo stato di running può dipendere da una molteplicità di eventi. Questo non-determinismo è intensificato dai moderni calcolatori multiprocessore, dove più thread possono girare in parallel. In sostanza, non è prevedibile un modello di comportamento, a meno che lo scheduler non eserciti una grande influenza. Da queste premesse gli autori hanno scritto LibMTPRNG (Multithreaded Pseudo-Random Number Generator Library), una libreria statica sulla falsariga di rand(), che è definita nello standard C99. Si basa su un intero a 32 bit e si associano 2 thread per ogni bit; quando viene richiesto un numero pseudo-casuale, viene rilasciato un mutex su un oggetto condiviso e si fanno partire i primi 32 thread, garantendo un accesso atomico attraverso meccanismi di mutual exclusion. Ciascun thread manipola un solo bit e incrementa un contatore, il quale stabilirà la fine del processo e quindi la disponibilità del numero pseudo-casuale. Una descrizione più dettagliata si trova in un articolo tecnico pubblicato ial seguente indirizzo: articolo che costituisce, a conoscenza del sottoscritto, l'unica documentazione disponibile, oltre naturalmente ai sorgenti. I test di effettiva casualità sono stati condotti seguendo le indicazioni di Some Difficult-topass Tests of Randomness, su sistemi Linux e Solaris. I risultati non sono eccezionali, ma gli autori sostengono che indagando più a fondo i meccanismi paralleli e alcuni eventi, come le race condition, si potrà migliorare questa interessante idea. 9

10 SOFTWARE Presentazione del software Utilizzando gli algoritmi presentati in questo lavoro, ho implementato un software che genera grandi quantità di numeri pseudo casuali. Inoltre, visto che il software è stato implementato in Java, ho utilizzato anche il generatore nativo di numeri casuali di questo linguaggio, ed ho voluto vedere come tali algoritmi funzionano nella pratica. I parametri che ho voluto osservare sono: Se i numeri hanno una distribuzione uniforme Il tempo richiesto nella generazione di queste sequenze Come possiamo vedere dall'immagine, è possibile configurare dei parametri, in particolare: 10

11 Il numero minimo il numero massimo La quantità dei numeri da generare Inoltre per il metodo a congruenza lineare è possibile variare i parametri di input(modulo, moltiplicatore e incremento) E' evidente che qualora decidessi di impostare un range compreso tra 0 e , avrei sempre una distribuzione uniforme. Con range più piccoli, ad esempio tra 0 e 9, il numero verrebbe generato nel seguente modo: X = N mod 10, dove N è il numero generato dall'algoritmo scelto. Questo comporta che si ottiene una distribuzione uniforme solo dopo aver generato una lunga sequenza si numeri: in altre parole, più il range è grande, meno numeri occorrono per avere una distribuzione uniforme. Come possiamo vedere dalle immagini, su range piccoli occorrono almeno numeri per avere una distribuzione uniforme. Questo valore è più o meno uguale per tutti gli algoritmi provati. Figura A : 1000 numeri Figura B: Figura C: Il dato invece che cambia molto è quello inerente al tempo per generare questi numeri. Nella tabella seguente sono riportati i tempi necessari utilizzati dal mio calcolatore per la generazione di un milione di numeri: Congruenza lineare Ansi X9.17 Blum Blum Shub Java Random Java Security 98 millisecondi 32,5 secondi 13 secondi 134 millisecondi 2187 millisecondi È evidente come la complessità del calcolo incida sul tempo. Se da una parte il metodo della congruenza lineare è molto veloce, dall'altra è anche il meno sicuro: infatti, tale sistema dipende principalmente dal seme, e se un ipotetico attaccante volesse violare tale 11

12 algoritmo dovrebbe andare alla ricerca di un solo valore. Dall'altro lato, il metodo Ansi X9.17, seppur decisamente più lento, per venire attaccato necessita di conoscerne il seme, il timestamp, e 2 chiavi del triple des (ben 4 valori). Anche la differenza tra le 2 librerie Java è notevole (ricordo che la libreria Random è poca sicura, è basata sull'algoritmo a congruenza lineare con un seme di 48 bit). Il software è stato sviluppato con la versione 1.6 di Sun Microsystem ed utilzza le librerie JfreeChart reperibili all'indirizzo La figura sottostante riporta il diagramma UML 12

