Lezione 1. I numeri complessi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 1. I numeri complessi"

Transcript

1 Lezoe Prerequst: Numer real: assom ed operazo. Pao cartesao. Fuzo trgoometrche. I umer compless Nell'attuale teora de umer compless cofluscoo due fodametal dee, ua artmetca, l'altra geometrca. La prma, rsalete all'opera L'Algebra (57) del matematco bologese Rafael Bombell, cosste ell'trodurre u "umero mmagaro" (da lu chamato pù d meo) l cu quadrato sa uguale a. La secoda, dovuta al matematco tedesco Carl Fredrch Gauss ( ), prevede d uscre dalla retta reale, e d vadere l pao al fe d trovare ua radce ad u qualsas polomo reale d grado postvo. Tal soo le org storche del coteuto d questa lezoe. Nel prodotto cartesao R = R R s defscoo le seguet due operazo: - ua somma, poedo, per og a, b, c, d R, ( a, b) + ( c, d) = ( a + c, b + d); - u prodotto, poedo, per og a, b, c, d R, ( a, b) ( c, d) = ( ac bd, ad + bc). La somma gode delle seguet propretà: (a) per og a, b, R, ( a, b) + (0,0) = (0,0) + ( a, b) = ( a, b) (l'elemeto (0,0) è lo zero); (b) per og a, b, R, ( a, b) + ( a, b) = ( a, b) + ( a, b) = (0,0) (l'elemeto ( a, b) è l'opposto d ( a, b ), dcato ache co ( a, b) ); (c) per og a, b, c, d R, ( a, b) + ( c, d) = ( c, d) + ( a, b) (la somma è commutatva); (d) per og,,,,,, assocatva). ( a, b) + ( c, d) + ( e, f ) = ( a, b) + ( c, d) + ( e, f ) (la somma è a b c d e f R ( ) ( ) Il prodotto gode delle seguet propretà: (e) per og a, b, R, ( a, b) (,0) = (,0) ( a, b) = ( a, b) ( l'elemeto (,0) è l'uo); (f) per og a, b, R tal che ( a, b) (0,0), a b a b ( a, b),, ( a, b) (,0) = = a + b a + b a + b a + b a b (l'elemeto, a + b a + b è l'verso d ( a, b ), dcato ache co ( a, b) ); (g) per og a, b, c, d R, ( a, b) ( c, d) = ( c, d) ( a, b) (l prodotto è commutatvo); (h) per og,,,,,, assocatvo). ( a, b) ( c, d) ( e, f ) = ( a, b) ( c, d) ( e, f ) (l prodotto è a b c d e f R ( ) ( )

2 Ioltre vale la seguete propretà: () per og,,,,,, ( a, b) ( c, d) + ( e, f ) = ( a, b) ( c, d) + ( a, b) ( e, f ) (l prodotto è a b c d e f R ( ) dstrbutvo rspetto alla somma). Eserczo.* Verfcare le propretà (a)-(). Svolgmeto: Effettuamo alcue delle verfche, lascado le rmaet al lettore. (c) Sao a, b, c, d R. Allora ( a, b) + ( c, d) = ( a + c, b + d) = ( c + a, d + b) = ( c, d) + ( a, b), ove la prma e la terza uguaglaza dervao dalla defzoe d somma cosegueza della propretà commutatva della somma R. (f) Sao a, b R tal che ( a, b) (0,0). Allora R, metre la secoda è a b a b b a ( a, b), a b, a b a b a b = + a b a b a b a b = a + b ab + ba =, (,0), = a + b a + b ove la prma uguaglaza segue dalla defzoe d prodotto R, metre la secoda e la terza dalle propretà delle operazo R. Aalogamete s prova l'dettà per l prodotto co fattor scambat. (h) Sao a, b, c, d, e, f R. Allora ( ) ( a, b) ( c, d) ( e, f ) = ( a, b) ( ce df, cf + de) = ( a( ce df ) b( cf + de), a( cf + de) + b( ce df )) = ( ace adf bcf bde, acf + ade + bce bdf ) = (( ac bd) e ( ad + bc) f,( ac bd) f + ( ad + bc) e) ( ) = ( ac bd, ad + bc) ( e, f ) = ( a, b) ( c, d) ( e, f ) Defzoe. L'seme R, dotato delle operazo d somma e prodotto sopra defte, s dce campo complesso, e lo s deota C. I suo elemet s dcoo umer compless. Vedremo pù avat l sgfcato della parola campo. Il ostro prossmo obettvo è vedere l campo complesso come u'estesoe del campo reale: s tratta d detfcare determat umer compless co umer real ed osservare che, tra ess, le operazo d somma e d prodotto sopra defte cocdoo co quelle d somma e d prodotto defte per umer real. Cò rsulterà dalle seguet cosderazo. Per og a R, detfchamo l umero complesso ( a, 0) col umero reale a. Allora, per og a, b R, la somma d umer real a + b s detfca co la somma d umer compless

