Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 7 Febbraio 2005, ore 15.00

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 7 Febbraio 2005, ore 15.00"

Transcript

1 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 7 Febbraio 2005, ore NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome: Corso di laurea e anno: Matricola: Firma: Nota: Nel seguito si indicherà come Massima Dimensione dei Dati (MDD), la massima dimensione del payload dati di un segmento TCP. Si ricorda che il segmento comprende un header (di dimensione pari a 20 byte, salvo eventuali opzioni presenti) e un payload contenente i dati provenienti dall applicazione. Quesito 1a Nella rete rappresentata nella figura sottostante client e server impiegano il protocollo TCP per lo scambio di dati con MDD pari a 400 byte. La velocità della linea è pari a 640 kbps ed il tempo di propagazione è pari a 10 ms. 640kbps 10ms Si risponda ai seguenti quesiti, trascurando tutti gli header (IP e TCP). a) Qual è il valore di finestra minimo (espresso in numero di segmenti) che permette di impiegare con continuità il collegamento. Qual è la corrispondente dimensione in byte? b) Qual è il throughput ottenibile con una finestra pari a 1200 byte nello stesso scenario? Qual è il throughput ottenibile con una finestra pari a 2500 byte nello stesso scenario? e nel caso in cui la velocità di trasmissione del collegamento fosse infinita? c) Considerando una finestra pari a 1000 byte e mantenendo la stesso valore di MDD, calcolare il tempo necessario per il trasferimento di una pagina web in cui la richiesta HTTP ha dimensione pari a 40 e la risposta, inclusa la pagina web, ha dimensione pari a 4300 byte. d) Qual è la dimensione minima della finestra, espressa in byte, che permette di impiegare con continuità il collegamento, qualora si considerino anche gli header IP (20 byte) e TCP (20 byte) e si mantenga lo stesso valore di MDD? È maggiore o minore del corrispondente valore calcolato nel punto a)? Soluzione a) Da W*MDD = C * RTT + MDD si ottiene W = C*RTT/MDD + 1 = 640 * 10 3 * 20 * 10-3 / (8*400) + 1 = 5 segmenti.

2 La dimensione in byte è pari a 5*400 = 2000 byte. b) Se con una finestra di 2000 byte si impiega con continuità la linea, con una finestra pari a 1200 byte si potrà impiegare la linea per una frazione di tempo pari a 1200/2000 = 3/5 del totale, quindi si trasmette con un throughput medio pari a 3/5 * 640 kbps = 384kbps. Con una finestra pari a 2500 byte non si ottiene alcun vantaggio nello scenario in questione, quindi il throughput sarà sempre di 640 kbps. Nel caso in cui la velocità di trasmissione del collegamento fosse infinita, il massimo throughput sarebbe pari a 2500*8/(20*10-3 ) = 1 Mbps. c) Dimensione della richiesta: GSIZE = 40 byte, Dimensione della risposta: RSIZE = 4300 byte, Dimensione della finestra: WSIZE = 1000 byte, Tempo di recupero della pagina: RT RT = 2 RTT + GSIZE/C + RSIZE/C + RSIZE/WSIZE-1 * (RTT-(WSIZE-MDD)/C) d) In tal caso la dimensione massima del pacchetto sarà di 440 byte, di cui 400 byte di dati applicativi (quelli che considera la finestra). Il canale sarà occupato anche dalla trasmissione degli header, ma occorre sempre poter trasmettere 2000 byte ininterrottamente. I 2000 byte corrispondono a 5 pacchetti, con un overhead totale dovuto agli header pari a 5*40 = 200 byte, quindi occorre poter trasmettere consecutivamente almeno 1800 byte di dati applicativi. Il valore della finestra è pari proprio a 1800 byte.

3 Quesito 1b Nella rete rappresentata nella figura sottostante client e server impiegano il protocollo TCP per lo scambio di dati con MDD pari a 800 byte. La velocità della linea è pari a 960 kbps ed il tempo di propagazione è pari a 10 ms. 960kbps 10ms Si risponda ai seguenti quesiti, trascurando tutti gli header (IP e TCP). a) Qual è il valore di finestra minimo (espresso in numero di segmenti) che permette di impiegare con continuità il collegamento. Qual è la corrispondente dimensione in byte? b) Qual è il throughput ottenibile con una finestra pari a 2400 byte nello stesso scenario? Qual è il throughput ottenibile con una finestra pari a 4000 byte nello stesso scenario? e nel caso in cui la velocità di trasmissione del collegamento fosse infinita? c) Considerando una finestra pari a 1600 byte e mantenendo la stesso valore di MDD, calcolare il tempo necessario per il trasferimento di una pagina web in cui la richiesta HTTP ha dimensione pari a 40 e la risposta, inclusa la pagina web, ha dimensione pari a 7500 byte. d) Qual è la dimensione minima della finestra, espressa in byte, che permette di impiegare con continuità il collegamento, qualora si considerino anche gli header IP (20 byte) e TCP (20 byte) e si mantenga lo stesso valore di MDD? È maggiore o minore del corrispondente valore calcolato nel punto a)? Soluzione a) Da W*MDD = C * RTT + MDD si ottiene W = C*RTT/MDD + 1 = 960 * 10 3 * 20 * 10-3 / (8*800) + 1 = 4 segmenti. La dimensione in byte è pari a 5*800 = 3200 byte. b) Se con una finestra di 3200 byte si impiega con continuità la linea, con una finestra pari a 2400 byte si potrà impiegare la linea per una frazione di tempo pari a 2400/3200 = 3/4 del totale, quindi si trasmette con un throughput medio pari a 3/4 * 960 kbps = 720 kbps. Con una finestra pari a 4000 byte non si ottiene alcun vantaggio nello scenario in questione, quindi il throughput sarà sempre di 960 kbps. Nel caso in cui la velocità di trasmissione del collegamento fosse infinita, il massimo throughput sarebbe pari a 4000*8/(20*10-3 ) = 1.6 Mbps. c) Dimensione della richiesta: GSIZE = 40 byte, Dimensione della risposta: RSIZE = 7500 byte, Dimensione della finestra: WSIZE = 1600 byte, Tempo di recupero della pagina: RT RT = 2 RTT + GSIZE/C + RSIZE/C + RSIZE/WSIZE-1 * (RTT-(WSIZE-MDD)/C)