13 Attacchi agli algoritmi Attacco all'algoritmo a congruenza lineare Se l'attaccante conosce il valore di m e 3 numeri consecutivi, allora si può sferrare il seguente attacco: X i+1 (ax i + c) mod m X i+2 (ax i+1 + c) mod m X i+2 - X i+1 (ax i+1 + c - ax i - c) mod m a(x i+1 - X i ) mod m Vediamo un esempio con i seguenti dati: Quindi il parametro a sarà 5. Il parametro c = 1. m=9, X i = 3, X i+1 = 7, X i+2 = 0 (0-7) a(7-3) mod 9 4a 2 mod 9 5 * 3 + c 15 + c mod c mod 9 7 mod 9 Ora che siamo a conoscenza di tutti i parametri, sapremo che dopo i numeri 3, 7 e 0 ci sarà il numero 1, poi il 6, poi il 4,... Attacco all'algoritmo Ansi X9.17 Sono diversi i modi per attaccare questo algoritmo, ma tutti hanno una complessità maggiore rispetto all'attacco visto nel paragrafo precedente Input-Base attacks Un input-base attacks si verifica quando un utente malintenzionato è in grado di utilizzare la conoscenza o il controllo dell'input. Questa tipologia di attacco può essere ulteriormente suddivisa known-input, replayed-input, e chosen-input attacks. Un chosen-input attacks può essere pratico contro smart - card e altri sistemi di crittografia hardware. Replayed-input attacks sono simili ai precedenti, ma richiedono un meno sofisticacazioni di controllo da parte del attaccante. Known-input attacks può essere in ogni situazione in cui alcuni dei elementi di input, possono essere facilmente prevedibili, ad esempio se viene usato il timestamp di un pc in rete, i cui orari sono osservabili dall'attaccante. 13

14 Crittoanalisi Seppur generalmente viene usato il triple-des in modalità EDE, l'algoritmo di crittografia potrebbe anche essere diverso, quindi bisogna essere attenti a quale algoritmo si sceglie e quali conoscenze di crittoanalisi ci sono su quell'algoritmo. Attacco a Blum Blum Shub E' decisamente il più complesso da attaccare tra quelli visti, in particolare perché bisogna fattorizzare n per trovare i valori di p e q, ma come sappiamo la fattorizzazione è uno dei problemi non ancora risolti efficientemente dalla matematica (come la soluzione del logaritmo discreto), non a caso molti sistemi di cifratura si basano su tali presupposti (RSA, El-Gamal). Questo algoritmo però, è un generatore di bit e il numero random è la concatenazione dei bit generati precedentemente, questo comporta che anche qualora venga fattorizzato n, ciò non basta, bisogna infatti fattorizzare tante volte n quanti sono il numero di bit del numero random generato. 14

15 Bibliografia Critttografia e sicurezza delle reti William Stallings McGraw-Hill A. Menezes, P, van Oorschot, S. A. Vanstone - Handbook of Applied Cryptography - CRC Press 1996 (chap 5) Wikipedia 15

La generazioni di numeri casuali. Fisica dell Informazione

La generazioni di numeri casuali. Fisica dell Informazione La generazioni di numeri casuali Fisica dell Informazione Cifrari composti Ottenuti dall applicazione sequenziale dei metodi precedentemente visti. Non sempre sono i migliori. Il più popolare tra i cifrari

Dettagli

Random number generators

Random number generators Statistica computazionale Random number generators www.cash-cow.it Distribuito sotto licenza Creative Common, Share Alike Attribution 2 Indice I. Introduzione II. Processi fisici per la creazione di numeri

Dettagli

metodi crittografici 2006-2007 maurizio pizzonia sicurezza dei sistemi informatici e delle reti

metodi crittografici 2006-2007 maurizio pizzonia sicurezza dei sistemi informatici e delle reti metodi crittografici 1 sommario richiami di crittografia e applicazioni hash crittografici crittografia simmetrica crittografia asimmetrica attacchi e contromisure attacchi tipici key rollover generatori