3 ( a,0) + ( b,0), ed l prodotto d umer real ab s detfca co l prodotto d umer compless ( a,0) ( b,0). I effett, " cot torao", quato ( a,0) + ( b,0) = ( a + b,0 + 0) = ( a + b,0), ( a,0) ( b,0) = ( a b 0 0, a b) = ( ab,0). Potremo così scrvere a al posto d ( a,0). All'tero d C, dstgueremo, oltre, u partcolare elemeto. S ha (0,) = (0,) (0,) = (0 0,0 + 0) = (,0). Qud, state l'detfcazoe trodotta sopra, (0,) è u umero complesso l cu quadrato è uguale al umero reale. Lo s chama utà mmagara e lo s dca co. Osservazoe.3 Ache l quadrato d è uguale a, fatt (0, ) = (0, ) (0, ) = (0 0 ( ) ( ),0 ( ) + ( ) 0) = (,0). I umer e soo quell che Bombell chamava, rspettvamete, pù d meo e meo d meo. Per og ( a, b) C, s ha ( a,0) + ( b,0)(0,) = ( a,0) + ( b 0 0, b + 0 0) = ( a,0) + (0, b) = ( a, b) Pertato, l umero complesso z = ( a, b) s può scrvere ella forma a + b oppure a + b. Questa s dce forma algebrca del umero complesso z. Il umero reale a s dce parte reale, l umero reale b s dce parte mmagara. S scrve a = Re( z); b = Im( z). S ha ( a, b) R se e solo se b = 0; qud umer real s detfcao co umer compless avet parte mmagara ulla. I umer compless avet parte reale ulla s dcoo mmagar pur. Eserczo.4 Trovare due umer compless l cu quadrato sa uguale a. Svolgmeto: Tal umer soo e. Ifatt ( ) ( ) = =, = =. Pù geerale, le radc quadrate del umero reale egatvo a soo a e a.

4 Osservazoe.5 Scrvedo umer compless ella forma algebrca, le operazo tra umer compless s possoo effettuare pù agevolmete che o applcado, a memora, le defzo d somma e d prodotto date all'zo d questa lezoe. Ad esempo, calcolamo l prodotto de umer compless a + b e c + d : ( a + b)( c + d) = ac + bc + ad + bd = ac bd + ( ad + bc). Qu abbamo utlzzato le propretà delle operazo d somma e d prodotto, seme all'dettà =, e alla caratterzzazoe de umer real all'tero del campo complesso. Esempo.6 Presetamo alcu umer compless forma algebrca, dcado, ella seguete tabella, la parte reale e la parte mmagara. z Re( z ) Im( z ) 0 = = S ot che lo zero e l'uo d C cocdoo, rspettvamete, co umer real 0 e. Nell'Eserczo.4 abbamo determato le radc del polomo reale d secodo grado f ( x) = x +, ossa le soluzo dell'equazoe quadratca x + = 0. Geeralzzamo questo eserczo, estededolo ad og equazoe quadratca reale. Eserczo.7 Sao a, b, c R, ove a 0. Trovare le soluzo dell'equazoe quadratca + + = 0. ax bx c Svolgmeto: Posto - se 0, = b 4 ac, le soluzo soo b + b x =, x =, a a (real, oltre cocdet se = 0). - se < 0, b +, b x x = = a a complesse o real.