4 d) In tal caso la dimensione massima del pacchetto sarà di 840 byte, di cui 800 byte di dati applicativi (quelli che considera la finestra). Il canale sarà occupato anche dalla trasmissione degli header, ma occorre sempre poter trasmettere 3200 byte ininterrottamente. I 3200 byte corrispondono a 4 pacchetti, con un overhead totale dovuto agli header pari a 4*40 = 160 byte, quindi occorre poter trasmettere consecutivamente almeno 3040 byte di dati applicativi. Il valore della finestra è pari proprio a 3040 byte. Quesito 1c Nella rete rappresentata nella figura sottostante client e server impiegano il protocollo TCP per lo scambio di dati con MDD pari a 800 byte. La velocità della linea è pari a 320 kbps ed il tempo di propagazione è pari a 40 ms. 320kbps 40ms Si risponda ai seguenti quesiti, trascurando tutti gli header (IP e TCP). a) Qual è il valore di finestra minimo (espresso in numero di segmenti) che permette di impiegare con continuità il collegamento. Qual è la corrispondente dimensione in byte? b) Qual è il throughput ottenibile con una finestra pari a 1200 byte nello stesso scenario? Qual è il throughput ottenibile con una finestra pari a 4500 byte nello stesso scenario? e nel caso in cui la velocità di trasmissione del collegamento fosse infinita? c) Considerando una finestra pari a 2000 byte e mantenendo la stesso valore di MDD, calcolare il tempo necessario per il trasferimento di una pagina web in cui la richiesta HTTP ha dimensione pari a 40 e la risposta, inclusa la pagina web, ha dimensione pari a 8700 byte. d) Qual è la dimensione minima della finestra, espressa in byte, che permette di impiegare con continuità il collegamento, qualora si considerino anche gli header IP (20 byte) e TCP (20 byte) e si mantenga lo stesso valore di MDD? È maggiore o minore del corrispondente valore calcolato nel punto a)? Soluzione a) Da W*MDD = C * RTT + MDD si ottiene W = C*RTT/MDD + 1 = 320 * 10 3 * 80 * 10-3 / (8*800) + 1 = 5 segmenti. La dimensione in byte è pari a 5*800 = 4000 byte. b) Se con una finestra di 4000 byte si impiega con continuità la linea, con una finestra pari a 1200 byte si potrà impiegare la linea per una frazione di tempo pari a 1200/4000 = 3/10 del totale, quindi si trasmette con un throughput medio pari a 3/10 * 320 kbps = 96kbps. Con una finestra pari a 4500 byte non si ottiene alcun vantaggio nello scenario in questione, quindi il throughput sarà sempre di 320 kbps. Nel caso in cui la velocità di

5 trasmissione del collegamento fosse infinita, il massimo throughput sarebbe pari a 4500*8/(80*10-3 ) = 450 kbps. c) Dimensione della richiesta: GSIZE = 40 byte, Dimensione della risposta: RSIZE = 8700 byte, Dimensione della finestra: WSIZE = 2000 byte, Tempo di recupero della pagina: RT RT = 2 RTT + GSIZE/C + RSIZE/C + RSIZE/WSIZE-1 * (RTT-(WSIZE-MDD)/C) d) In tal caso la dimensione massima del pacchetto sarà di 840 byte, di cui 800 byte di dati applicativi (quelli che considera la finestra). Il canale sarà occupato anche dalla trasmissione degli header, ma occorre sempre poter trasmettere 4000 byte ininterrottamente. I 4000 byte corrispondono a 5 pacchetti, con un overhead totale dovuto agli header pari a 5*40 = 200 byte, quindi occorre poter trasmettere consecutivamente almeno 3800 byte di dati applicativi. Il valore della finestra è pari proprio a 3800 byte. Quesito 1d Nella rete rappresentata nella figura sottostante client e server impiegano il protocollo TCP per lo scambio di dati con MDD pari a 400 byte. La velocità della linea è pari a 240 kbps ed il tempo di propagazione è pari a 20 ms. 240kbps Si risponda ai seguenti quesiti, trascurando tutti gli header (IP e TCP). a) Qual è il valore di finestra minimo (espresso in numero di segmenti) che permette di impiegare con continuità il collegamento. Qual è la corrispondente dimensione in byte? b) Qual è il throughput ottenibile con una finestra pari a 1200 byte nello stesso scenario? Qual è il throughput ottenibile con una finestra pari a 2500 byte nello stesso scenario? e nel caso in cui la velocità di trasmissione del collegamento fosse infinita? c) Considerando una finestra pari a 800 byte e mantenendo la stesso valore di MDD, calcolare il tempo necessario per il trasferimento di una pagina web in cui la richiesta HTTP ha dimensione pari a 40 e la risposta, inclusa la pagina web, ha dimensione pari a 3500 byte. d) Qual è la dimensione minima della finestra, espressa in byte, che permette di impiegare con continuità il collegamento, qualora si considerino anche gli header IP (20 byte) e TCP (20 byte) e si mantenga lo stesso valore di MDD? È maggiore o minore del corrispondente valore calcolato nel punto a)? Soluzione 20ms

6 a) Da W*MDD = C * RTT + MDD si ottiene W = C*RTT/MDD + 1 = 240 * 10 3 * 40 * 10-3 / (8*400) + 1 = 4 segmenti. La dimensione in byte è pari a 4*400 = 1600 byte. b) Se con una finestra di 1600 byte si impiega con continuità la linea, con una finestra pari a 1200 byte si potrà impiegare la linea per una frazione di tempo pari a 1200/1600 = 3/4 del totale, quindi si trasmette con un throughput medio pari a 3/4 * 240 kbps = 180 kbps. Con una finestra pari a 2500 byte non si ottiene alcun vantaggio nello scenario in questione, quindi il throughput sarà sempre di 240 kbps. Nel caso in cui la velocità di trasmissione del collegamento fosse infinita, il massimo throughput sarebbe pari a 2500*8/(40*10-3 ) = 500 kbps. c) Dimensione della richiesta: GSIZE = 40 byte, Dimensione della risposta: RSIZE = 3500 byte, Dimensione della finestra: WSIZE = 800 byte, Tempo di recupero della pagina: RT RT = 2 RTT + GSIZE/C + RSIZE/C + RSIZE/WSIZE-1 * (RTT-(WSIZE-MDD)/C) d) In tal caso la dimensione massima del pacchetto sarà di 440 byte, di cui 400 byte di dati applicativi (quelli che considera la finestra). Il canale sarà occupato anche dalla trasmissione degli header, ma occorre sempre poter trasmettere 1600 byte ininterrottamente. I 1600 byte corrispondono a 4 pacchetti, con un overhead totale dovuto agli header pari a 4*40 = 160 byte, quindi occorre poter trasmettere consecutivamente almeno 1440 byte di dati applicativi. Il valore della finestra è pari proprio a 1440 byte.

7 Quesito 2 Relativamente al protocollo UDP F il software UDP effettua la frammentazione dello stream dati proveniente dall applicazione F con l impiego associato del protocollo RTP viene garantita una velocità minima di trasmissione V può essere integrato dal protocollo RTP per il supporto della trasmissione di contenuti multimediali V nell header UDP sono contenuti solo i campi con i numeri di porta, la checksum e la lunghezza del datagram F il protocollo UDP è orientato alla connessione F ai fini del calcolo della checksum può essere trasmessa anche un estensione dell header chiamata pseudoheader V l header UDP ha dimensione minore dell header UDP

8 Quesito 3 Si raffiguri lo scambio (o uno dei possibili scambi) di segmenti tra un client e un server, mostrando in particolare i valori dei flag SYN, ACK, FIN, ed il contenuto dei campi sequence number, acknowledgement number, window. Si assuma: MDD pari a 200 byte; buffer presso client e server pari a 300 byte; che la finestra impiegata dal TCP sia quella di ricezione dichiarata dal TCP remoto; che il tempo di trasmissione sia trascurabile rispetto al tempo di propagazione (quindi la trasmissione consecutiva di un numero arbitrario di segmenti si conclude sempre prima della ricezione dell ack relativo al primo segmento); che il client debba inviare una richiesta di 30 byte e il server risponda con una risposta di 350 byte; lettura di tutti i dati del buffer da parte dell applicazione server immediata (non appena arrivano i dati); lettura di tutti i dati del buffer da parte dell applicazione client solo dopo l invio dell ack relativo al secondo segmento contenente dati ricevuto dal server; numero di sequenza iniziale scelto dal client pari a 200, numero di sequenza iniziale scelto dal server pari a 350. Si suggerisce di ricostruire prima la sequenza di scambi sulla base della quantità di dati da scambiare e del valore della finestra, e poi di completare con i flag e il contenuto dei campi. Qualora non si riesca a ricostruire la sequenza si svolga l esercizio assumendo per il TCP una modalità di funzionamento stop&wait, ignorando quindi le finestre di ricezione ed assumendo immediata la lettura dei dati da parte delle applicazioni.

9 CLIENT SERVER SYN SYN, ACK 30 byte FIN 200 byte 200 byte 100 byte 2 segmento dati 300 byte 0 byte win = 100 win = 0 win = byte FIN Si noti che dopo l ack inviato dal client in corrispondenza del primo segmento dati ricevuto, il server non potrà inviare dati, perché l ack indica uno spazio disponibile nel buffer pari a 100 byte ma ci sono già 100 byte in volo (cioè inviati, ma non ancora confermati) nel secondo segmento.

10 CLIENT SERVER seq=200, ack=118, win=300, SYN seq=350, ack=201, win=300,syn, ACK seq=201, ack=351, win=300, ACK, FIN; byte: seq=232, ack=551, win=100, ACK; byte: _ seq=232, ack=651, win=0, ACK; byte: _ seq=351, ack=232, win=300, ACK; byte: seq=551, ack=232, win=300, ACK; byte: seq=232, ack=651, win=300, ACK; byte: _ seq=232, ack=702, win=300, ACK; byte: _ seq=651, ack=232, win=300, ACK, FIN; byte:

11 Quesito 4 Nel protocollo TCP relativamente al controllo degli errori F vengono impiegati Negative ACKnowlege espliciti (NACK) V è previsto che quando il timer associato ad un segmento scade, questo venga ritrasmesso V il mittente potrebbe non aver modo di distinguere la perdita di un pacchetto dalla perdita dell ack corrispondente F il timeout di ritrasmissione viene stabilito all inizio della connessione V il timeout di ritrasmissione, in base all algoritmo di Jacobson, aumenta all aumentare del RTT V il timeout di ritrasmissione, in base all algoritmo di Jacobson, aumenta all aumentare della congestione nella rete Quesito 5 Definire il Persistent HTTP e il pipelining delle richieste HTTP ed indicarne i vantaggi. Quesito 6a Illustrare il problema della silly window e la relativa soluzione proposta da Clark. Quesito 6b Illustrare l algoritmo di Nagle e il problema che questo cerca di risolvere. Quesito 7 Nel caso di pipelining delle richieste HTTP perché è necessario specificare nelle risposte la lunghezza del contenuto mediante l'header Content-Length? non potrebbe il client capire, per esempio, che la prima risposta è terminata quando riceve l'header della seconda risposta?

Prova in itinere - Rete Internet (ing. Giovanni Neglia) Mercoledì 23 Maggio 2007, ore 15.00

Prova in itinere - Rete Internet (ing. Giovanni Neglia) Mercoledì 23 Maggio 2007, ore 15.00 Prova in itinere - Rete Internet (ing. Giovanni Neglia) Mercoledì 23 Maggio 2007, ore 15.00 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome:

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 2 Marzo 2005, ore 14.30

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 2 Marzo 2005, ore 14.30 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 2 Marzo 2005, ore 14.30 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette.

Dettagli

Rete Internet Prova in Itinere Mercoledì 23 Aprile 2008

Rete Internet Prova in Itinere Mercoledì 23 Aprile 2008 Rete Internet Prova in Itinere Mercoledì 23 Aprile 2008 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome: Corso di laurea e anno: Matricola:

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Venerdì 18 Febbraio 2005, ore 9.30

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Venerdì 18 Febbraio 2005, ore 9.30 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Venerdì 18 Febbraio 2005, ore 9.30 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome:

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 14 Settembre 2005, ore 9.00

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 14 Settembre 2005, ore 9.00 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 14 Settembre 2005, ore 9.00 Alcune domande hanno risposta multipla: si richiede di identificare tutte le risposte corrette.

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 2005, ore 15.00

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 2005, ore 15.00 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 2005, ore 15.00 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome:

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 2005, ore 15.00

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 2005, ore 15.00 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 200, ore 1.00 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome:

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Martedì 22 Febbraio 2005, ore 15.00

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Martedì 22 Febbraio 2005, ore 15.00 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Martedì 22 Febbraio 2005, ore 15.00 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome:

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Martedì 15 Novembre 2005

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Martedì 15 Novembre 2005 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Martedì 15 Novembre 2005 Si svolga il compito su questi fogli. Nel caso di domande a risposta aperta, lo spazio lasciato sul foglio

Dettagli

Introduzione (parte III)

Introduzione (parte III) Introduzione (parte III) Argomenti della lezione Ripasso degli argomenti del primo corso: il livello di trasporto, il meccanismo di controllo delle congestioni e le applicazioni Il livello di trasporto

Dettagli

Corsi di Reti di Calcolatori (Docente Luca Becchetti)

Corsi di Reti di Calcolatori (Docente Luca Becchetti) Corsi di Reti di Calcolatori (Docente Luca Becchetti) NOT : le soluzioni proposte sono volutamente sintetiche. Lo studente dovrebbe fare uno sforzo per risolvere i quesiti in modo autonomo, espandendo

Dettagli

4 - Il livello di trasporto

4 - Il livello di trasporto Università di Bergamo Dipartimento di Ingegneria Gestionale e dell Informazione 4 - Il livello di trasporto Architetture e Protocolli per Internet Servizio di trasporto il livello di trasporto ha il compito

Dettagli

Il livello trasporto Protocolli TCP e UDP

Il livello trasporto Protocolli TCP e UDP Il livello trasporto Protocolli TCP e UDP Standard: OSi vs TCP/IP Application Presentation Session NFS XDR RPC Telnet, FTP SMTP, HTTP SNMP, DNS RTP,... Protocolli per la comunicazione tra applicativi:

Dettagli

Gestione della Connessione in TCP

Gestione della Connessione in TCP I semestre 03/04 Gestione della Connessione in TCP Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ Riscontro e Ritrasmissione Per ogni segmento spedito la sorgente

Dettagli

Il protocollo TCP. Obiettivo. Procedura

Il protocollo TCP. Obiettivo. Procedura Il protocollo TCP Obiettivo In questo esercizio studieremo il funzionamento del protocollo TCP. In particolare analizzeremo la traccia di segmenti TCP scambiati tra il vostro calcolatore ed un server remoto.

Dettagli

Standard: OSi vs TCP/IP. Il livello di trasporto. TCP e UDP. TCP: Transmission Control Protocol. TCP: funzionalità

Standard: OSi vs TCP/IP. Il livello di trasporto. TCP e UDP. TCP: Transmission Control Protocol. TCP: funzionalità Standard: OSi vs TCP/IP Application Presentation Session NFS XDR RPC Telnet, FTP SMTP, HTTP SNMP, DNS RTP,... Protocolli per la comunicazione tra applicativi: le raisons d etre della rete Transport TCP

Dettagli

IL LIVELLO TRASPORTO Protocolli TCP e UDP

IL LIVELLO TRASPORTO Protocolli TCP e UDP Reti di Calcolatori ed Internet IL LIVELLO TRASPORTO Protocolli TCP e UDP 5-1 Il Livello Trasporto I servizi del livello Trasporto Le primitive di Trasporto Indirizzamento Protocolli di Trasporto Livello

Dettagli

IL LIVELLO TRASPORTO Protocolli TCP e UDP

IL LIVELLO TRASPORTO Protocolli TCP e UDP Reti di Calcolatori IL LIVELLO TRASPORTO Protocolli TCP e UDP D. Talia RETI DI CALCOLATORI - UNICAL 5-1 Il Livello Trasporto I servizi del livello Trasporto Le primitive di Trasporto Indirizzamento Protocolli

Dettagli

Corsi di Reti di Calcolatori (Docente Luca Becchetti) Esercizi su strati di trasporto e di rete

Corsi di Reti di Calcolatori (Docente Luca Becchetti) Esercizi su strati di trasporto e di rete Corsi di Reti di Calcolatori (Docente Luca Becchetti) Esercizi su strati di trasporto e di rete 1. Si consideri un protocollo per il trasporto non affidabile di dati realtime. Il sender spedisce un pacchetto

Dettagli

CORSO DI RETI SSIS. Lezione n.3 9 novembre 2005 Laura Ricci

CORSO DI RETI SSIS. Lezione n.3 9 novembre 2005 Laura Ricci CORSO DI RETI SSIS Lezione n.3 9 novembre 2005 Laura Ricci IL LIVELLO TRASPORTO realizza un supporto per la comunicazione logica tra processi distribuiti comunicazione logica = astrazione che consente

Dettagli

Livello di Trasporto

Livello di Trasporto Livello di Trasporto Introduzione Problemi e requisiti Livello di trasporto in Internet UDP -UserDatagramProtocol TCP - Transmission Control Protocol Meccanismo di ritrasmissione Controllo del flusso Three-way

Dettagli

J+... J+3 J+2 J+1 K+1 K+2 K+3 K+...

J+... J+3 J+2 J+1 K+1 K+2 K+3 K+... Setup delle ConnessioniTCP Una connessione TCP viene instaurata con le seguenti fasi, che formano il Three-Way Handshake (perchè formato da almeno 3 pacchetti trasmessi): 1) il server si predispone ad

Dettagli

Livello trasporto in Internet

Livello trasporto in Internet Livello trasporto in Internet Livello trasporto in Internet Due protocolli di trasporto alternativi: TCP e UDP Modelli di servizio diversi TCP orientato alla connessione, affidabile, controllo di flusso

Dettagli

Prova completa - Rete Internet (ing. Giovanni Neglia) Lunedì 25 Giugno 2007

Prova completa - Rete Internet (ing. Giovanni Neglia) Lunedì 25 Giugno 2007 Prova completa - Rete Internet (ing. Giovanni Neglia) Lunedì 25 Giugno 2007 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome: Corso di laurea

Dettagli

TCP: trasmissione Source port [16 bit] - Identifica il numero di porta sull'host mittente associato alla connessione TCP. Destination port [16 bit] - Identifica il numero di porta sull'host destinatario

Dettagli

Livello Trasporto. Liv. Applic. Liv. Transport. Transport Entity. Liv. Network. Trasporto

Livello Trasporto. Liv. Applic. Liv. Transport. Transport Entity. Liv. Network. Trasporto Livello Trasporto Fornire un trasporto affidabile ed efficace dall'host di origine a quello di destinazione, indipendentemente dalla rete utilizzata Gestisce una conversazione diretta fra sorgente e destinazione

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 20 Luglio 2005

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 20 Luglio 2005 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Prova completa Mercoledì 20 Luglio 2005 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome:

Dettagli

Reti di Calcolatori in Tecnologia IP

Reti di Calcolatori in Tecnologia IP Reti di Calcolatori in Tecnologia IP Il Livello Transport e TCP Dott. Marco Bianchi 04/12/2001 1 Agenda Introduzione Indirizzamento Protocolli di livello transport Attivazione e rilascio di una connessione

Dettagli

CW = 3MSS Base = Y Next = Y + 3MSS

CW = 3MSS Base = Y Next = Y + 3MSS ESERCITAZIONE: TCP Consideriamo un applicazione A che ha già stabilito una connessione TCP con un suo pari. Supponiamo che al momento t0 il valore della finestra di congestione CW dell host di A sia pari

Dettagli

Transmission Control Protocol

Transmission Control Protocol Transmission Control Protocol Franco Callegati Franco Callegati IC3N 2000 N. 1 Transmission Control Protocol - RFC 793 Protocollo di tipo connection-oriented Ha lo scopo di realizzare una comunicazione

Dettagli

UDP. Livello di Trasporto. Demultiplexing dei Messaggi. Esempio di Demultiplexing

UDP. Livello di Trasporto. Demultiplexing dei Messaggi. Esempio di Demultiplexing a.a. 2002/03 Livello di Trasporto UDP Descrive la comunicazione tra due dispositivi Fornisce un meccanismo per il trasferimento di dati tra sistemi terminali (end user) Prof. Vincenzo Auletta auletta@dia.unisa.it

Dettagli

Nome e Cognome : Anno di corso Numero di matricola : Como, 7 maggio Quiz a risposta multipla

Nome e Cognome : Anno di corso Numero di matricola : Como, 7 maggio Quiz a risposta multipla Università dell Insubria Sede di Como Laurea in Informatica Corso di Reti ed Applicazioni AA 2003 Test 2 Nome e Cognome : Anno di corso Numero di matricola : Como, 7 maggio 2003 Istruzioni Nei quiz a risposta

Dettagli

la trasmissione è regolata solamente dall algoritmo per il controllo del flusso prima di inviare l ACK.

la trasmissione è regolata solamente dall algoritmo per il controllo del flusso prima di inviare l ACK. 1. Considerare il problema della stima del Round Trip Time. Supporre che inizialmente RTT valga 200 ms. Il mittente invia un segmento e riceve l ACK relativo dopo 100 ms, quindi invia un altro segmento,

Dettagli

Reti di Calcolatori:

Reti di Calcolatori: Reti di Calcolatori: Internet, Intranet e Mobile Computing a.a. 2007/2008 http://www.di.uniba.it/~lisi/courses/reti/reti0708.htm dott.ssa Francesca A. Lisi lisi@di.uniba.it Orario di ricevimento: mercoledì

Dettagli

Livello di trasporto: meccanismi trasferimento dati affidabile

Livello di trasporto: meccanismi trasferimento dati affidabile Livello di trasporto: meccanismi trasferimento dati affidabile Gaia Maselli maselli@di.uniroma1.it Queste slide sono un adattamento delle slide fornite dal libro di testo e pertanto protette da copyright.

Dettagli

L architettura di TCP/IP

L architettura di TCP/IP L architettura di TCP/IP Mentre non esiste un accordo unanime su come descrivere il modello a strati di TCP/IP, è generalmente accettato il fatto che sia descritto da un numero di livelli inferiore ai

Dettagli

Introduzione. Livello applicativo Principi delle applicazioni di rete. Stack protocollare Gerarchia di protocolli Servizi e primitive di servizio 2-1

Introduzione. Livello applicativo Principi delle applicazioni di rete. Stack protocollare Gerarchia di protocolli Servizi e primitive di servizio 2-1 Introduzione Stack protocollare Gerarchia di protocolli Servizi e primitive di servizio Livello applicativo Principi delle applicazioni di rete 2-1 Pila di protocolli Internet Software applicazione: di

Dettagli

Livello trasporto: TCP / UDP. Vittorio Maniezzo Università di Bologna. Vittorio Maniezzo Università di Bologna 14 TCP/UDP - 1/35.

Livello trasporto: TCP / UDP. Vittorio Maniezzo Università di Bologna. Vittorio Maniezzo Università di Bologna 14 TCP/UDP - 1/35. Livello trasporto: TCP / UDP Vittorio Maniezzo Università di Bologna Vittorio Maniezzo Università di Bologna 14 TCP/UDP - 1/35 TCP e UDP Internet Protocol (IP) fornisce un servizio non affidabile di trasmissione

Dettagli

I protocolli UDP e TCP

I protocolli UDP e TCP I protocolli UDP e TCP A.A. 2005/2006 Walter Cerroni Il livello di trasporto in Internet APP. APP. TCP UDP IP collegamento logico tra diversi processi applicativi collegamento logico tra diversi host IP

Dettagli

Capitolo 3 Livello di trasporto

Capitolo 3 Livello di trasporto Capitolo 3 Livello di trasporto Nota per l utilizzo: Abbiamo preparato queste slide con l intenzione di renderle disponibili a tutti (professori, studenti, lettori). Sono in formato PowerPoint in modo

Dettagli

Parte II: Reti di calcolatori Lezione 13

Parte II: Reti di calcolatori Lezione 13 Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14 Pietro Frasca Parte II: Reti di calcolatori Lezione 13 Martedì 15-04-2014 1 Instaurazione della

Dettagli

Strato di Trasporto Multiplazione a livello di trasporto

Strato di Trasporto Multiplazione a livello di trasporto Strato di Trasporto Multiplazione a livello di trasporto 1 Multiplexing/demultiplexing Demultiplexing nell host ricevente: consegnare i segmenti ricevuti alla socket appropriata Multiplexing nell host

Dettagli

Livello Trasporto Protocolli TCP e UDP

Livello Trasporto Protocolli TCP e UDP Livello Trasporto Protocolli TCP e UDP Davide Quaglia Reti di Calcolatori - Liv Trasporto TCP/UDP 1 Motivazioni Su un host vengono eseguiti diversi processi che usano la rete Problemi Distinguere le coppie

Dettagli

Livello trasporto in Internet

Livello trasporto in Internet Livello trasporto in Internet Gruppo Reti TLC Nome.cognome@polito.it http://www.telematica.polito.it/ INTRODUZIONE ALLE RETI TELEMATICHE - 1 Copyright Quest opera è protetta dalla licenza Creative Commons

Dettagli

Strato di Col o l l e l g e a g m a e m n e t n o

Strato di Col o l l e l g e a g m a e m n e t n o Strato di Collegamento Romeo Giuliano romeo.giuliano@uniroma2.it 1 Argomenti Principi di funzionamento dello strato di collegamento Rivelazione e correzione degli errori Protocolli data link elementari

Dettagli

Capitolo 3 - parte 2. Corso Reti ed Applicazioni Mauro Campanella

Capitolo 3 - parte 2. Corso Reti ed Applicazioni Mauro Campanella Capitolo 3 - parte 2 Corso Reti ed Applicazioni Mauro Campanella Principi di un trasferimento dati affidabile strato di trasporto strato di applicazione (a) Servizio fornito (b) la realizzazione del Servizio

Dettagli

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori I

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori I Corso di Laurea in Ingegneria Informatica Corso di Reti di Calcolatori I Roberto Canonico (roberto.canonico@unina.it) Giorgio Ventre (giorgio.ventre@unina.it) Il protocollo TCP I lucidi presentati al corso

Dettagli

CORSO DI RETI SSIS. Lezione n.2. 2 Novembre 2005 Laura Ricci

CORSO DI RETI SSIS. Lezione n.2. 2 Novembre 2005 Laura Ricci CORSO DI RETI SSIS Lezione n.2. 2 Novembre 2005 Laura Ricci IL DOMAIN NAME SYSTEM (DNS) Indirizzi IP poco adatti per essere memorizzati da utenti umani è prevista la possibiltà di associare nomi simbolici

Dettagli

Introduzione alle Reti Telematiche

Introduzione alle Reti Telematiche Introduzione alle Reti Telematiche Esercizi Copyright Gruppo Reti Politecnico di Torino INTROUZIONE ALLE RETI TELEMATICHE - 1 Copyright Quest opera è protetta dalla licenza Creative Commons Noerivs-NonCommercial.

Dettagli

Prof. Ing. Maurizio Casoni Dipartimento di Ingegneria dell Informazione Università degli Studi di Modena e Reggio Emilia

Prof. Ing. Maurizio Casoni Dipartimento di Ingegneria dell Informazione Università degli Studi di Modena e Reggio Emilia Controllo di flusso in TCP Prof. Ing. Maurizio Casoni Dipartimento di Ingegneria dell Informazione Università degli Studi di Modena e Reggio Emilia Meccanismo a finestra La dimensione della finestra viene

Dettagli

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2014-15. Pietro Frasca. Parte II Lezione 1

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2014-15. Pietro Frasca. Parte II Lezione 1 Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2014-15 Parte II Lezione 1 Giovedì 5-03-2015 TESTO DI RIFERIMENTO RETI DI CALCOLATORI E INTERNET un

Dettagli

Capitolo 10 Lo Strato di Trasporto in Internet

Capitolo 10 Lo Strato di Trasporto in Internet Capitolo 10 Lo Strato di Trasporto in Internet 1 Sommario del capitolo Modelli di servizio per lo Strato di Trasporto Funzioni svolte dallo Strato di Trasporto: i. Rivelazione di errore ii. Multiplazione

Dettagli

Il livello Data-Link e i suoi protocolli

Il livello Data-Link e i suoi protocolli Il livello Data-Link e i suoi protocolli Modulo 5 (Integrazione) Livello Data-Link Abbiamo visto che il Livello Data link provvede a: o offrire servizi al livello network con un'interfaccia ben definita;

Dettagli

Uso di UDP per client-server UDP. Porte e multiplexing. TCP e UDP. Connessione TCP (o messaggio UDP) Caratteristiche delle porte TCP e UDP

Uso di UDP per client-server UDP. Porte e multiplexing. TCP e UDP. Connessione TCP (o messaggio UDP) Caratteristiche delle porte TCP e UDP CP e UDP: il livello trasporto dell'architettura CP/IP Antonio Lioy < lioy@polito.it > 7 6 5 4 3 network OSI vs. CP/IP packet process (DNS, HP, SMP, ) (CP, UDP) network (IP) Politecnico di orino Dip. Automatica

Dettagli

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 2005, ore 15.00

Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 2005, ore 15.00 Prova di Esame - Rete Internet (ing. Giovanni Neglia) Lunedì 24 Gennaio 2005, ore 15.00 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome:

Dettagli

PARTE 1 richiami. SUITE PROTOCOLLI TCP/IP ( I protocolli di Internet )

PARTE 1 richiami. SUITE PROTOCOLLI TCP/IP ( I protocolli di Internet ) PARTE 1 richiami SUITE PROTOCOLLI TCP/IP ( I protocolli di Internet ) Parte 1 Modulo 1: Stack TCP/IP TCP/IP Protocol Stack (standard de facto) Basato su 5 livelli invece che sui 7 dello stack ISO/OSI Application

Dettagli

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14. Pietro Frasca. Parte II Lezione 1

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14. Pietro Frasca. Parte II Lezione 1 Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14 Pietro Frasca Parte II Lezione 1 Martedì 4-03-2014 1 TESTO DI RIFERIMENTO RETI DI CALCOLATORI

Dettagli

Transmission Control Protocol (TCP) Andrea Detti

Transmission Control Protocol (TCP) Andrea Detti Transmission Control Protocol (TCP) Andrea Detti Transmission Control Protocol (TCP) Trasferisce un flusso informativo bi-direzionale non strutturato tra due host ed effettua operazioni di multiplazione

Dettagli

9 Febbraio 2015 Modulo 2

9 Febbraio 2015 Modulo 2 Reti di Comunicazione e Internet Prof. I. Filippini Cognome Nome Matricola 9 Febbraio 2015 Modulo 2 Tempo complessivo a disposizione per lo svolgimento: 1h 40m E possibile scrivere a matita E1 E2 Domande

Dettagli

Il livello di Trasporto del TCP/IP

Il livello di Trasporto del TCP/IP Il livello di Trasporto del TCP/IP Il compito del livello transport (livello 4) è di fornire un trasporto efficace dall'host di origine a quello di destinazione, indipendentemente dalla rete utilizzata.

Dettagli

Capitolo 3 - parte 4. Corso Reti ed Applicazioni Mauro Campanella

Capitolo 3 - parte 4. Corso Reti ed Applicazioni Mauro Campanella Capitolo 3 - parte 4 Corso Reti ed Applicazioni Mauro Campanella TCP Dalla prima RFC ad oggi, sono state introdotti in TCP vari meccanismi per: - rendere più efficente il trasferimento dei segmenti - rendere

Dettagli

IP Internet Protocol

IP Internet Protocol IP Internet Protocol Vittorio Maniezzo Università di Bologna Vittorio Maniezzo Università di Bologna 13 IP - 1/20 IP IP è un protocollo a datagrammi In spedizione: Riceve i dati dal livello trasporto e

Dettagli

Esercizi Reti di TLC Parte II LAN. Esercizio 5.2. Esercizio 5.1. Luca Veltri

Esercizi Reti di TLC Parte II LAN. Esercizio 5.2. Esercizio 5.1. Luca Veltri UNIVERSITA DEGLI STUDI DI PARMA Dipartimento di Ingegneria dell Informazione Esercizi Reti di TLC Parte II LAN Luca Veltri (mail.to: luca.veltri@unipr.it) Corso di Reti di Telecomunicazione, a.a. 2013/2014

Dettagli

Reti di Calcolatori. Il software

Reti di Calcolatori. Il software Reti di Calcolatori Il software Lo Stack Protocollare Application: supporta le applicazioni che usano la rete; Transport: trasferimento dati tra host; Network: instradamento (routing) di datagram dalla

Dettagli

TECN.PROG.SIST.INF. TCP/IP Livello TRASPORTO. 2015 - Roberta Gerboni

TECN.PROG.SIST.INF. TCP/IP Livello TRASPORTO. 2015 - Roberta Gerboni 2015 - Roberta Gerboni Caratteristiche del livello Trasporto Il livello Trasporto si occupa del trasferimento delle informazioni, chiamate segmenti, tra due processi in esecuzione su due computer collegati

Dettagli

Strato trasporto. Per capir meglio la cosa analizziamo il seguente esempio:

Strato trasporto. Per capir meglio la cosa analizziamo il seguente esempio: Reti Mod 2 Strato trasporto Lo strato trasporto si colloca al livello 4 della pila ISO-OSI. Ha la funzione di stabilire un collegamento logico tra le applicazioni dei diversi host collegati tra di loro.

Dettagli

Parte II: Reti di calcolatori Lezione 24

Parte II: Reti di calcolatori Lezione 24 Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14 Pietro Frasca Parte II: Reti di calcolatori Lezione 24 Martedì 27-05-2014 1 Una volta che una

Dettagli

ESERCIZI DI COMUNICAZIONE

ESERCIZI DI COMUNICAZIONE ESERCIZI DI COMUNICZIONE Esercizio 1 Calcolare il tempo totale TT necessario a trasmettere un file di 2000 K assumendo: 1. W= 1.5Mbps, RTT = 200 ms, pkt-size = 2K 2. Prima di trasmettere file src e dst

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo II

RETI TELEMATICHE Lucidi delle Lezioni Capitolo II Prof. Giuseppe F. Rossi E-mail: giuseppe.rossi@unipv.it Homepage: http://www.unipv.it/retical/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà di Ingegneria A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE

Dettagli

Tempo svolgimento della prova: 2ore

Tempo svolgimento della prova: 2ore sempio della prova scritta di Internet Per chi non ha superato la prova N Sull indirizzamento IP vedere anche il file sercizi Indirizzamento IP Uso degli appunti NON consentito Tempo svolgimento della

Dettagli

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14. Pietro Frasca. Parte II Lezione 4

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14. Pietro Frasca. Parte II Lezione 4 Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2013-14 Pietro Frasca Parte II Lezione 4 Giovedì 13-03-2014 1 Ritardi e perdite nelle reti a commutazione

Dettagli

Internet Parte II Romeo Giuliano romeo.giuliano@uniroma2.it 1

Internet Parte II Romeo Giuliano romeo.giuliano@uniroma2.it 1 Internet Parte II Romeo Giuliano romeo.giuliano@uniroma2.it 1 Argomenti Introduzione a Internet ARPANET, NSFNET, Struttura di base di Internet Architettura protocollare di Internet Pila protocollare, Protocollo

Dettagli

Esercizi Reti di TLC A Parte II. Indirizzamento IP. Esercizio 9.1. Esercizio 9.2. Luca Veltri

Esercizi Reti di TLC A Parte II. Indirizzamento IP. Esercizio 9.1. Esercizio 9.2. Luca Veltri Esercizi Reti di TLC A Parte II Indirizzamento IP Luca Veltri (mail.to: luca.veltri veltri@unipr.it) Corso di Reti di Telecomunicazione,, a.a. 2011/2012 http://www.tlc tlc.unipr.it/.it/veltri Esercizio

Dettagli

Modulo 11. Il livello trasporto ed il protocollo TCP Indice

Modulo 11. Il livello trasporto ed il protocollo TCP Indice Pagina 1 di 14 Il livello trasporto ed il protocollo TCP Indice servizi del livello trasporto multiplexing/demultiplexing trasporto senza connesione: UDP principi del trasferimento dati affidabile trasporto

Dettagli

II prova in itinere - Rete Internet (ing. Giovanni Neglia)

II prova in itinere - Rete Internet (ing. Giovanni Neglia) II prova in itinere - Rete Internet (ing. Giovanni Neglia) Sabato 9 giugno 2007, ore 9.30 NB: alcune domande hanno risposta multipla: si richiede di identificare TUTTE le risposte corrette. Cognome: Nome:

Dettagli

Dipartimento di Ingegneria dell Informazione e Metodi Matematici Laboratorio di Reti Prof. Fabio Martignon

Dipartimento di Ingegneria dell Informazione e Metodi Matematici Laboratorio di Reti Prof. Fabio Martignon Università di Bergamo Dipartimento di Ingegneria dell Informazione e Metodi Matematici Laboratorio di Reti Prof. Fabio Martignon Università di Bergamo Dipartimento di Ingegneria dell Informazione e Metodi

Dettagli

SUITE PROTOCOLLI TCP/IP ( I protocolli di Internet )

SUITE PROTOCOLLI TCP/IP ( I protocolli di Internet ) PARTE 2 SUITE PROTOCOLLI TCP/IP ( I protocolli di Internet ) Parte 2 Modulo 1: Stack TCP/IP TCP/IP Protocol Stack (standard de facto) Basato su 5 livelli invece che sui 7 dello stack ISO/OSI Application

Dettagli

Corso di Sistemi di Elaborazione delle informazioni. Reti di calcolatori 2 a lezione a.a. 2009/2010 Francesco Fontanella

Corso di Sistemi di Elaborazione delle informazioni. Reti di calcolatori 2 a lezione a.a. 2009/2010 Francesco Fontanella Corso di Sistemi di Elaborazione delle informazioni Reti di calcolatori 2 a lezione a.a. 2009/2010 Francesco Fontanella Una definizione di Rete Una moderna rete di calcolatori può essere definita come:

Dettagli

Riferimenti. I protocolli TCP e UDP. Sorgente TCP. Principi Fondamentali. TCP header. Ricevitore TCP

Riferimenti. I protocolli TCP e UDP. Sorgente TCP. Principi Fondamentali. TCP header. Ricevitore TCP Riferimenti I protocolli TCP e UDP TCP Illustrated, vol. 1 (Richard Stevens) RFC 1122/1123 (R. T. Braden) Requirements for Internet Hosts (1989) RFC 2001 (R. Stevens) TCP Slow Start, algorithms (1997)

Dettagli

Telematica di Base. IL Livello di Trasporto TCP

Telematica di Base. IL Livello di Trasporto TCP Telematica di Base IL Livello di Trasporto TCP TCP RFCs: 793, 1122, 1323, 2018, 2581 point-to-point: Un sender, un receiver affidabile protocollo di tipo pipeline: Meccanismi per evitare la congestione,

Dettagli

Principi fondamentali

Principi fondamentali Principi fondamentali Elementi di base Definizione di rete di calcolatori Tipologia di connessioni Architettura di rete Prestazioni di una rete di calcolatori Conclusioni 1 1 Bit e Byte BIT = BInary digit

Dettagli

Reti di calcolatori: Introduzione

Reti di calcolatori: Introduzione Reti di calcolatori: Introduzione Vittorio Maniezzo Università di Bologna Reti di computer e Internet Rete: sistema di collegamento di più computer mediante una singola tecnologia di trasmissione Internet:

Dettagli

Livello di trasporto e TSAP

Livello di trasporto e TSAP Reti di Telecomunicazioni R. Bolla, L. Caviglione, F. Davoli Livello di trasporto e TSAP Three-way handshake Incarnation numbers TCP e UDP 39.2 Sessione T_CONNECT, T_DISCONNECT T_DATA, T_EXP_DATA T_UNITDATA

Dettagli

Avoidance, Fast Retransmit, And Fast Recovery

Avoidance, Fast Retransmit, And Fast Recovery Università degli Studi di Modena e Reggio Emilia Dipartimento di Ingegneria dell Informazione TCP: Algoritmi di Slow Start, Congestion Avoidance, Fast Retransmit, And Fast Recovery rfc 2001 M.L. Merani

Dettagli

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2014-15. Pietro Frasca. Parte II Lezione 5

Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2014-15. Pietro Frasca. Parte II Lezione 5 Università di Roma Tor Vergata Corso di Laurea triennale in Informatica Sistemi operativi e reti A.A. 2014-15 Parte II Lezione 5 Giovedì 19-03-2015 1 Intensità del traffico e perdita dei pacchetti La componente

Dettagli

MODELLI ISO/OSI e TCP/IP

MODELLI ISO/OSI e TCP/IP D. Talia RETI DI CALCOLATORI - UNICAL 1 Reti di Calcolatori MODELLI ISO/OSI e TCP/IP D. Talia RETI DI CALCOLATORI - UNICAL 2 Reti di Calcolatori Livelli e Servizi Il modello OSI Il modello TCP/IP Un confronto

Dettagli

Reti di calcolatori. Architettura delle reti. Mezzi trasmissivi

Reti di calcolatori. Architettura delle reti. Mezzi trasmissivi Reti di calcolatori Architettura delle reti Una di calcolatori è costituita da molti calcolatori (nodi o host della ) collegati tra loro che interagiscono usufruendo dei servizi di per lo scambio delle

Dettagli

DA SA Type Data (IP, ARP, etc.) Padding FCS 6 6 2 0-1500 0-46 4

DA SA Type Data (IP, ARP, etc.) Padding FCS 6 6 2 0-1500 0-46 4 Esercizio Data la rete in figura, si assuma che i terminali T1-T12 e T13-T24 siano connessi tramite collegamenti di tipo UTP a due switch Fast Ethernet. Si assuma che le tabelle ARP di tutti i dispositivi

Dettagli

Reti di calcolatori e Internet

Reti di calcolatori e Internet Corso di Laboratorio di Tecnologie dell'informazione Reti di calcolatori e Internet Copyright Università degli Studi di Firenze - Disponibile per usi didattici Cos è Internet: visione dei componenti Milioni

Dettagli

Livello trasporto in Internet

Livello trasporto in Internet Livello trasporto in Internet Gruppo Reti TLC Nome.cognome@polito.it http://www.telematica.polito.it/ LIVELLO TRASPORTO IN INTERNET - 1 Livello trasporto in Internet Due protocolli di trasporto alternativi:

Dettagli

Laboratorio Wireshark: TCP

Laboratorio Wireshark: TCP Laboratorio Wireshark: TCP Versione 6.0 italiano 2005-2012 J.F. Kurose, K. W. Ross. All rights reserved. Traduzione italiana di G. Amato. Modifiche e adattamenti per il CLEII di G. Amato. In questo laboratorio

Dettagli

Reti di Calcolatori. IL LIVELLO TRASPORTO Protocolli TCP e UDP

Reti di Calcolatori. IL LIVELLO TRASPORTO Protocolli TCP e UDP Reti di Calcolatori IL LIVELLO TRASPORTO Protocolli TCP e UDP D. Talia RETI DI CALCOLATORI - UNICAL 5-1 Il Livello Trasporto I servizi del livello Trasporto Le primitive di Trasporto Indirizzamento Protocolli

Dettagli

Cenni sul protocollo IP

Cenni sul protocollo IP Cenni sul protocollo IP Parte 2 Domenico Massimo Parrucci Condello isti information science Facoltàand di Scienze technology e Tecnologie institute 1/number 1 Il protocollo IP The IPv4 (Internet Protocol)

Dettagli

Livello di trasporto: meccanismi trasferimento dati affidabile, TCP

Livello di trasporto: meccanismi trasferimento dati affidabile, TCP Livello di trasporto: meccanismi trasferimento dati affidabile, TCP Gaia Maselli Queste slide sono un adattamento delle slide fornite dal libro di testo e pertanto protette da copyright. - Copyright 2013

Dettagli

Argomenti: ! Servizi dello strato di trasporto! multiplexing/demultiplexing! Servizio senza connessione: UDP

Argomenti: ! Servizi dello strato di trasporto! multiplexing/demultiplexing! Servizio senza connessione: UDP Strato di trasporto Obiettivi:! Comprendere i principi dei servizi dello strato di trasporto: " multiplexing/demultipl exing " Trasferimento affidabile dei dati " Controllo di flusso " Controllo di congestione!

Dettagli

Reti di Telecomunicazione Lezione 8

Reti di Telecomunicazione Lezione 8 Reti di Telecomunicazione Lezione 8 Marco Benini Corso di Laurea in Informatica marco.benini@uninsubria.it Livello di trasporto Programma della lezione relazione tra lo strato di trasporto e lo strato

Dettagli

Capitolo 1 - parte 1. Corso Reti ed Applicazioni Mauro Campanella

Capitolo 1 - parte 1. Corso Reti ed Applicazioni Mauro Campanella Capitolo 1 - parte 1 Corso Reti ed Applicazioni Mauro Campanella Precisazione Noi ci occuperemo solo della trasmissione di informazione in formato digitale. Un segnale analogico è basato su una variazione

Dettagli

Laboratorio del corso Progettazione di Servizi Web e Reti di Calcolatori Politecnico di Torino AA 2014-15 Prof. Antonio Lioy

Laboratorio del corso Progettazione di Servizi Web e Reti di Calcolatori Politecnico di Torino AA 2014-15 Prof. Antonio Lioy Laboratorio del corso Progettazione di Servizi Web e Reti di Calcolatori Politecnico di Torino AA 2014-15 Prof. Antonio Lioy Soluzioni dell esercitazione n. 2 a cura di Giacomo Costantini 19 marzo 2014

Dettagli

Sicurezza delle reti. Monga. Il livello di trasporto. Problemi di sicurezza intrinseci. Riassunto. Porte. Sicurezza delle reti.

Sicurezza delle reti. Monga. Il livello di trasporto. Problemi di sicurezza intrinseci. Riassunto. Porte. Sicurezza delle reti. 1 Mattia Lezione III: I protocolli di base Dip. di Informatica e Comunicazione Università degli Studi di Milano, Italia mattia.monga@unimi.it a.a. 2010/11 1 c 2011 M.. Creative Commons Attribuzione-Condividi

Dettagli

VoIP. Corso di Laboratorio di Telematica A.A. 2004-2005. Francesco Chiti Andrea De Cristofaro

VoIP. Corso di Laboratorio di Telematica A.A. 2004-2005. Francesco Chiti Andrea De Cristofaro Corso di Laboratorio di Telematica A.A. 2004-2005 Francesco Chiti Andrea De Cristofaro VoIP Copyright Università degli Studi di Firenze - Disponibile per usi didattici Vedere i termini di uso in appendice

Dettagli