Dettagli

Robustezza crittografica della PEC

Robustezza crittografica della PEC Robustezza crittografica della PEC Prof. Massimiliano Sala Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia Trento, 21 Novembre 2011 M. Sala (Università degli Studi di Trento)

Dettagli

Lezione 7 Sicurezza delle informazioni

Lezione 7 Sicurezza delle informazioni Lezione 7 Sicurezza delle informazioni Sommario Concetti generali Meccanismi per la sicurezza IT: Crittografia Hash Firma digitale Autenticazione 1 Concetti generali Availability Confidentiality Integrity

Dettagli

Crittografia e sicurezza delle reti. Alberto Marchetti Spaccamela

Crittografia e sicurezza delle reti. Alberto Marchetti Spaccamela Crittografia e sicurezza delle reti Alberto Marchetti Spaccamela Crittografia e sicurezza Sicurezza e crittografia sono due concetti diversi Crittografia tratta il problema della segretezza delle informazioni

Dettagli

! La crittoanalisi è invece la scienza che cerca di aggirare o superare le protezioni crittografiche, accedendo alle informazioni protette

! La crittoanalisi è invece la scienza che cerca di aggirare o superare le protezioni crittografiche, accedendo alle informazioni protette Crittografia Cenni Damiano Carra Università degli Studi di Verona Dipartimento di Informatica La crittografia! Scienza che si occupa di proteggere l informazione rendendola sicura, in modo che un utente

Dettagli

Cenno sui metodi Monte Carlo

Cenno sui metodi Monte Carlo Cenno sui metodi Monte Carlo I metodi probabilistici hanno una lunga storia ma solo dopo il 1944 è iniziato un loro studio sistematico che ha portato a notevoli sviluppi. Attualmente è stato valutato che

Dettagli

RC4 RC4. Davide Cerri. Davide Cerri CEFRIEL - Politecnico di Milano cerri@cefriel.it http://www.cefriel.it/~cerri/

RC4 RC4. Davide Cerri. Davide Cerri CEFRIEL - Politecnico di Milano cerri@cefriel.it http://www.cefriel.it/~cerri/ POLITECNICO DI MILANO CEFRIEL - Politecnico di Milano cerri@cefriel.it http://www.cefriel.it/~cerri/ è un cifrario a flusso progettato da Ron Rivest (la R di RSA) nel 1987. Era un segreto commerciale della

Dettagli

Un po di teoria dei numeri

Un po di teoria dei numeri Un po di teoria dei numeri Applicazione alla crittografia RSA Christian Ferrari Liceo di Locarno Matematica Sommario 1 L aritmetica modulare di Z n Le congruenze L anello Z n Le potenze in Z n e algoritmo

Dettagli

Un analisi dei problemi del WEP

Un analisi dei problemi del WEP ICT Security n.11 Aprile 2003 p. 1 di 6 Un analisi dei problemi del WEP In numeri precedenti di questa rivista sono già apparsi vari articoli che si sono occupati dei problemi di sicurezza del protocollo

Dettagli

Sicurezza nelle applicazioni multimediali: lezione 4, crittografia asimmetrica. Crittografia asimmetrica (a chiave pubblica)

Sicurezza nelle applicazioni multimediali: lezione 4, crittografia asimmetrica. Crittografia asimmetrica (a chiave pubblica) Crittografia asimmetrica (a chiave pubblica) Problemi legati alla crittografia simmetrica Il principale problema della crittografia simmetrica sta nella necessità di disporre di un canale sicuro per la

Dettagli

Architetture Applicative

Architetture Applicative Alessandro Martinelli alessandro.martinelli@unipv.it 6 Marzo 2012 Architetture Architetture Applicative Introduzione Alcuni esempi di Architetture Applicative Architetture con più Applicazioni Architetture

Dettagli

Autenticazione Forte...e uso delle carte

Autenticazione Forte...e uso delle carte Autenticazione Forte...e uso delle carte ...autenticazione forte Challenge and Response (Sfida e risposta) Basato su chiavi segrete e su una funzione unidirezionale Lo scopo è stabilire indirettamente

Dettagli

Altri cifrari a blocchi

Altri cifrari a blocchi Altri cifrari a blocchi Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci RC2 [1989] IDEA (International

Dettagli

Seminario Sull Algoritmo R.S.A.

Seminario Sull Algoritmo R.S.A. Alessandrini Cristian Sicurezza 2003 Introduzione Seminario Sull Algoritmo R.S.A. L algoritmo R.S.A. fa parte degli algoritmi definiti a chiave pubblica oppure asimmetrici. Fu progettato nel 1976/77 da

Dettagli

Fasi di creazione di un programma

Fasi di creazione di un programma Fasi di creazione di un programma 1. Studio Preliminare 2. Analisi del Sistema 6. Manutenzione e Test 3. Progettazione 5. Implementazione 4. Sviluppo 41 Sviluppo di programmi Per la costruzione di un programma

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

LICEO STATALE ENRICO MEDI CON INDIRIZZI:

LICEO STATALE ENRICO MEDI CON INDIRIZZI: Verbale del primo incontro con gli studenti: Martedì 12 Novembre 2013, ore 13:45 16:45 Dopo una breve introduzione alle finalità del Progetto dal titolo Crittografia e crittanalisi, viene illustrato con

Dettagli

Sequence Alignment Algorithms

Sequence Alignment Algorithms Sequence Alignment Algorithms Algoritmi per l Allineamento di Sequenze Relatore: Prof. Giancarlo Mauri Correlatore: Prof. Gianluca Della Vedova Tesi di Laurea di: Mauro Baluda Matricola 038208 Part of

Dettagli

SISTEMI E RETI. Crittografia. Sistemi distribuiti e configurazione architetturale delle applicazioni WEB.

SISTEMI E RETI. Crittografia. Sistemi distribuiti e configurazione architetturale delle applicazioni WEB. SISTEMI E RETI Crittografia. Sistemi distribuiti e configurazione architetturale delle applicazioni WEB. CRITTOGRAFIA La crittografia è una tecnica che si occupa della scrittura segreta in codice o cifrata

Dettagli

Introduzione. Informatica B. Daniele Loiacono

Introduzione. Informatica B. Daniele Loiacono Introduzione Informatica B Perchè studiare l informatica? Perchè ha a che fare con quasi tutto quello con cui abbiamo a che fare ogni giorno Perché è uno strumento fondamentale per progettare l innovazione

Dettagli

Lezione 2: come si descrive il trascorrere del tempo

Lezione 2: come si descrive il trascorrere del tempo Lezione 2 - pag.1 Lezione 2: come si descrive il trascorrere del tempo 2.1. Il tempo: un concetto complesso Che cos è il tempo? Sembra una domanda tanto innocua, eppure Sembra innocua perché, in fin dei

Dettagli

Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza

Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza Prof. Massimiliano Sala MINICORSI 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

Capitolo 8 La sicurezza nelle reti

Capitolo 8 La sicurezza nelle reti Capitolo 8 La sicurezza nelle reti Reti di calcolatori e Internet: Un approccio top-down 4 a edizione Jim Kurose, Keith Ross Pearson Paravia Bruno Mondadori Spa 2008 Capitolo 8: La sicurezza nelle reti

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Scheduling della CPU. Contenuti delle lezioni del 23 e del 26 Marzo 2009. Sequenza alternata di CPU burst e di I/O burst.

Scheduling della CPU. Contenuti delle lezioni del 23 e del 26 Marzo 2009. Sequenza alternata di CPU burst e di I/O burst. Contenuti delle lezioni del 23 e del 26 Marzo 2009 Scheduling della CPU Introduzione allo scheduling della CPU Descrizione di vari algoritmi di scheduling della CPU Analisi dei criteri di valutazione nella

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Anelli a fattorizzazione unica. Domini ad ideali principali. Anelli Euclidei

Anelli a fattorizzazione unica. Domini ad ideali principali. Anelli Euclidei Capitolo 5: Anelli speciali: Introduzione: Gli anelli speciali sono anelli dotati di ulteriori proprietà molto forti che ne rendono agevole lo studio. Anelli euclidei Domini ad ideali principali Anelli

Dettagli

Digital Signature Standard. Corso di Sicurezza A.A. 2006/2007 Luca Palumbo

Digital Signature Standard. Corso di Sicurezza A.A. 2006/2007 Luca Palumbo Digital Signature Standard Corso di Sicurezza A.A. 2006/2007 Luca Palumbo La storia Digital Signature Standard (DSS) è uno standard che descrive un protocollo di crittografia a chiave pubblica per la firma