5 I geerale, le soluzo soo umer della forma dscrmate. b +δ, ove δ è ua radce quadrata del a Quado l dscrmate è egatvo, le soluzo hao la stessa parte reale mmagare che soo ua l'opposto dell'altra: questa relazoe predoo u ome partcolare. e a a, ma part a. Due umer compless legat da Defzoe.8 I umer compless z e z s dcoo (compless) cougat se Re( z) = Re( z) e Im( z) = Im( z). S dce ache che z è l (complesso) cougato d z, e vceversa. Duque, se a + b, co a, b R, l suo complesso cougato è a b. Quest'ultmo s dca ache co z. Proposzoe.9 (Propretà del complesso cougato) Sao z, w C. Allora valgoo le seguet propretà. a) z = z. b) z è u umero reale se e solo se z = z. c) z è u umero mmagaro puro se e solo se z = z. d) z + z = Re( z). e) z z = Im( z). f) z + w = z + w. g) z w = z w. h) z z = z + z Re( ) Im( ). Dmostrazoe: Provamo solo g), lascado al lettore la verfca delle rmaet propretà. Sao z = a + b, w = c + d, ove a, b, c, d R. Allora s ha e, d'altra parte, z w = ( a + b)( c + d) = ac bd + ( ad + bc) = ac bd ( ad + bc). z w = a + b c + d = ( a b)( c d) = ac bd + ( ad bc). Vale duque l'uguaglaza voluta. Itroducamo ora la rappresetazoe de umer compless el pao. Il pao d Gauss è l pao cartesao, cu l'asse delle ascsse prede l ome d asse reale, l'asse delle ordate prede l ome d asse mmagaro, e s detfca, per og a, b R, l puto d coordate ( a, b ) co l umero complesso a + b. I questo modo, lo zero è assocato all'orge, l umero reale a al puto

6 dell'asse reale d ascssa a, l umero mmagaro puro b al puto dell'asse delle ordate d ascssa b. Osservamo che og puto P dstto dall'orge è dvduato uvocamete da due gradezze geometrche: - la dstaza eucldea d P dall'orge; - l'ampezza dell'agolo che l'asse reale deve percorrere, ruotado toro all'orge seso atoraro, per sovrappors alla retta cogugete l'orge ed l puto P. ρ θ Detto z l umero complesso assocato a P, la prma gradezza s dce modulo d z, deotato z, la secoda s dce argometo o aomala d z, deotato arg( z ). Quest'ultmo è defto a meo d multpl ter dell'agolo gro, ossa a meo d π, ove Z. Detto ρ l modulo d z e detto ϑ l'argometo d z, s scrve z = ρ, ϑ. [ ] Questa s dce la forma trgoometrca del umero complesso z. Osservamo che [ ρ, ϑ] [ ρ ', ϑ '] = se e solo se ρ = ρ ' ϑ = ϑ ' + π per qualche Z Qud, due forme trgoometrche rappresetao lo stesso umero complesso se e solo se modul soo ugual e gl argomet dfferscoo per u multplo tero d π (crtero d uguaglaza per le forme trgoometrche). La forma trgoometrca è legata alla forma algebrca z = a + b dalle seguet dettà: Pertato Ioltre s ha a = ρ cos ϑ, b = ρ s ϑ. z = ρ(cosϑ + s ϑ). () ρ = a + b.

7 Esempo.0 Determamo le forme trgoometrche d alcu umer compless, assegat forma algebrca. π a) z = =, ; 3π b) z = =, ; z = =,0 ; c) [ ] d) z = = [ π ] 3 3, ; π e) z = + =, ; 4 π Eserczo. Determare la forma algebrca del umero complesso z =, 6. Svolgmeto: S ha, base alla (), π π 3 z = cos + s = + = Eserczo. Calcolare l modulo de seguet umer compless: a) b)* ( + ) c)* ( + )( ) d)* e)* ( + 3 )(4 7 ). Svolgmeto: Svolgamo solo a). S ha = + + =, l cu modulo è. La forma trgoometrca è partcolarmete utle el calcolo del prodotto d umer compless. Sao z ρ, ϑ, w = σ, ϕ. Allora dat umer compless = [ ] [ ] ( cos( ) s( )) ( ) z w = ρ(cosϑ + s ϑ) σ (cosϕ + s ϕ) = ρσ (cosϑ cosϕ sϑ s ϕ) + (cosϑ sϕ + sϑ cos ϕ). = ρσ ϑ + ϕ + ϑ + ϕ Pertato s ha [ ρ ϑ] [ σ ϕ] [ ρσ ϑ ϕ],, =, +. ()

8 Il prodotto d umer compless forma trgoometrca s effettua, duque, moltplcado modul e sommado gl argomet. Questa propretà suggersce la cosddetta forma espoezale d u umero complesso: z = ρe ϑ. Rspetto a questa forma, la () s scrve el modo seguete: ( + ). ρ σ = ρσ (3) e ϑ e ϕ e ϑ ϕ I questa uguaglaza rtrovamo l modo cu, el campo reale, vegoo moltplcate le poteze avet la stessa base. Dalla () e dalla (3) seguoo, co u facle ragoameto duttvo, le formule per l'elevameto alla poteza -esma d u umero complesso forma trgoometrca ed forma espoezale. Per og N s ha: e [ ] ρ, ϑ = ρ, ϑ. (4) ( ϑ e ) e ϑ ρ ρ. = (5) Possamo utlzzare, dfferetemete, la (4) o la (5) per estrarre le radc -esme da u umero complesso o ullo. Defzoe.3 Sa N,. S dce radce -esma del umero complesso z og umero complesso w tale che w = z. Proposzoe.4 (Formule d De Movre). Sa z u umero complesso o ullo, d modulo ρ ed argometo ϑ. Allora z ha esattamete radc -esme, date dalle seguet formule: - (forma trgoometrca) - (forma espoezale) x ϑ + π = ρ, x ( = 0,..., ); ϑ + π = ρe ( 0,..., ). = Dmostrazoe: Utlzzeremo la otazoe espoezale. Provamo aztutto che, = 0,...,, x è ua radce -esma d z = ρe ϑ. I effett s ha, base alla (5), per og ϑ+ π ( ϑ+ π ) ϑ ρ ρ ρ x = e = e = e = z. Provamo qud che og radce -esma d z è uguale ad uo degl x. Sa w ua radce -esma d z, w = σ e ϕ. Allora, sempre base alla (5), s ha ( σ ϕ ) σ ϕ ρ ϑ. w = e = e = e

9 Dall'ultma uguaglaza, che traduce la codzoe w = z, segue, cofrotado modul e gl argomet secodo l crtero d uguaglaza per le forme trgoometrche, σ = ρ ϕ = ϑ + π per qualche Z, ossa σ = ρ ϑ + π ϕ = per qualche Z. Sa ora r l resto della dvsoe d per. Allora r { } q Z. Segue che ϑ + π ϑ + ( q + r) π ϑ + rπ = = + qπ. 0,...,, e = q + r per u opportuo ϑ + π ϑ + rπ Duque è dfferete predere, come argometo, oppure. Segue che ϑ+ rπ ϕ w = σ e = ρe = x r. Abbamo così provato che le formule d De Movre forscoo tutte le radc -esme d z. Provamo allora che umer x soo a due a due dstt (e qud soo esattamete ). Sao { }, ' 0,...,, '. Allora gl argomet d x e ( ') π ' = π, che o è u multplo tero d π : fatt per cu ( ) ', e ' 0, ' o è dvsble per, e, d cosegueza, uguaglaza per le forme trgoometrche segue che x x ' dfferscoo per Eserczo.5* Calcolare le radc quadrate, cubche, quarte e qute d. l umero ' o è u tero. I base al crtero d x, come volevas. Svolgmeto: Applchamo le formule d De Movre a z = = [, 0], successoe, per =, 3, 4,5. Per = otteamo le radc quadrate, che soo ' Rtrovamo le radc a o gà ote. 0 π 0 0 = = = x e e π, π x = e = e =.

10 Per = 3 otteamo le radc cubche, che soo 0 π = = = x e e, π π π π x = e = e = cos + s = +, 3 3 4π 4π 4π 4π x = e = e = cos + s =. 3 3 Per = 4 otteamo le radc quarte, che soo 0 π = = = x e e 4π 4, π π π π 4 x = e = e = cos + s =, π x = e = e = cosπ + sπ =, 6π 3π 3π 3π 4 x3 = e = e = cos + s =. A quelle gà ote, che soo e, s soo aggute l'utà mmagara ed l suo opposto. D'altrode sappamo che Il calcolo delle radc qute è lascato al lettore. Eserczo.6* Calcolare a) le radc seste d +, b) le radc quarte d 3 +. ( ) 4 4 ( ) = = = ( ) =.

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Numeri complessi Pag. 1 Adolfo Scimone 1998

Numeri complessi Pag. 1 Adolfo Scimone 1998 Numer compless Pag. Adolfo Scmoe 998 NUMERI COMPLESSI Come sappamo, o esstoo el campo de umer real le radc d dce par de umer egatv. Ammettamo pertato l esstea della radce quadrata del umero. Questo uovo

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione

Aritmetica 2016/2017 Esercizi svolti in classe Quarta lezione Artmetca 06/07 Esercz svolt classe Quarta lezoe Rcorreze o lear Sa a c a cq ua rcorreza dove {c }, c C e c 0. Sa P C[λ] l polomo caratterstco della rcorreza. Allora ua soluzoe partcolare della rcorreza

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

Lezione 3. Funzione di trasferimento

Lezione 3. Funzione di trasferimento Lezoe 3 Fuzoe d trasfermeto Calcolo della rsposta d u sstema damco leare Per l calcolo della rsposta (uscta) d u sstema damco leare soggetto ad gress assegat, s possoo segure due strade Calcolo el domo

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti

Organizzazione del corso. Elementi di Informatica. Orario lezioni ed esami. Crediti. Dispense e lucidi. Ricevimento studenti Orgazzazoe del corso Elemet d Iformatca Prof. Alberto Brogg Dp. d Igegera dell Iformazoe Uverstà d Parma Teora: archtettura del calcolatore, elemet d formatca, algortm, lguagg, sstem operatv Laboratoro:

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 18 marzo 2015 Apput d ddattca della Matematca fazara Redte, costtuzoe d

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Algoritmi e Strutture Dati. Alberi Binari di Ricerca Algortm e Strutture Dat Alber Bar d Rcerca Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase)

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

Leasing: aspetti finanziari e valutazione dei costi

Leasing: aspetti finanziari e valutazione dei costi Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

Capitolo 5: Fattorizzazione di interi

Capitolo 5: Fattorizzazione di interi Captolo 5: Fattorzzazoe d ter Trovare fattor d u umero tero grade è ua mpresa assa ardua, e può essere mpossble co le rsorse ogg dspobl. No s cooscoo metod polomal per la fattorzzazoe, come vece accade

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione.

), mentre l unico intero che divide 0 è 0. Enunciamo alcune proprietà di ovvia dimostrazione. Dvsbltà e umer prm Sao a,b elemet dell seme Z degl ter relatv Dcamo che a dvde b, smbol a b, se b è multplo d a, ossa se esste u tero h Z tale che b ha Og tero a dvde 0 ( 0 0a ), metre l uco tero che dvde

Dettagli

17. FATICA AD AMPIEZZA VARIABILE

17. FATICA AD AMPIEZZA VARIABILE 7. FIC D MPIEZZ VRIBILE G. Petrucc Lezo d Costruzoe d Macche Spesso compoet struttural soo soggett a store d carco elle qual ccl d fatca hao ampezza varable (fg.), ad esempo ccl co tesoe alterata a (o

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue:

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue: Procedura aperta per l affdameto de servz tegrat, gestoal, operatv e d mautezoe multservzo tecologco da esegurs presso gl mmobl d propretà o uso alle Asl ed alle azede ospedalere della regoe Campaa ERRATA

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha:

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha: RENDITE. Pagamet rateal S defsce redta ua sere qualsas d somme rscuotbl (o pagabl a scadeze dverse, o, pù esattamete, u seme d captal co dspobltà scagloata el tempo. Tal captal soo dett rate della redta

Dettagli

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti.

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti. Iterpolazoe Defzoe: per terpolazoe s tede la rcerca d ua fuzoe matematca che approssma l adameto d u seme d put. Iterpolazoe MATEMATICA Calcola ua fuzoe che passa PER tutt put Tp d terpolazoe Iterpolazoe

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1

Matrice: tabella di m righe ed n colonne. A T matrice trasposta di A=(a ij ) di elementi a ijt =a ji. Serena Morigi Università di Bologna 1 Matrc Matrce: tabella d m rghe ed coloe T matrce trasposta d (a j ) d elemet a jt a j Serea Morg Uverstà d Bologa Matrc Matrce quadrata m sottomatrc Matrce rettagolare m Serea Morg Uverstà d Bologa Matrc

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

SCHEDA DIDATTICA N 5

SCHEDA DIDATTICA N 5 FACOLTA DI INGEGNEIA COSO DI LAUEA IN INGEGNEIA CIVILE COSO DI IDOLOGIA POF. PASQUALE VESACE SCHEDA DIDATTICA N 5 MOMENTI DELLE VAIABILI CASUALI E STIMA DEI PAAMETI A.A. 0-3 Momet delle varabl casual La

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA I ECOOMIA AZIEDALE Metod Statstc per le decso d mpresa (ote ddattche) Bruo Chadotto 4 STATISTICA DESCRITTIVA I questo captolo s rtrovao espost, ua prospettva emprca, molt de cocett trodott

Dettagli

Avvertenza. Rendite frazionate

Avvertenza. Rendite frazionate Avverteza Quest lucd soo pesat solo come u auslo per l ascolto della lezoe. No sosttuscoo l lbro d testo Possoo coteere error e svste, che gl studet soo vtat a segalare Redte frazoate L tervallo tra ua

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo

Il modello di regressione lineare semplice (1) Studio della dipendenza riepilogo Studo della dpedeza replogo Abbamo vsto due msure d assocazoe tra caratter: ) msure d assocazoe basate sull dpedeza dstrbuzoe ( χ, V d Cramer) possoo essere applcate a coppe d caratter qualuque (ache etrambe

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

Probabilità e Statistica I

Probabilità e Statistica I Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:diardo@uibas.it http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:

Dettagli

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura

Modello dinamico nello spazio dei giunti: relazione tra le coppie di attuazione ai giunti ed il moto della struttura Damca Modello damco ello spazo de gut: relazoe tra le coppe d attuazoe a gut ed l moto della struttura smulazoe del moto aals e progettazoe delle traettore progettazoe del sstema d cotrollo progetto de

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO CMPI DI OZ CONSEVTIVI - ENEGI POTENZIE E POTENZIE EETTICO Camp Vettoal Defzoe: u campo vettoale è ua egoe dello spazo, cu og puto è defto u vettoe. Ta camp vettoal d patcolae teesse fsca v soo camp d foza

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

L assorbimento e lo strippaggio

L assorbimento e lo strippaggio assorbmeto e lo strppaggo Coloa a stad d ulbro (coloa a patt Il calcolo d ua coloa d assorbmeto/strppaggo d questo tpo parte dal blaco d matera. Chamado e le portate d lqudo A e d gas C relatve a due compoet

Dettagli

del corso di Elaborazione Numerica dei Segnali

del corso di Elaborazione Numerica dei Segnali G. Guta: corso d Elaborazoe Numerca de Segal (laurea specalstca) - lucdo. Corso d laurea Corso d laurea del corso d Elaborazoe Numerca de Segal (laurea specalstca) (docete: Prof. G. Guta) x() x () e x

Dettagli

Appunti: elementi di Statistica

Appunti: elementi di Statistica Uverstà d Ude, Facoltà d Sceze della Forazoe Corso d Laurea Sceze e Tecologe Multedal Corso d Mateatca e Statstca (Gorgo T. Bag) Apput: eleet d Statstca. INTENSITÀ, FREQUENZA ASSOLUTA E RELATIVA.. L aals

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

Lezione 9. Congruenze lineari. Teorema Cinese del Resto.

Lezione 9. Congruenze lineari. Teorema Cinese del Resto. Lezoe 9 Prerequt: Lezoe 8. Cogrueze lear. Teorema Cee el Reto. Nella Lezoe 8 abbamo vto che a caua ella compatbltà ella cogrueza moulo rpetto alle operazo artmetche le relazo cogrueza moulo pooo eere ottopote

Dettagli

Problema della Ricerca

Problema della Ricerca Problema della Rcerca Pag. /59 Problema della Rcerca U dzoaro rappreseta u seme d formazo suddvso per elemet ad oguo de qual è assocata ua chave. Esempo d dzoaro è l eleco telefoco dove la chave è costtuta

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

Geometria delle aree

Geometria delle aree eometra delle aree Lo studo de cocett ase relatv alla eometra delle ree: cosete d trasformare le azo tere sollectazo cosete d valutare l elastctà delle strutture forsce gl strumet per valutare le strutture

Dettagli

Vantaggi della stratificazione

Vantaggi della stratificazione Lez. 4 0/03/05 etd Statstc per l aret - F. Bartlucc Uverstà d Urb Vata della stratfcaze I prcpal vata del campamet stratfcat s: mlramet ell effceza del stmatre del ttale e della meda; pssbltà d stmare

Dettagli

Ammortamento americano. Ammortamento americano

Ammortamento americano. Ammortamento americano mmortameto amercao La cora lezoe abbamo vto che ell'ammortameto amercao l rmboro del debto zale avvee medate u uco verameto a cadeza, otteuto attravero ua operazoe d cottuzoe d u captale al tao attvo j;

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli