Zeri di funzione. Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Zeri di funzione. Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio"

Transcript

1 Zeri di funzione p.1/19 Zeri di funzione Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari

2 Zeri di funzione p.2/19 Problema Data una funzione f : [a,b] R, determinare un numero α tale che f(α) = 0. Esempio: calcolo di a; decadimento di una sostanza chimica; data una funzione f(t) = 7e 5t + 3e 2t che esprime il numero di particelle di una sostanza chimica, vogliamo valutare quando questo numero diventa uguale a c. Il problema è mal condizionato quando f(x) 0 in un intervallo abbastanza grande della soluzione.

3 Zeri di funzione p.3/19 Soluzione numerica Il metodo numerico cerca una approssimazione della soluzione. Tutti i metodi numerici sono iterativi. Se esistono più soluzioni, un metodo ne determina una qualsiasi (ed è difficile prevedere quale).

4 Zeri di funzione p.4/19 Metodo grafico Algoritmo: 1. fissare una discretizzazione dell intervallo contenente lo zero; 2. disegnare, utilizzando questi punti, il grafico della funzione; 3. determinare orientativamente un nuovo intervallo in cui è contenuto lo zero; 4. ripetere le suddette operazioni finchè non si raggiunga una approssimazione della soluzione con la accuratezza desiderata.

5 Zeri di funzione p.5/19 Metodo delle successive bisezioni Teorema (degli zeri): Se f è continua in [a,b] e f(a)f(b) < 0, allora esiste α tale che f(α) = 0. Idea: si parte da un intervallo [a 0,b 0 ] contenente lo zero e si determina una successione di intervalli sempre più piccoli contenenti lo zero. Il metodo è globalmente convergente nell ipotesi che nell intervallo [a, b] di partenza esista una soluzione.

6 Zeri di funzione p.6/19 Metodo delle successive bisezioni Algoritmo: 1. si determina un intervallo [a, b] contenente la soluzione e tale che f(a)f(b) < 0 2. si pone a 0 = a, b 0 = b e k = 0; 3. c k = a k + b k ; 2 4. se f(c k )f(a k ) < 0 allora si pone a k+1 = a k e b k+1 = c k ; viceversa a k+1 = c k e b k+1 = b k ; 5. k = k + 1 e si riparte dal punto 3 fino a quando non si è raggiunta la soluzione desiderata.

7 Zeri di funzione p.7/19 Proprietà Convergenza: dopo k passi b k a k = b 0 a 0 2 k. Si potrebbe decidere a priori il numero di passi. Criteri di arresto: b k a k ( < ɛ oppure ) f(c k ) < ɛ. b0 a 0 Nel primo caso k > log 2 ɛ Limite: la convergenza è molto lenta. L errore si riduce all incirca della metà ad ogni passo. Esempio: a = 1, b = 2 e ɛ = 2 t (è richiesta una precisione di t bit); f(x) = x 2 2

8 Zeri di funzione p.8/19 Metodo della falsa posizione Per ridurre maggiormente l ampiezza dell intervallo (per aumentare la velocità di convergenza) è possibile tracciare la retta passante per (a k,f(a k )) e (b k,f(b k )); il punto c k è il punto di intersezione della retta con l asse delle x. Da g(x) = f(b) + f(b) f(a) (x b) b a e scegliendo c tale che g(c) = 0 si ha b a c = b f(b) f(b) f(a)

9 Zeri di funzione p.9/19 Metodo della falsa posizione Algoritmo: nel punto 3 c k = b k b k a k f(b k ) f(a k ) f(b k) Vantaggio: dovrebbe convergere più velocemente Svantaggi: non si può dire a priori quanti passi occorre fare; non si fanno più divisioni per 2; l algoritmo potrebbe stagnare.

10 Zeri di funzione p.10/19 Iterazione funzionale x k+1 = φ(x k ) Fissato x 0, si determina una successione x 1,x 2,... α deve essere punto fisso della successione, α = φ(α) Graficamente se sulle ascisse ho x k e sulle ordinate x k+1 allora la soluzione è punto di intersezione tra y = x e y = φ(x)

11 Zeri di funzione p.11/19 Iterazione funzionale Esempio: φ dipendente dal problema f(x) = x 2 a α = a α è il lato del quadrato di area a. Allora si parte da un rettangolo che ha un lato pari a x 0 e l altro pari ad a/x 0 (l area è sempre a). Dopo di che si sceglie x 1 = 1 2 (x 0 + a x 0 ) (punto medio tra i due lati) e si itera Esempio: f(x) = x 3 2x 5 (α 2.1) φ(x) = 1 2 (x3 5) non convergente φ(x) = (2x + 5) 1/3 convergente

12 Zeri di funzione p.12/19 Teorema di convergenza (locale) Sia x k+1 = φ(x k ) un metodo iterativo con φ e φ continue in un intorno I(α) (α punto fisso di φ). Se φ (α) < λ < 1 allora esiste un intorno I 0 (α) tale che per ogni x 0 I 0 (α) il metodo è convergente ad α. dim. x k+1 α φ (η k ) x k α < λ x k α < λ k x 0 α dove η k I(x k,α). I metodi possono essere non convergenti o solo localmente convergenti

13 Ordine di convergenza Supponiamo x k+1 = φ(x k ) sia convergente. Posto e k = x k α se e k+1 = ce p k allora il metodo si dice di ordine p. Se p = 1 allora c < 1 implica che il metodo converge linearmente. Più è grande p e più velocemente converge il metodo. Teorema: Il metodo ha ordine p se φ (j) (α) = 0 per 1 j < p. dim. x k+1 = φ(x k ) = j=0 1 j! φ(j) (α)(x k α) j Zeri di funzione p.13/19

14 Zeri di funzione p.14/19 Condizioni di uscita Al posto della condizione x k α < ɛ consideriamo: x k+1 x k < ɛ x k α = 1 φ (η k ) 1 x k+1 x k f(x k ) < ɛ x k α = 1 f (η k ) f(x k) dove η k I(x k,α)

15 Zeri di funzione p.15/19 Metodo di Newton (delle tangenti) x k+1 = x k f(x k) f (x k ) Deriva dalla equazione della retta tangente in x k : g(x) = f(x k ) + f (x k )(x x k ). Il metodo è localmente convergente in quanto φ (α) = 0 < 1. L ordine di convergenza è 2 (a meno di radici doppie).

16 Metodo di Newton (radici doppie) Se le radici sono semplici (f (α) 0) si ha lim k x k+1 α x k α 2 = f (α) 2 f (α). Viceversa se le radici sono multiple (f (α) = f (α) =... = f (s) (α) = 0) lim k x k+1 α x k α = n 1 n. In questo caso per aumentare la velocitá di convergenza del metodo si puó considerare la seguente modifica x k+1 = x k s f(x k) f (x k ) Zeri di funzione p.16/19

17 Zeri di funzione p.17/19 Metodo delle secanti Si sostituisce f (x k ) con il rapporto incrementale f(x k ) f(x k 1 ) x k x k 1. x k+1 = x k x k x k 1 f(x k ) f(x k 1 ) f(x k) φ(x k 1,x k ) a differenza del metodo della falsa posizione il punto è calcolato a partire dai due precedenti (la f potrebbe essere in entrambi minore o maggiore di zero) converge localmente e p =

18 Zeri di funzione p.18/19 Metodo della falsa posizione Rispetto al metodo delle secanti uno dei due punti è fissato x k+1 = x k x k x 0 f(x k ) f(x 0 ) f(x k) φ(x k ) si ottiene un fascio di rette passanti per il punto (x 0,f(x 0 )) converge localmente e p = 1.4.

19 Zeri di funzione p.19/19 Metodo delle direzioni costanti Nel metodo di Newton si pone f (x k ) = m costante x k+1 = x k f(x k) m φ(x k) si ottiene un fascio di rette parallele converge localmente se 0 f (α) m 2 in genere si sceglie m = f (x 0 ).

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 Equazioni non lineari Data una funzione consideriamo il problema

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Metodi per il calcolo degli zeri di funzioni non lineari

Metodi per il calcolo degli zeri di funzioni non lineari Metodi per il calcolo degli zeri di funzioni non lineari N. Del Buono 1 Introduzione Le radici di un equazione non lineare f(x) = 0 non possono, in generale, essere espresse esplicitamente e anche quando

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]).

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Esempio 1: equazioni polinomiali p N (x)

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) V Lezione del 15.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Metodo di Newton:

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2016-2017 Problemi non lineari Definizione f : R R F : R n R m f (x) = 0 F(x) = 0 In generale si determina

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

Metodi numerici per zeri di funzioni

Metodi numerici per zeri di funzioni CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari Metodi numerici per zeri di funzioni 1 Metodo delle successive bisezioni Se f(x) C([a, b]) ed f(a) f(b)

Dettagli

data una funzione f, non lineare calcolare le soluzioni dell equazione f(x) = 0 in un intervallo [a,b]

data una funzione f, non lineare calcolare le soluzioni dell equazione f(x) = 0 in un intervallo [a,b] RISOLUZIONE NUMERICA DI EQUAZIONI NON LINEARI PROBLEMA: data una funzione f, non lineare calcolare le soluzioni dell equazione f() = 0 in un intervallo [a,b] 1 f ( ) = log( ) +, (0,10) ξ Esiste una sola

Dettagli

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile).

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile). SOLUZIONE DI EQUAZIONI NON-LINEARI Molti problemi sono espressi nella forma f(x) = 0 con f(x) funzione non lineare (es. log(x 2 + a) + b cos x = 0, x 5 + ax 3 + b = 0) La determinazione delle radici in

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Introduzione In molte applicazioni intervengono equazioni che non siamo in grado di risolvere analiticamente, o la cui risoluzione risulta molto complessa e laboriosa. Un importante

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni non lineari Sia

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica e delle Telecomunicazioni Prof.ssa L. Pezza (A.A. 2017-2018) IV Lezione del 13.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni non

Dettagli

RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE

RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE RISOLUZIONE APPROSSIMATA DI UN EQUAZIONE Introduzione Si vogliano individuare, se esistono, le radici o soluzioni dell equazione f(x)=0. Se f(x) è un polinomio di grado superiore al secondo o se è una

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Equazioni non lineari 1 / 40 Problema Data una

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 2 - EQUAZIONI NON LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Elementi introduttivi 2 3 4 Introduzione Problema: trovare le soluzioni di

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 - Equazioni non lineari

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 9 - Equazioni non lineari Complementi di Matematica e Calcolo Numerico A.A. 2017-2018 Laboratorio 9 - Equazioni non lineari Data f : R R determinare α R tale che f(α) = 0 Le soluzioni di questo problema vengono dette radici o zeri

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

aprile 2007 dicembre 2000 Metodi iterativi Metodi iterativi dell equazione equazione f(x)=0 per l approssimazione l

aprile 2007 dicembre 2000 Metodi iterativi Metodi iterativi dell equazione equazione f(x)=0 per l approssimazione l Metodi iterativi Metodi iterativi per l approssimazione l delle radici dell equazione equazione f()=0 dicembre 000 aprile 007 Definizione Si chiama RADICE di una equazione a()=b() un numero (reale) u tale

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

1 Esercizi relativi al Capitolo 1

1 Esercizi relativi al Capitolo 1 1 Esercizi relativi al Capitolo 1 1. (a) x = 7; (b) (x) 4 = (32.1) 4 = (14.25) 10 ; (c) x = 5; (d) (200) x = (18) 10 ; x = 3; y = (11330) 8 = (4824) 10 ; (e) x = 2882.125; y = 231002.02; (f) (x) 3 = (12122.1012)

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3-24/3/2014

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3-24/3/2014 Complementi di Matematica e Calcolo Numerico A.A. 2012-2013 Laboratorio 3-24/3/2014 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare

Dettagli

Complementi di Matematica A.A Laboratorio 10

Complementi di Matematica A.A Laboratorio 10 Complementi di Matematica A.A. 2016-2017 Laboratorio 10 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare la funzione predefinita

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Metodi Numerici per l Approssimazione degli Zeri di una Funzione

Metodi Numerici per l Approssimazione degli Zeri di una Funzione Metodi Numerici per l Approssimazione degli Zeri di una Funzione Luca Gemignani luca.gemignani@unipi.it 29 marzo 2018 Indice Lezione 1: Il Metodo di Bisezione. 1 Lezione 2: Metodi di Iterazione Funzionale.

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2016-2017) IV Lezione del 06.03.2017 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 2 - EQUAZIONI NON LINEARI Introduzione Problema: trovare le soluzioni di un equazione del tipo f() = 0 Esempio sin a = 0 e = 3 1.0 2.0 0.5

Dettagli

RISOLUZIONE DI EQUAZIONI NON LINEARI PROBLEMA:

RISOLUZIONE DI EQUAZIONI NON LINEARI PROBLEMA: RISOLUZIONE DI EQUAZIONI NON LINEARI PROBLEMA: data una funzione f, non lineare calcolare le soluzioni dell equazione f(x) = 0 f ( x) = log( x) + x, x (0,0) ξ Esiste una sola soluzione f ( x) = x +, x

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 3: metodi iterativi per sistemi lineari ed equazioni nonlineari Roberto Ferretti Filosofia generale dei metodi iterativi Metodi iterativi per Sistemi Lineari Convergenza

Dettagli

Equazioni e sistemi non lineari. Prof. M. Lucia Sampoli

Equazioni e sistemi non lineari. Prof. M. Lucia Sampoli Equazioni e sistemi non lineari Prof. M. Lucia Sampoli 1 Equazioni non lineari Data una funzione f : consideriamo il problema di determinare i valori x tali che Tali valori sono solitamente chiamati zeri

Dettagli

MATLAB:Metodi Numerici per zeri di funzioni.

MATLAB:Metodi Numerici per zeri di funzioni. 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB:Metodi Numerici per zeri di funzioni Metodo delle successive bisezioni Sappiamo che la procedura definita dal

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 2. Determinazione numerica degli zeri di una funzione Si consideri il seguente problema: Data f : [a, b] R, determinare i valori

Dettagli

Problemi di Calcolo Numerico

Problemi di Calcolo Numerico Problemi di Calcolo Numerico Corso di Laurea in Ingegneria Elettronica Corso di Laurea in Ingegneria delle Telecomunicazioni a.a. 2007/2008 2 Zeri di funzioni reali Problema 1 Sia f la funzione definita,

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 7

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 7 Complementi di Matematica e Calcolo Numerico A.A. 2015-2016 Laboratorio 7 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare la funzione

Dettagli

Relazione di laboratorio di Analisi Numerica: metodi di ricerca zeri

Relazione di laboratorio di Analisi Numerica: metodi di ricerca zeri Relazione di laboratorio di Analisi Numerica: metodi di ricerca zeri Francesco Genovese, Università di Pavia 8 febbraio 2008 Sommario Questa relazione di laboratorio di Analisi Numerica (corso dell A.A.

Dettagli

Soluzione numerica di equazioni differenziali

Soluzione numerica di equazioni differenziali Soluzione numerica di equazioni differenziali Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Soluzione numerica di

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) III Lezione del 12.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 I metodi

Dettagli

Corso di Analisi Numerica - AN410. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti

Corso di Analisi Numerica - AN410. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti Corso di Analisi Numerica - AN410 Parte 3: metodi iterativi per sistemi lineari ed equazioni nonlineari Roberto Ferretti UNIVERSITÀ DEGLI STUDI ROMA TRE Filosofia generale dei metodi iterativi Metodi iterativi

Dettagli

Metodi per la ricerca degli zeri

Metodi per la ricerca degli zeri Chapter 5 Metodi per la ricerca degli zeri 5.1 Introduzione In questo capitolo ci occuperemo della soluzione di equazioni del tipo f(x) = 0 (5.1) dove f è una funzione a valori reali della variabile reale

Dettagli

Risoluzione di equazioni non lineari

Risoluzione di equazioni non lineari Risoluzione di equazioni non lineari Si considera il problema di determinare la soluzione dell equazione f(x) = 0 ove f(x) è una funzione definita in un intervallo [a, b], chiuso e limitato. Ogni valore

Dettagli

Approssimazione numerica

Approssimazione numerica Approssimazione numerica Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Approssimazione numerica p.1/10 Problema

Dettagli

Daniela Lera A.A. 2008-2009

Daniela Lera A.A. 2008-2009 Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Equazioni non lineari Metodo di Newton Il metodo di Newton sfrutta le informazioni sulla funzione

Dettagli

Supponiamo di voler risolvere l equazione lineare scalare:

Supponiamo di voler risolvere l equazione lineare scalare: Capitolo 2 Procedimenti iterativi Molto spesso le leggi della natura sono non lineari. Ne segue la necessità di risolvere equazioni non lineari. Tranne che per polinomi di grado basso, per i quali è possibile

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Esercizi proposti di Analisi Numerica

Esercizi proposti di Analisi Numerica Esercizi proposti di Analisi Numerica Silvia Bonettini Dipartimento di Matematica, Università di Ferrara 30 gennaio 2012 1 Conversioni, operazioni di macchina e analisi dell errore 1. Convertire i numeri

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-23/3/2015

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-23/3/2015 Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 4-23/3/2015 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare

Dettagli

Algoritmi numerici. Zeri di una funzione. Integrale di una funzione. Soluzione di una equazione differenziale

Algoritmi numerici. Zeri di una funzione. Integrale di una funzione. Soluzione di una equazione differenziale Algoritmi numerici Zeri di una funzione Integrale di una funzione Soluzione di una equazione differenziale Zeri di una funzione Trovare le soluzioni di f(x) = 0 dove f(x) e una funzione reale di variabile

Dettagli

Polinomi. I polinomi della forma

Polinomi. I polinomi della forma I polinomi della forma Polinomi p(x) = a 0 +a 1 x+a 2 x 2 + +a N x N richiedono N potenze, N somme e N moltiplicazioni per essere valutati Un metodo più efficiente (Horner) è p(x) = a 0 +x (a 1 +x (a 2

Dettagli

Metodi Numerici (A.A ) Prof. F. Pitolli

Metodi Numerici (A.A ) Prof. F. Pitolli Metodi Numerici (A.A. 2007-2008) Prof. F. Pitolli Appunti delle lezioni su: metodo di Newton in IR n ; equazioni non lineari, metodo di bisezione e metodo di Newton in IR Equazioni non lineari Numerosi

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Equazioni non lineari Metodi di linearizzazione Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Metodi iterativi per equazioni nonlineari.

Metodi iterativi per equazioni nonlineari. Metodi iterativi per equazioni nonlineari. Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 9 aprile 2016 Alvise Sommariva Introduzione 1/ 14 Introduzione Si supponga sia f

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 3 Complementi di Matematica e Calcolo Numerico A.A. 2012-2013 Laboratorio 3 Funzioni Simboliche (inline) Assegnata una funzione del tipo f(x) = (sin(x) + x) 2 vogliamo valutare i valori assunti da f per

Dettagli

APPUNTI DI CALCOLO NUMERICO

APPUNTI DI CALCOLO NUMERICO Premessa APPUNTI DI CALCOLO NUMERICO Equazioni non lineari Mawell Sia data una unzione ( ) : non lineare e si cerchino le radici (o gli zeri) della seguente equazione ( ) = di variabile reale con valori

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 4 novembre 2007 Outline 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi numerici per la soluzione di sistemi lineari Metodi Iterativi la soluzione si ottiene tramite approssimazioni

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4 - Metodi di Newton e Punto fisso

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4 - Metodi di Newton e Punto fisso Complementi di Matematica e Calcolo Numerico A.A. 2011-2012 Laboratorio 4 - Metodi di Newton e Punto fisso [1] Metodo di Newton Costruire una MATLAB FUNCTION che, dati dall utente: una funzione f una funzione

Dettagli

Compito di Matematica per Agraria 16/1/ Si disegni il grafico della seguente funzione: 1 x

Compito di Matematica per Agraria 16/1/ Si disegni il grafico della seguente funzione: 1 x 16/1/08 f(x) = ln x. Considerata poi la funzione g(x) = 1 x si calcoli dominio ed espressione 2. Si determini il dominio della funzione: 1 x f(x) = + 4 2x 1 + 1 1 + x x 1 3. data la funzione f(x) = 3 +

Dettagli

Equazioni non lineari

Equazioni non lineari Capitolo 2 Equazioni non lineari 2.1 Richiami di teoria Prerequisiti: teorema di Gauss, nozioni elementari di calcolo differenziale. In generale, per risolvere una equazione della forma f(x) = 0 dove f

Dettagli

LEZIONE 5. Esercizio 5.1. Calcolare il limite per x ± delle seguenti funzioni. lim. lim. lim. lim. lim. e x ) x. per x. lim

LEZIONE 5. Esercizio 5.1. Calcolare il limite per x ± delle seguenti funzioni. lim. lim. lim. lim. lim. e x ) x. per x. lim 5 LEZIONE 5 Esercizio 5.1. Calcolare il ite per x ± delle seguenti funzioni. 2x3 3x 2 = x3 (2 3/x) =±. x2 sin x 2 x 4 = x4 (sin x 2 /x 2 1) =. ex x = ex (1 x/e x )=. sin 1 x cos x2 =0, infatti all infinito

Dettagli

CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA

CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA CORREZIONE DEL COMPITO IN CLASSE DI MATEMATICA n. (8 dicembre 009) PROBLEMA Punto a b = ( f '( ) = 0 a( b( (*) = a( b( da cui: a b a 9b = = 5 5 5 5 a 9 5 passaggio per, a 5 = 5 5 5 6 f ' uguale a zero

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Note del corso di Laboratorio di Programmazione e Calcolo: Soluzione numerica di equazioni non lineari

Note del corso di Laboratorio di Programmazione e Calcolo: Soluzione numerica di equazioni non lineari Corso di laurea in Matematica SAPIENZA Università di Roma Note del corso di Laboratorio di Programmazione e Calcolo: Soluzione numerica di equazioni non lineari Dipartimento di Matematica Guido Castelnuovo

Dettagli

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Matematica Lezione 18

Matematica Lezione 18 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 18 Sonia Cannas 4/12/2018 Metodo di bisezione Se f : [a, b] R è continua e tale che f (a) f (b) < 0 sono soddisfatte le ipotesi del

Dettagli

Analisi cinematica di meccanismi articolati

Analisi cinematica di meccanismi articolati Analisi cinematica di meccanismi articolati metodo dei numeri complessi rev 10 1 Il quadrilatero articolato b β a c α d γ Posizione a + b = c + d a e iα + b e iβ = c e iγ + d a cos α + b cos β = c cos

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

Calcolo numerico I e laboratorio, a.a. 2016/2017

Calcolo numerico I e laboratorio, a.a. 2016/2017 Calcolo numerico I e laboratorio, a.a. 016/017 Giacomo Albi giacomo.albi@univr.it Questo note rappresentano un complemento alle lezioni in classe, e non hanno alcuna pretesa di essere esaustive, o sostitutive

Dettagli

Facoltá di SMFN Corso di Studi in MAtematica- A.A Corso di ANALISI NUMERICA 1: Esempi di esercizi svolti Prof.

Facoltá di SMFN Corso di Studi in MAtematica- A.A Corso di ANALISI NUMERICA 1: Esempi di esercizi svolti Prof. Facoltá di SMFN Corso di Studi in MAtematica- A.A. 009-00 Corso di ANALISI NUMERICA : Esempi di esercizi svolti Prof. Carla MANNI ) Determinare se il problema del calcolo delle radici reali dell equazione

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

4.5 Metodo del gradiente

4.5 Metodo del gradiente 4.5 Metodo del gradiente Si cerca un punto stazionario di f : R n R con f C 1. Metodo del gradiente con ricerca 1-D esatta: Scegliere x 0, porre k := 0 Iterazione: d k := f(x k ) Determinare α k > 0 tale

Dettagli

Il procedimento termina quando il compito si riduce al caso base, cioè quando n vale 1.

Il procedimento termina quando il compito si riduce al caso base, cioè quando n vale 1. Si tramanda che in un antico tempio orientale i monaci tentassero di spostare una serie di dischi da un paletto ad un altro. Nel paletto iniziale erano infilati 64 dischi, disposti in ordine decrescente

Dettagli

PIANO CARTESIANO: un problema di programmazione lineare

PIANO CARTESIANO: un problema di programmazione lineare PIANO CARTESIANO: un problema di programmazione lineare In un laboratorio sono disponibili due contatori A, B di batteri. Il contatore A può essere azionato da un laureato che guadagna 20 euro per ora.

Dettagli

Cancellazione numerica e zeri di funzione. Dott. Marco Caliari

Cancellazione numerica e zeri di funzione. Dott. Marco Caliari Cancellazione numerica e zeri di funzione Dott. Marco Caliari PLS a.s. 01 013 Capitolo 1 Aritmetica floating point 1.1 I numeri macchina Data la capacità finita di un calcolatore, solo alcuni dei numeri

Dettagli

Corso di laurea in Chimica. Matematica

Corso di laurea in Chimica. Matematica Corso di laurea in Chimica Matematica Esercizi di ricapitolazione per la prova in itinere (tratti dalle prove in itinere degli anni precedenti) (Gli esercizi segnati con una crocetta sono di livello più

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

Ricerca di zeri di equazioni non lineari

Ricerca di zeri di equazioni non lineari Ricerca di zeri di equazioni non lineari Problema (esboa). Si vuole determinare l altezza x della parte sommersa di una boa sferica di raggio R = 0.055m e densità di massa ρ b = 0.6Kg/m 3, posta in acqua

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P.

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P. Derivate Derivata di una funzione in un punto Definizione Interpretazioni Definizione 1 Sia f : I x0 R una funzione definita in un intorno I x0 di un punto x 0 Per ciascun x I x0 con x = x 0 consideriamo

Dettagli

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame

Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Calcolo Numerico Informatica Manolo Venturin A.A. 2010 2011 Guida all esame Testo aggiornato al 23 maggio 2011. L esame consiste in una prova scritta della durata di 2 ore. Tale prova è composta da tre/-

Dettagli

Una introduzione alla risoluzione numerica di equazioni non lineari

Una introduzione alla risoluzione numerica di equazioni non lineari Capitolo 1 Una introduzione alla risoluzione numerica di equazioni non lineari 1.1 Introduzione Questo capitolo è dedicato allo studio ed all analisi di algoritmi numerici per la risoluzione di equazioni

Dettagli

Zeri di funzione. S. Maset Dipartimento di Matematica e Geoscienze Università di Trieste June 15, 2018

Zeri di funzione. S. Maset Dipartimento di Matematica e Geoscienze Università di Trieste June 15, 2018 Zeri di funzione S. Maset Dipartimento di Matematica e Geoscienze Università di Trieste maset@units.it June 15, 2018 1 Introduzione Da qui in avanti nel corso, non ci occuperemo più degli errori di arrotondamento

Dettagli

Soluzione di Equazioni non lineari

Soluzione di Equazioni non lineari Soluzione di Equazioni non lineari Corso di Calcolo Numerico 20 Marzo 2018 Function in MATLAB Lo scopo di una funzione è quello di prendere in input un certo numero di valori, fare alcune operazioni con

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Capitolo 2. Equazioni non lineari. 2.1 Metodo di bisezione. 2.2 Ordine dei metodi

Capitolo 2. Equazioni non lineari. 2.1 Metodo di bisezione. 2.2 Ordine dei metodi Capitolo 2 Equazioni non lineari 2.1 Metodo di bisezione Data la successione {x n } n prodotta dal metodo di bisezione convergente alla radice ξ di f(x), il criterio d arresto basato sul residuo (cioè

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 4

Laboratorio di Matematica Computazionale A.A Lab. 4 Laboratorio di Matematica Computazionale A.A. 2007-2008 Lab. 4 Complementi di Grafica 2D: Sottofinestre Per disegnare grafici separati nella stessa finestra suddividendola in sottofinestre: subplot(nr,nc,nf);

Dettagli