Dettagli

Sicurezza nelle applicazioni multimediali: lezione 8, sicurezza ai livelli di rete e data-link. Sicurezza ai livelli di rete e data link

Sicurezza nelle applicazioni multimediali: lezione 8, sicurezza ai livelli di rete e data-link. Sicurezza ai livelli di rete e data link Sicurezza ai livelli di rete e data link Sicurezza a livello applicativo Ma l utilizzo di meccanismi di cifratura e autenticazione può essere introdotto anche ai livelli inferiori dello stack 2 Sicurezza

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico Processo di risoluzione di un problema ingegneristico 1. Capire l essenza del problema. 2. Raccogliere le informazioni disponibili. Alcune potrebbero essere disponibili in un secondo momento. 3. Determinare

Dettagli

1 Processo, risorsa, richiesta, assegnazione 2 Concorrenza 3 Grafo di Holt 4 Thread 5 Sincronizzazione tra processi

1 Processo, risorsa, richiesta, assegnazione 2 Concorrenza 3 Grafo di Holt 4 Thread 5 Sincronizzazione tra processi 1 Processo, risorsa, richiesta, assegnazione 2 Concorrenza 3 Grafo di Holt 4 Thread 5 Sincronizzazione tra processi Il processo E' un programma in esecuzione Tipi di processo Stati di un processo 1 indipendenti

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

Introduzione. Classificazione di Flynn... 2 Macchine a pipeline... 3 Macchine vettoriali e Array Processor... 4 Macchine MIMD... 6

Introduzione. Classificazione di Flynn... 2 Macchine a pipeline... 3 Macchine vettoriali e Array Processor... 4 Macchine MIMD... 6 Appunti di Calcolatori Elettronici Esecuzione di istruzioni in parallelo Introduzione... 1 Classificazione di Flynn... 2 Macchine a pipeline... 3 Macchine vettoriali e Array Processor... 4 Macchine MIMD...

Dettagli

Generazione di numeri casuali. Daniela Picin

Generazione di numeri casuali. Daniela Picin Daniela Picin Testi di consultazione Gentle I.E. Random Number Generation and Monte Carlo Methods, 2nd ed. Springer Verlag, 2005 Raj Jain - The Art of Computer Systems Performance Analysis: Techniques

Dettagli

10 - Programmare con gli Array

10 - Programmare con gli Array 10 - Programmare con gli Array Programmazione e analisi di dati Modulo A: Programmazione in Java Paolo Milazzo Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ milazzo milazzo di.unipi.it

Dettagli

I Thread. I Thread. I due processi dovrebbero lavorare sullo stesso testo

I Thread. I Thread. I due processi dovrebbero lavorare sullo stesso testo I Thread 1 Consideriamo due processi che devono lavorare sugli stessi dati. Come possono fare, se ogni processo ha la propria area dati (ossia, gli spazi di indirizzamento dei due processi sono separati)?

Dettagli

Lezione n.19 Processori RISC e CISC

Lezione n.19 Processori RISC e CISC Lezione n.19 Processori RISC e CISC 1 Processori RISC e Superscalari Motivazioni che hanno portato alla realizzazione di queste architetture Sommario: Confronto tra le architetture CISC e RISC Prestazioni

Dettagli

Ottimizzazioni delle prestazioni di un Web server Ottimizzazioni delle prestazioni di un Web server

Ottimizzazioni delle prestazioni di un Web server Ottimizzazioni delle prestazioni di un Web server Pagina 1 di 5 Ottimizzazioni delle prestazioni di un Web server Ottimizzazioni delle prestazioni di un Web server Spesso il server non è in grado di gestire tutto il carico di cui è gravato. Inoltre, una

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio (da un file della Prof.ssa Marchisio, con alcune modifiche e integrazioni) Calcolo combinatorio branca della matematica che studia i modi per raggruppare e/o ordinare, secondo date

Dettagli

La crittografia a chiave pubblica per giocare e imparare: il gioco del codice RSA (parte prima)

La crittografia a chiave pubblica per giocare e imparare: il gioco del codice RSA (parte prima) La crittografia a chiave pubblica per giocare e imparare: il gioco del codice RSA (parte prima) Franco Eugeni, Raffaele Mascella, Daniela Tondini Premessa. Tra i saperi di interesse per tutte le età scolari

Dettagli

L Ultimo Teorema di Fermat per n = 3 e n = 4

L Ultimo Teorema di Fermat per n = 3 e n = 4 Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica L Ultimo Teorema di Fermat per n = 3 e n = 4 Relatore Prof. Andrea Loi Tesi di Laurea

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

Firma digitale e PEC: aspetti crittografici e sicurezza

Firma digitale e PEC: aspetti crittografici e sicurezza Firma digitale e PEC: aspetti crittografici e sicurezza Prof. Massimiliano Sala Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia Trento, 17 Febbraio 2012 M. Sala (Università

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

Introduzione. Il principio di localizzazione... 2 Organizzazioni delle memorie cache... 4 Gestione delle scritture in una cache...

Introduzione. Il principio di localizzazione... 2 Organizzazioni delle memorie cache... 4 Gestione delle scritture in una cache... Appunti di Calcolatori Elettronici Concetti generali sulla memoria cache Introduzione... 1 Il principio di localizzazione... 2 Organizzazioni delle memorie cache... 4 Gestione delle scritture in una cache...

Dettagli

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011 RAPPRESENTAZIONE DEI NUMERI BINARI Corso di Fondamenti di Informatica AA 2010-2011 Prof. Franco Zambonelli Numeri interi positivi Numeri interi senza segno Caratteristiche generali numeri naturali (1,2,3,...)

Dettagli

SEQUENZE DI NUMERI PSEUDO- CASUALI

SEQUENZE DI NUMERI PSEUDO- CASUALI SEQUENZE DI NUMERI PSEUDO- CASUALI Test Statistici sulle Sequenze Pseudo Casuali E di fondamentale importanza per una buona riuscita della SIMULAZIONE ( affidabilità dei risultati), che le sequenze pseudo

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Implementazione dei monitor tramite semafori Attesa condizionale Sincronizzazione nei sistemi operativi reali Transazioni atomiche

Implementazione dei monitor tramite semafori Attesa condizionale Sincronizzazione nei sistemi operativi reali Transazioni atomiche Implementazione dei monitor tramite semafori Attesa condizionale Sincronizzazione nei sistemi operativi reali Transazioni atomiche 5.1 Implementazione dei monitor con i semafori Un monitor è un tipo di

Dettagli

Crittografia in Java

Crittografia in Java Crittografia in Java di Oreste Delitala Progetto di Computer Security 2013-2014 Introduzione La crittografia è un particolare processo grazie al quale, per mezzo di sofisticati algoritmi, è possibile trasformare

Dettagli

Cifratura a chiave pubblica Sicurezza nelle reti di TLC - Prof. Marco Listanti - A.A. 2008/2009

Cifratura a chiave pubblica Sicurezza nelle reti di TLC - Prof. Marco Listanti - A.A. 2008/2009 Cifratura a chiave pubblica Crittografia a chiave privata Chiave singola Crittografia simmetrica La stessa chiave è utilizzata sia per la cifratura che per la decifratura dei messaggi La chiave rappresenta

Dettagli

LA DISTRIBUZIONE DI PROBABILITÀ DEI RITORNI AZIONARI FUTURI SARÀ LA MEDESIMA DEL PASSATO?

LA DISTRIBUZIONE DI PROBABILITÀ DEI RITORNI AZIONARI FUTURI SARÀ LA MEDESIMA DEL PASSATO? LA DISTRIBUZIONE DI PROBABILITÀ DEI RITORNI AZIONARI FUTURI SARÀ LA MEDESIMA DEL PASSATO? Versione preliminare: 25 Settembre 2008 Nicola Zanella E-Mail: n.zanella@yahoo.it ABSTRACT In questa ricerca ho

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.

Dettagli

La codifica dell informazione

La codifica dell informazione La codifica dell informazione Parte I Sui testi di approfondimento: leggere dal Cap. del testo C (Console, Ribaudo):.,. fino a pg.6 La codifica delle informazioni Un calcolatore memorizza ed elabora informazioni

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Tavola riepilogativa degli insiemi numerici

Tavola riepilogativa degli insiemi numerici N : insieme dei numeri naturali Z : insieme dei numeri interi Q : insieme dei numeri razionali I : insieme dei numeri irrazionali R : insieme dei numeri reali Tavola riepilogativa degli insiemi numerici

Dettagli

RETI DI CALCOLATORI. Crittografia. La crittografia

RETI DI CALCOLATORI. Crittografia. La crittografia RETI DI CALCOLATORI Crittografia La crittografia La crittografia è la scienza che studia la scrittura e la lettura di messaggi in codice ed è il fondamento su cui si basano i meccanismi di autenticazione,

Dettagli

La matematica dell orologio

La matematica dell orologio La matematica dell orologio Un aritmetica inusuale: I numeri del nostro ambiente sono: 0,1,2,...,11 e corrispondono alle ore di un nostro orologio Le operazioni sono intese in questo modo: 1 somma: a+b

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

La programmazione. Sviluppo del software

La programmazione. Sviluppo del software La programmazione problema Sviluppo del software idea (soluzione informale) algoritmo (soluzione formale) programma (traduzione dell algoritmo in una forma comprensibile da un elaboratore elettronico)

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

La crittografia a curve elittiche e applicazioni

La crittografia a curve elittiche e applicazioni La crittografia a curve elittiche e applicazioni Dott. Emanuele Bellini Torino 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia

Dettagli

Laboratorio di Programmazione 2

Laboratorio di Programmazione 2 Laboratorio di Programmazione 2 Docente: Luca Forlizzi Orario: lun. 15:00-17:00, mar. 17:00-19:00, gio. 17:00-19:00 Ricevimento: lun. 17:00-18:00, mar. 16:00-17:00 Contatti: ricevimento (Coppito 2, stanza

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Cifrari simmetrici Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci canale

Dettagli

Linguaggi e Paradigmi di Programmazione

Linguaggi e Paradigmi di Programmazione Linguaggi e Paradigmi di Programmazione Cos è un linguaggio Definizione 1 Un linguaggio è un insieme di parole e di metodi di combinazione delle parole usati e compresi da una comunità di persone. È una

Dettagli

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio?

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio? Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile

Dettagli

Aritmetica dei Calcolatori 2

Aritmetica dei Calcolatori 2 Laboratorio di Architettura 13 aprile 2012 1 Operazioni bit a bit 2 Rappresentazione binaria con segno 3 Esercitazione Operazioni logiche bit a bit AND OR XOR NOT IN OUT A B A AND B 0 0 0 0 1 0 1 0 0 1

Dettagli

Stimare il WCET Metodo classico e applicazione di un algoritmo genetico

Stimare il WCET Metodo classico e applicazione di un algoritmo genetico Stimare il WCET Metodo classico e applicazione di un algoritmo genetico Sommario Introduzione Definizione di WCET Importanza del WCET Panoramica dei classici metodi per calcolare il WCET [1] Utilizzo di

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

I numeri semiprimi e i numeri RSA. come loro sottoinsieme

I numeri semiprimi e i numeri RSA. come loro sottoinsieme I numeri semiprimi e i numeri RSA come loro sottoinsieme Francesco Di Noto, Michele Nardelli Abstract In this paper we show some connections between semi-primes numbers and RSA numbers. Riassunto In questo

Dettagli

Guida al livellamento delle risorse con logica Critical Chain (1^ parte)

Guida al livellamento delle risorse con logica Critical Chain (1^ parte) Paolo Mazzoni 2011. E' ammessa la riproduzione per scopi di ricerca e didattici se viene citata la fonte completa nella seguente formula: "di Paolo Mazzoni, www.paolomazzoni.it, (c) 2011". Non sono ammesse

Dettagli

IMSV 0.8. (In Media Stat Virtus) Manuale Utente

IMSV 0.8. (In Media Stat Virtus) Manuale Utente Introduzione IMSV 0.8 (In Media Stat Virtus) Manuale Utente IMSV è una applicazione che calcola che voti può'prendere uno studente negli esami che gli mancano per ottenere la media che desidera. Importante:

Dettagli

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti

Guardiamo ora però la cosa da un altro punto di vista analizzando il seguente grafico a forma di torta. La torta in 5 parti L EQUIVALENZA FRA I NUMERI RAZIONALI (cioè le frazioni), I NUMERI DECIMALI (quelli spesso con la virgola) ED I NUMERI PERCENTUALI (quelli col simbolo %). Ora vedremo che ogni frazione (sia propria, che

Dettagli

Sistemi di Controllo Real Time

Sistemi di Controllo Real Time Sistemi di Controllo Real Time Automazione 13/10/2015 Vincenzo Suraci STRUTTURA DEL NUCLEO TEMATICO SISTEMI REAL TIME CLASSIFICAZIONE DEI SISTEMI REAL TIME PARALLELISMO E PROGRAMMAZIONE CONCORRENTE SISTEMI

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Networking Wireless con Windows XP

Networking Wireless con Windows XP Networking Wireless con Windows XP Creare una rete wireless AD HOC Clic destro su Risorse del computer e quindi su Proprietà Clic sulla scheda Nome computer e quindi sul pulsante Cambia Digitare il nome

Dettagli

Generatori di numeri pseudo-random. Giorgia Rossi Fabio Bottoni Giacomo Albanese

Generatori di numeri pseudo-random. Giorgia Rossi Fabio Bottoni Giacomo Albanese Generatori di numeri pseudo-random Giorgia Rossi Fabio Bottoni Giacomo Albanese Sommario 1) Introduzione ai generatori di numeri pseudocasuali (PRNG). 2) Il generatore Fortuna. 3) Approccio pratico: la

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

PROGETTO LAUREE SCIENTIFICHE -MATEMATICA 2006/2007 Modelli Matematici per la Società Incontro del 15.02.07

PROGETTO LAUREE SCIENTIFICHE -MATEMATICA 2006/2007 Modelli Matematici per la Società Incontro del 15.02.07 PROGETTO LAUREE SCIENTIFICHE -MATEMATICA 2006/2007 Modelli Matematici per la Società Incontro del 15.02.07 CODICI MONOALFABETICI E ANALISI DELLE FREQUENZE (organizzata da Francesca Visentin) Riprendiamo

Dettagli

2. I THREAD. 2.1 Introduzione

2. I THREAD. 2.1 Introduzione 2. I THREAD 2.1 Introduzione Il tipo di parallelismo che è opportuno avere a disposizione nelle applicazioni varia in base al grado di cooperazione necessaria tra le diverse attività svolte in parallelo:

Dettagli

Numeri Primi e Applicazioni crittografiche

Numeri Primi e Applicazioni crittografiche Numeri Primi e Applicazioni crittografiche Andrea Previtali Dipartimento di Matematica e Fisica Università dell Insubria-Como http://www.unico.it/matematica/previtali andrea.previtali@uninsubria.it Corsi

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Il sistema di crittografia NTRU

Il sistema di crittografia NTRU Il sistema di crittografia NTRU Stefano Vaccari 2148 061247 Relazione per il corso di Sistemi Informativi II Tecnologie per la Sicurezza Luglio 2003 1 Crittografia a chiave pubblica Tra i sistemi di protezione

Dettagli

LA RICERCA OPERATIVA

LA RICERCA OPERATIVA LA RICERCA OPERATIVA Il termine Ricerca Operativa, dall inglese Operations Research, letteralmente ricerca delle operazioni, fu coniato per esprimere il significato di determinazione delle attività da

Dettagli

I THREAD O PROCESSI LEGGERI Generalità

I THREAD O PROCESSI LEGGERI Generalità I THREAD O PROCESSI LEGGERI Generalità Thread: segmento di codice (funzione) Ogni processo ha un proprio SPAZIO DI INDIRIZZAMENTO (area di memoria) Tutti i thread genereti dallo stesso processo condividono

Dettagli

Logica e geometria con il linguaggio Logo

Logica e geometria con il linguaggio Logo Logica e geometria con il linguaggio Logo Classe: III, IV e V primaria Argomento: geometria e logica Autori: Guido Gottardi e Alberto Battaini Introduzione: senza la pretesa di redigere un trattato sul

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli