Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA"

Transcript

1 Anno Scolastico 2009/2010 Corso di Meccanica, Macchine e Impianti Termici CAPITOLO 5 TERMODINAMICA Prof. Matteo Intermite 1

2 5.1 LEGGE DEI GAS I gas sono delle sostanze che in determinate condizioni di pressione e temperatura sono caratterizzati da un elevata energia cinetica molecolare e da una trascurabile forza di attrazione tra le varie molecole. Per studiare il comportamento dei gas si prende in esame un modello chiamato GAS PERFETTO per il quale si considerano nulle le forze di attrazione molecolare e quindi le molecole risultano indipendenti tra loro. Inoltre si considerano uguali le energie cinetiche di ogni molecola e si considera uniforme la pressione in tutta la massa del gas. Un GAS PERFETTO segue rigorosamente una legge fisica che è espressa dall equazione di stato: p v = n R T Dove: p = pressione del gas v = volume del gas n = numero di moli (proporzionale alla quantità di gas considerata) T = Temperatura del gas R = costante caratteristica del gas R = 8314 m m = massa molecolare del gas. Nelle trasformazioni possono rimanere costanti: Caratteristica della trasformazione Pressione costante Volume costante Temperatura costante Senza scambio di calore con l esterno Tipo di trasformazione ISOBARA ISOCORA ISOTERMA ADIABATICA Prof. Matteo Intermite 2

3 TRASFORMAZIONE ISOBARA: TRASFORMAZIONEISOCORA: TRASFORMAZIONE ISOTERMA: TRASFORMAZIONE ADIABATICA: v COSTANTE T = v1 T1 = v T 2 2 P COSTANTE T = p1 T1 = p T 2 2 p v= COSTANTE p1 v1 = p2 v2 p v k = COSTANTE T v k 1 = COSTANTE 1 k k T p = COSTANTE Dove la costante k è data dal quoziente tra il calore specifico a pressione costante e quello a volume costante: C k = C p V P v=cost. p=cost. T=cost. dq=0 (Adiabatica) V Prof. Matteo Intermite 3

4 5.2 ENERGIA INTERNA E PRIMO PRINCIPIO DELLA TERMODINAMICA In campo meccanico, la termodinamica studia la trasformazione di energia termica in energia meccanica. Se si somministra una certa quantità di calore Q ad un gas, varia lo stato fisico iniziale p1, V1, T1 in un nuovo stato fisico individuato dai valori p2, V2, T2. In questa trasformazione cambia in definitiva l energia interna U del gas dal valore iniziale U1 al valore finale U2. L energia interna U di un gas è funzione della temperatura, per cui se la temperatura del gas resta costante non varia la sua energia interna U1=U2. Consideriamo un cilindro contenente del gas; nel cilindro può muoversi un pistone a perfetta tenute e senza attriti. Se cambia lo stato fisico del gas il pistone si sposta; immaginando che esso si muova verso l alto di uno spazio S. A tale movimento corrisponde una variazione di volume V2-V1. Sapendo che il lavoro è dato dal prodotto della forza F per lo spostamento S: L = F S Lo spostamento del pistone è dato da: S V S = V A 2 1 In cui A rappresenta l Area della sezione del pistone. Sostituendo si ha che il lavoro è: V2 V1 L= F A Sapendo che la pressione è: F P = A Il lavoro può essere scritto come: L= P ( V V ) 2 1 Per convenzione si considera positivo il lavoro ottenuto dall espansione del gas, e Prof. Matteo Intermite 4

5 negativo il lavoro effettuato sul gas dall esterno per comprimerlo. Il movimento del pistone in un cilindro contenente GAS può essere ottenuto somministrando o sottraendo calore. Quindi somministrando o sottraendo una determinata quantità di calore si ottiene del lavoro meccanico. Quindi se si considera una trasformazione ciclica tale che si riesca a riportare il gas alle condizioni iniziali vale la relazione detta principio dell equivalenza: Q= L Se invece di una trasformazione ciclica, il gas passa da uno stato iniziale 1 ad uno stato finale 2, la differenza tra calore e lavoro non è più nulla; Se il calore scambiato è maggiore del lavoro vuole dire che parte del calore somministrato non si è trasformato in lavoro ma è stato immagazzinato sotto forma di energia interna del gas: Q12 = L12 + U2 U1 dove con U2 U1 si è indicata la variazione di energia interna. Tale relazione esprime il primo principio della termodinamica. Prof. Matteo Intermite 5

6 5.3 SECONDO PRINCIPIO DELLA TERMODINAMICA Mentre la trasformazione di lavoro in calore è sempre possibile (per esempio, le forze d attrito fanno proprio questo), il processo inverso è possibile solo se vengono rispettate alcune condizioni, stabilite dal secondo principio della termodinamica, una legge che si può esprimere in modi diversi. I due più noti enunciati di tale principio sono quelli di Kelvin e di Clausius. KELVIN È impossibile realizzare una trasformazione il cui unico risultato sia quello di convertire in lavoro tutto il calore assorbito da una sorgente termica. CLAUSIUS È impossibile ottenere un processo il cui solo risultato sia il trasferimento del calore da un corpo a temperatura più bassa ad un crpo a temperatura più elevata; occorre per tale processo spendere del lavoro. T 2 Se ne deduce che per ottenere ciclicamente lavoro meccanico dal calore bisogna disporre Q 2 di due sorgenti, una a temperatura più elevata T2, l altra a temperatura più bassa T1. Più grande è la differenza tra le due macchina temperature, maggiore è il calore che si può termica trasformare in lavoro. Se si somministra una quantità di calore Q2 Q 1 tramite una sorgente a temperatura più elevata T2, parte di questo calore è T 1 <T 2 trasformato in lavoro e una parte Q1 deve essere ceduta alla sorgente a temperatura più bassa T1. Quindi è spontaneo dedurre il concetto di rendimento termodinamico come il rapporto tra il lavoro L ottenuto e il calore Q2 somministrato. L η = Q2 Il rendimento può anche essere espresso dalla seguente relazione: Q2 Q1 Q1 η = = 1 Q Q 2 2 L=Q 2 -Q 1 Prof. Matteo Intermite 6

7 Dato che la quantità di calore Q 1 non può mai essere nulla il rendimento di un ciclo termodinamico non potrà mai essere uguale a ENTALPIA E ENTROPIA Quando abbiamo scritto il primo principio della termodinamica nella forma Q12 = L12 + U2 U1 Si è etto che il simbolo L 12 rappresentava il calore effettivamente scambiato dal sistema con l esterno. Ma il lavoro scambiato si compone d una parte utilizzata all esterno che indicheremo con L ' 12 e dei lavori di ingresso p 1 V 1, negativo perché somministrato al sistema, e di uscita p2 V2, positivo perché ceduto dal sistema all esterno; il lavoro L 12, quindi si può scrivere: Sostituendo si ha che: Che si può scrivere nella seguente forma: L = L p V + p V ' Q = L p V + p V + U U ' Q L = ( U + p V ) ( U + p V ) ' Torna comodo in termodinamica introdurre na grandezza chiamata ENTALPIA, indicata con: H = U + p V Essa si misura in joule ed è definita come il contenuto termico del fluido. Se P=cost. H=Q Se P=cost. e V=cos. H=Q=ΔU Il concetto di Entropia venne introdotto per descrivere una caratteristica (la cui estrema generalità venne osservata per la prima volta da Sadi Carnot nel 1824) di tutti i sistemi nei quali si osserva che le trasformazioni avvengono invariabilmente in una direzione sola, ovvero quella verso il maggior disordine. L Entropia indicata con il simbolo S ed è definita come il rapporto tra la quantità di calore ΔQ e la temperatura a cui esso è disponibile: ΔQ Δ S = T L entropia si misura in J J e se riferita ad 1 kg di gas si misura in. K kg K L entropia in termodinamica interessa non come misura del suo valore assoluto, ma Prof. Matteo Intermite 7

8 come differenza tra i due valori, iniziale e finale, di una trasformazione. Maggiore è la variazione di entropia per una certa quantità di calore, minore è la temperatura e quindi la quantità del calore scambiato. Al contrario, minore è la variazione di entropia e maggiore è la possibilità di scambiare calore. Ogni trasformazione reale spontanea avviene con aumento di entropia. 5.4 IL CICLO DI CARNOT Tra tutte le macchine che scambiano calore con due soli serbatoi, chiamiamo Macchina di Carnot una macchina che compie un ciclo reversibile (detto Ciclo di Carnot) costituito in successione da una espansione isoterma, una espansione adiabatica, una compressione isoterma ed una compressione adiabatica. Caratteristica peculiare di una tale macchina è che il suo rendimento non dipende dalla sostanza termodinamica che compie il ciclo, ma solo dalle temperature delle due sorgenti con le quali scambia il calore. La macchina è costituita: da un cilindro chiuso con un pistone con le pareti isolate adiabaticamente contenente del gas perfetto che può scambiare calore solo attraverso il fondo del pistone. T 2 Q 2 macchina termica Q 1 L=Q 2 -Q 1 η Carnot Τ =1 Τ 1 2 T 1 <T 2 Analizziamo le varie trasformazioni: 1) Espansione Isotermica: il cilindro inizialmente in contatto con la sorgente calda per raggiungere la temperatura di quest ultima, rimane in contatto con questa finché il gas non si espande e il pistone raggiunge la posizione B. B A T 2 Prof. Matteo Intermite 8

9 2) Espansione Adiabatica: il cilindro viene allontanato dalla sorgente calda e isolato termicamente, il gas continua la sua espansione fino alla posizione C. L espansione continuerà finché il gas non raggiungerà la temperatura della sorgente fredda. C B Isolante 3) Compressione Isotermica: il cilindro viene Posto in contatto con la sorgente fredda, il gas subisce Una compressione che porterà il pistone a raggiungere la posizione D C D T 1 Prof. Matteo Intermite 9

10 3) Compressione Adiabatica: il cilindro viene Allontanato dalla sorgente fredda e isolato termicamente; la compressione del gas continuerà finché il pistone non occuperà di nuovo la posizione A. Riportandosi alle condizioni iniziali la macchina srà pronta per iniziare un nuovo ciclo. D A Isolante Prof. Matteo Intermite 10

11 5.5 IL DIAGRAMMA DEL VAPOR D ACQUA Per trasformare una sostanza dalla fase solida alla fase liquida o gassosa è necessario fornire energia al sistema per vincere l attrazione reciproca tra le molecole che, nei solidi è molto maggiore che nei liquidi nei liquidi è molto maggiore che nei gas. Di solito l energia viene fornita sotto forma di calore o lavoro. Di seguito è rappresentato il diagramma Pressione - Volume del Vapor d acqua. Si identificano 4 zone: LQUIDO, LIQUIDO + VAPORE, VAPORE, GAS. La curva del liquido saturo (anche chiamata curva limite inferiore) caratterizza tutti i punti in cui si ha l ultima fase di solo liquido. Sotto alla curva a campana si ha una miscela isoterma di liquido e vapore, mentre la curva del vapore saturo (anche chiamata curva limite superiore) caratterizza tutti i punti in cui si ha l ultima fase di miscela liquido e vapore. Oltre la curva del vapore saturo si ha solo vapore. Oltrepassando la isoterma critica non si parla più di vapore ma di gas. Press. Punto critico L I Q U I D O Miscela isoterma di liquido e vapore GAS isoterme Isoterma critica VAPORE Miscela isoterma di liquido e vapore Curva del liquido saturo Curva del vapore saturo Volume Prof. Matteo Intermite 11

12 Il punto critico è rappresentato sul diagramma e rappresenta le condizioni di Pressione, Volume e Temperatura affinché dalla fase liquida si passi istantaneamente alla fase Gassosa. Oltre il punto critico non esiste più la fase di miscela di liquido + vapore, ma la transizione tra la fase liquida e la fase gassosa avviene istantaneamente al superamento dell isoterma critica. Il punto critico C ha i seguenti parametri di pressione, volume specifico e temperatura: - pressione critica = 221 bar - temperatura critica = 374 C - volume critico = 0,00317 mc/kg 5.6 IL CALORE TOTALE DI VAPORIZZAZIONE E IL TITOLO Se consideriamo una quantità d acqua a cui somministriamo calore a pressione costante il liquido si riscalda fino alla temperatura d ebollizione Te. Il calore ceduto al liquido nella fase di riscaldamento (fino alla temperatura d ebollizione) si chiama calore di riscaldamento e viene indicato con q. q= m c ( T T) 2 1 m = massa d acqua considerata; c = calore specifico medio dell acqua; T2 = Temperatura d ebollizione T1 = Temperatura dell acqua prima del riscaldamento. Continuando a somministrare calore a pressione costante dopo il punto 2 comincia l evaporazione. Il calore somministrato nella fase 2-3 si chiama calore latente di vaporizzazione e si identifica con r (dipende dalla pressione e si ricava tramite delle tabelle). Se continuiamo a somministrare calore a pressione costante si ha la fase 3-4 in cui si ottiene vapore surriscaldato. Durante questa fase la temperatura aumentare rispetto a quella di ebollizione fino a raggiungere la temperatura di surriscaldamento del vapore. q S = calore di surriscaldamento m = massa d acqua considerata; q = m c ( T T ) S pm S E c pm = Calore specifico medio a pressione costante del vapore; T S = Temperatura di surriscaldamento del vapore Prof. Matteo Intermite 12

13 T E = Temperatura d ebollizione Quindi il calore totale somministrato per scaldare dalla temperatura T 1 fino alla temperatura di ebollizione T E, far vaporizzare tutto l acqua e fare surriscaldare il vapore fino alla temperatura T S vale: Q= q+ r+ q = m [ c ( T T) + r+ c ( T T )] S E 1 pm S E Il TITOLO del vapore è definito come il rapporto tra la massa di vapore saturo e la massa totale del miscuglio liquido-vapore. Indicando con m V la massa di vapore saturo secco e con mv X = m + m V L m L la massa di liquido si ha: Le curve a titolo costante sono rappresentate nel diagramma seguente. Da ricordare che sulla curva limite inferiore X=0, mentre sulla curva limite superiore X=1 Prof. Matteo Intermite 13

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica

Dettagli

EQUILIBRIO TERMODINAMICO

EQUILIBRIO TERMODINAMICO LA TERMODINAMICA EQUILIBRIO TERMODINAMICO TRASFORMAZIONI QUASISTATICHE Le trasformazioni quasistatiche Le trasformazioni termodinamiche si possono rappresentare sul piano pressione-volume ogni punto del

Dettagli

Processi reversibili e irreversibili

Processi reversibili e irreversibili Processi reversibili e irreversibili Trasformazioni reversibili: la direzione della trasformazione può essere invertita, cambiando di poco le condizioni esterne. Esempio: gas compresso da un pistone. Trasformazioni

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

Macchine termiche: ciclo di Carnot

Macchine termiche: ciclo di Carnot Macchine termiche: ciclo di Carnot Una macchina termica (o motore termico) è un dispositivo che scambia calore con l ambiente (attraverso un fluido motore) producendo lavoro in modo continuo, tramite un

Dettagli

I principi della termodinamica

I principi della termodinamica I principi della termodinamica dalla pratica alla teoria di Ettore Limoli Convenzione sui segni di Q e di L Calore assorbito dal sistema: Q > 0 Calore ceduto dal sistema: Q < 0 Lavoro fatto dal sistema:

Dettagli

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente.

PRIMI ELEMENTI DI TERMODINAMICA. La termodinamica studia le leggi con cui i sistemi scambiano (cedono e ricevono) energia con l ambiente. PRIMI ELEMENTI DI TERMODINAMICA Un sistema è un insieme di corpi che possiamo immaginare avvolti da una superficie chiusa, ma permeabile alla materia e all energia. L ambiente è tutto ciò che si trova

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 20 Fino a circa il 1850 su riteneva che la meccanica e la termodinamica fossero due scienze completamente distinte. La legge di conservazione dell

Dettagli

SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA

SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA SECONDO PRINCIPIO DELLA TERMODINAMICA I DUE ENUNCIATI DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Enunciato di Clausius: È impossibile realizzare una trasformazione il cui unico risultato sia quello di fare

Dettagli

Il secondo principio della Termodinamica

Il secondo principio della Termodinamica Il secondo principio della ermodinamica non tutte le trasformazioni sono possibili (es.: passaggio di calore, cascata, attrito, espansione libera) le trasformazioni naturali sono irreversibili ed avvengono

Dettagli

SISTEMA TERMODINAMICO STATO TERMODINAMICO

SISTEMA TERMODINAMICO STATO TERMODINAMICO SISTEMA TERMODINAMICO Sistema macroscopico (gas, liquido, solido) chimicamente definito, composto da un grande numero di atomi o molecole. In una mole di sostanza: N 6,02 10 23 Isolato: non scambia né

Dettagli

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1 GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato

Dettagli

IL PRIMO PRINCIPIO DELLA TERMODINAMICA

IL PRIMO PRINCIPIO DELLA TERMODINAMICA IL PRIMO PRINCIPIO DELLA TERMODINAMICA TRATTO DA: I Problemi Della Fisica - Cutnell, Johnson, Young, Stadler Zanichelli editore Fondamenti di fisica 1 Halliday, Resnic, Walker Zanichelli editore Integrazioni

Dettagli

CALORIMETRIA E TERMODINAMICA. G. Roberti

CALORIMETRIA E TERMODINAMICA. G. Roberti CALORIMETRIA E TERMODINAMICA G. Roberti 422. A due corpi, alla stessa temperatura, viene fornita la stessa quantità di calore. Al termine del riscaldamento i due corpi avranno ancora pari temperatura se:

Dettagli

L ENERGIA CINETICA DELLE MOLECOLE DI UN GAS E LA TEMPERATURA Ogni molecola ha in media un'energia cinetica

L ENERGIA CINETICA DELLE MOLECOLE DI UN GAS E LA TEMPERATURA Ogni molecola ha in media un'energia cinetica Primo principio- 1 - TERMODINAMICA ENERGIA INTERNA DI UN SISTEMA Ad ogni sistema fisico possiamo associare varie forme di energia, l energia cinetica delle molecole di cui è formato, energia potenziale,

Dettagli

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale. Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.

Dettagli

Il secondo principio della Termodinamica

Il secondo principio della Termodinamica Il secondo principio della Termodinamica in pratica tutti i processi che avvengono in natura procedono in un solo senso. Mai, di loro spontanea volontà, procedono in senso inverso. Non si torna indietro

Dettagli

IL PRIMO PRINCIPIO DELLA TERMODINAMICA

IL PRIMO PRINCIPIO DELLA TERMODINAMICA IL PRIMO PRINCIPIO DELLA TERMODINAMICA T R AT TO DA: I P ro b l e m i D e l l a F i s i c a - C u t n e l l, J o h n s o n, Yo u n g, S t a d l e r Z a n i c h e l l i e d i t o r e Fo n d a m e n t i

Dettagli

Primo Principio della termodinamica

Primo Principio della termodinamica Primo Principio della termodinamica 1 FORME DI ENERGIA Esistono diverse forme di energia In un sistema la somma di tutte le forme di energia è detta energia totale E del sistema. La Termodinamica studia

Dettagli

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 11 Termodinamica

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica. Argomento 11 Termodinamica Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 11 Termodinamica 2 L energia interna dei gas L energia totale di tutte le molecole del sistema: e. cinetica traslazionale e.

Dettagli

Macchina termica ideale (di Carnot)

Macchina termica ideale (di Carnot) Macchina termica ideale (di Carnot) La macchina di Carnot è formata da un ciclo in un gas perfetto, costituito da due trasformazioni isoterme (ab e dc in figura) e due adiabatiche (bc e da in figura).

Dettagli

Sistema termodinamico: porzione di universo separata da tutto il resto del mondo. Ambiente esterno confini del sistema

Sistema termodinamico: porzione di universo separata da tutto il resto del mondo. Ambiente esterno confini del sistema Termodinamica: concetti di base Sistema termodinamico: porzione di universo separata da tutto il resto del mondo Ambiente esterno confini del sistema sistema Stato del sistema: definito dal valore delle

Dettagli

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche. 16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior

Dettagli

Programma svolto a.s. 2015/2016. Materia: fisica

Programma svolto a.s. 2015/2016. Materia: fisica Programma svolto a.s. 2015/2016 Classe: 4A Docente: Daniela Fadda Materia: fisica Dettagli programma Cinematica e dinamica: moto circolare uniforme (ripasso); moto armonico (ripasso); moto parabolico (ripasso);

Dettagli

FISICA. Termodinamica PRIMO PRINCIPIO DELLA TERMODINAMICA. Autore: prof. Pappalardo Vincenzo. docente di Matematica e Fisica

FISICA. Termodinamica PRIMO PRINCIPIO DELLA TERMODINAMICA. Autore: prof. Pappalardo Vincenzo. docente di Matematica e Fisica FISICA Termodinamica PRIMO PRINCIPIO DELLA TERMODINAMICA Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica La termodinamica si occupa principalmente degli scambi energetici fra un sistema

Dettagli

Il secondo principio della Termodinamica

Il secondo principio della Termodinamica Il secondo principio della ermodinamica non tutte le trasformazioni sono possibili (es.: passaggio di calore, cascata, attrito, espansione libera) le trasformazioni naturali sono irreversibili ed avvengono

Dettagli

Lez 15 22/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 15 22/11/2016. Lezioni in  didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 15 22/11/2016 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 1 Energia interna di un gas ideale E. Fiandrini Fis. Sper. e 2 Energia

Dettagli

Figura 1 Trasformazione proibita dal Secondo Principio

Figura 1 Trasformazione proibita dal Secondo Principio ENUNCIATO DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Si dice sorgente di calore o serbatoio di calore alla temperatura θ un corpo che si trovi uniformemente alla temperatura θ e sia in condizioni di scambiare

Dettagli

2 Una sbarra ha l 0: se la sua varia di t, la diviene l = l 0 (1 + λ t), dove λ è una costante, detta coefficiente di, che dipende dal materiale.

2 Una sbarra ha l 0: se la sua varia di t, la diviene l = l 0 (1 + λ t), dove λ è una costante, detta coefficiente di, che dipende dal materiale. I concetti fondamentali 1 Nel Sistema Internazionale l unità di misura per la temperatura è il In questa scala, detta scala assoluta, la variazione di 1 è identica a quella di 1 Però la temperatura del

Dettagli

Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2.

Dalla legge dei gas perfetti si ha il rapporto tra il numero di moli dei due gas R T 1 V 2 P V 1. =n 1. RT 2 =V 2 qundi: n 1 = T 2. =n 2. Compito intercorso Fisica II ICI 1 giugno 2006 1 Due recipienti uguali, isolati termicamente dall'ambiente esterno, sono connessi da un condotto con un rubinetto, inizialmente chiuso. Uno dei recipienti

Dettagli

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene:

Esercitazione 7. Soluzione. Il sistema è isolato, quindi l energia totale si conserva. Applicando il primo principio della termodinamica si ottiene: Esercitazione 7 Esercizio 1 Una massa m g = 20 g di ghiaccio a 0 C è contenuta in un recipiente termicamente isolato. Successivamente viene aggiunta una massa m a = 80 di acqua a 80 C. Quale sarà, all

Dettagli

TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI

TERMODINAMICA. Studia le trasformazioni dei sistemi in relazione agli scambi di calore e lavoro. GENERALITÀ SUI SISTEMI TERMODINAMICI TERMODINAMICA Termodinamica: scienza che studia le proprietà e il comportamento dei sistemi, la loro evoluzione e interazione con l'ambiente esterno che li circonda. Studia le trasformazioni dei sistemi

Dettagli

Cap 21- Entropia e II Legge della Termodinamica. Entropia

Cap 21- Entropia e II Legge della Termodinamica. Entropia N.Giglietto A.A. 2005/06- Entropia nell espansione libera - 1 Cap 21- Entropia e II Legge della Termodinamica Ci sono diversi modi di esprimere la II Legge della Termodinamica. Tutte stabiliscono una limitazione

Dettagli

Calore, lavoro e trasformazioni termodinamiche (1)

Calore, lavoro e trasformazioni termodinamiche (1) Calore, lavoro e trasformazioni termodinamiche (1) Attraverso scambi di calore un sistema scambia energia con l ambiente. Tuttavia si scambia energia anche quando le forze (esterne e interne al sistema)

Dettagli

IL CICLO DI CARNOT. Scambi di energia durante il ciclo

IL CICLO DI CARNOT. Scambi di energia durante il ciclo IL CICLO DI CNO Consideriamo un gas ideale, contenuto nel solito cilindro, che compie un ciclo di 4 trasformazioni reversibili (2 isoterme + 2 adiabatiche) rappresentate nel piano -p come in figura. cambi

Dettagli

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013

Fisica. Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano. Lezione 6 maggio 2013 Fisica Facoltà di Ingegneria, Architettura e delle Scienze Motorie Lezione 6 maggio 2013 Architettura (corso magistrale a ciclo unico quinquennale) Prof. Lanzalone Gaetano Macchine Termiche Le macchine

Dettagli

Secondo principio della termodinamica: perché????

Secondo principio della termodinamica: perché???? Secondo principio della termodinamica: perché???? Primo principio: bilancio degli scambi energetici con l ambiente, ma non dà nessuna spiegazione del fatto che in natura alcune trasformazioni procedono

Dettagli

Esercitazione 8. Soluzione Il rendimento di una macchina di Carnot in funzione delle temperature è: η = 1 T 2 T 1 = = 60%

Esercitazione 8. Soluzione Il rendimento di una macchina di Carnot in funzione delle temperature è: η = 1 T 2 T 1 = = 60% Esercitazione 8 Esercizio 1 - Macchina di arnot Una macchina di arnot assorbe una certa quantità di calore Q 1 da una sorgente a temperatura T 1 e cede calore Q 2 ad una seconda sorgente a temperatura

Dettagli

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica

Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio. 18/12/2013 Macchine termiche e Secondo Principio della Termodinamica Termodinamica: - cenni sui gas perfetti - macchine termiche - secondo principio 1 Definizione di Gas Perfetto Un gas perfetto è un gas ideale il cui comportamento approssima quello dei gas reali a densità

Dettagli

Macchine termiche. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Macchine termiche. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Macchine termiche Il primo principio della termodinamica stabilisce l equivalenza tra calore e lavoro Almeno in linea di principio consente di trasformare l energia interna di un serbatoio di calore in

Dettagli

Trasformazione isobara

Trasformazione isobara Trasformazione isobara Q DU Il calore immesso diventa: - avoro - Aumento di temperatura Si mantiene costante: egge: Calore: avoro: a pressione 1 a legge di Gay-ussac: V/T=cost Q = c p n DT = p DV Grafico

Dettagli

Significato microscopico della temperatura

Significato microscopico della temperatura Significato microscopico della temperatura La temperatura è una misura dell energia cinetica traslazionale media delle molecole del gas, o, il che è lo stesso, della loro velocità quadratica media La velocità

Dettagli

Termodinamica. secondo principio. ovvero. principio della impossibilità

Termodinamica. secondo principio. ovvero. principio della impossibilità ermodinamica secondo principio ovvero principio della impossibilità Il verso privilegiato delle trasformazioni di energia: non si crea energia dal nulla Il primo principio può essere enunciato sotto forma

Dettagli

PRIMO PRINCIPIO DELLA TERMODINAMICA SISTEMA

PRIMO PRINCIPIO DELLA TERMODINAMICA SISTEMA SISTEMA In termodinamica si intende per sistema una qualsiasi porzione della realtà fisica che viene posta come oggetto di studio Possono essere sistemi: una cellula il cilindro di un motore una cella

Dettagli

I PRINCIPI DELLA TERMODINAMICA

I PRINCIPI DELLA TERMODINAMICA Il diagramma - I RINCII DLLA TRMODINAMICA Un sistema termodinamico è una quantità di materia racchiusa all interno di una superficie chiusa, che può scambiare energia con l ambiente esterno. Lo stato di

Dettagli

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K.

b) Essendo p A V A = p C V C ne risulta T C = T A = 300 K. 2.00 moli di un gas perfetto di volume V 1 = 3.50 m 3 e T 1 = 300 K possono espandersi fino a V 2 = 7.00 m 3 e T 2 = 300 K. Il processo è compiuto isotermicamente. Determinare: a) Il lavoro fatto dal gas;

Dettagli

Conseguenze del teorema di Carnot

Conseguenze del teorema di Carnot Conseguenze del teorema di Carnot Tutte le macchine reversibili che lavorano tra le stesse sorgenti alle temperature T 1 e T 2 hanno rendimento uguale; qualsiasi altra macchina che lavori tra le stesse

Dettagli

TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI

TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI TRASFORMAZIONI REVERSIBILI E IRREVERSIBILI Consideriamo un gas contenuto in un recipiente dalle pareti adiabatiche dotato di un pistone in grado di muoversi senza attriti (v. figura). Espansione e compressione

Dettagli

Energia e trasformazioni spontanee

Energia e trasformazioni spontanee Energia e trasformazioni spontanee Durante le trasformazioni (sia chimiche che fisiche) la materia acquista o cede energia. La termodinamica è quella scienza che studia le variazioni di energia in una

Dettagli

Esercizi Termodinamica

Esercizi Termodinamica Esercizio 1 Esercizi Termodinamica Esercitazioni di Fisica LA per ingegneri - A.A. 2007-2008 Determinare il volume occupato da 10 g di ossigeno (massa molare 32 g/mole) alla pressione di 1 atm e alla temperatura

Dettagli

Studia le leggi con cui i corpi scambiano (cedono/assorbono) lavoro e calore con l'ambiente che li circonda.

Studia le leggi con cui i corpi scambiano (cedono/assorbono) lavoro e calore con l'ambiente che li circonda. 1 La termodinamica, scienza nata all'inizio del XIX secolo, si occupa degli scambi energetici fra un sistema e l'ambiente esterno con cui può interagire, con particolare riguardo alle trasformazioni di

Dettagli

Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia

Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia Stati della materia STATI DI AGGREGAZIONE DELLA MATERIA E GAS PERFETTI Cosa sono gli stati della materia? Gli stati della materia sono come si presenta la materia nell universo fisico e dipendono dalla

Dettagli

Applicazioni del primo principio della termodinamica ed utilizzo delle tabelle del vapore: Esercizi svolti

Applicazioni del primo principio della termodinamica ed utilizzo delle tabelle del vapore: Esercizi svolti Applicazioni del primo principio della termodinamica ed utilizzo delle tabelle del vapore: Esercizi svolti 19 marzo 23 Esercizio 1 Un recipiente di volume ssato e con pareti adiabatiche è diviso in due

Dettagli

SISTEMA TERMODINAMICO STATO TERMODINAMICO

SISTEMA TERMODINAMICO STATO TERMODINAMICO SISTEMA TERMODINAMICO Sistema macroscopico (gas, liquido, solido) chimicamente definito, composto da un grande numero di atomi o molecole. In una mole di sostanza: N 6,02 10 23 Isolato: non scambia né

Dettagli

FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore.

FISICA. Un sistema formato da un gas ideale monoatomico(= sistema) alla pressione costante di 110kPa acquista 820J di energia nella modalità calore. Serie 5: Termodinamica V FISICA II liceo Esercizio 1 Primo principio Un cilindro contiene 4 mol di un gas(= sistema) monoatomico a temperatura iniziale di 27 C. Il gas viene compresso effettuano su di

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia.. 2018/2019 Responsabile del corso: Prof. lessandro Lascialfari Tutor (16 ore: Matteo volio Lezione del 15/05/2019 2 h (13:30-15:30, ula G10, Golgi ESERCITZIONI TERMODINMIC Esercizio

Dettagli

Ogni sostanza è composta da un grandissimo numero di molecole soggette a forze di attrazione reciproche più o meno intense (coesione molecolare o più

Ogni sostanza è composta da un grandissimo numero di molecole soggette a forze di attrazione reciproche più o meno intense (coesione molecolare o più I Fluidi Ogni sostanza è composta da un grandissimo numero di molecole soggette a forze di attrazione reciproche più o meno intense (coesione molecolare o più comunemente forze di coesione) che caratterizzano

Dettagli

Macchine termiche e frigoriferi

Macchine termiche e frigoriferi Macchine termiche e frigoriferi Una macchina termica grazie ad una sequenza di trasformazioni termodinamiche di una data sostanza, produce lavoro utilizzabile. Una macchina lavora su di un ciclo di trasformazioni

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 2. Temodinamica prof. Domenico Galli, prof. Umberto Marconi 27 marzo 2012 I compiti scritti di esame del prof. D. Galli propongono 4 quesiti, sorteggiati individualmente per

Dettagli

7. TERMODINAMICA. La termodinamica studia le proprietà dei sistemi di particelle da un punto di vista macroscopico.

7. TERMODINAMICA. La termodinamica studia le proprietà dei sistemi di particelle da un punto di vista macroscopico. 7. TERMODINAMICA 7.1 Grandezze termodinamiche La termodinamica studia le proprietà dei sistemi di particelle da un punto di vista macroscopico. In termodinamica, scienza nata con l invenzione delle macchine

Dettagli

Secondo principio della termodinamica

Secondo principio della termodinamica Secondo principio della termodinamica Enunciato di Kelvin-Planck E impossibile realizzare una macchina termica ciclica che riesca a sollevare un peso, scambiando calore con un solo termostato, senza altri

Dettagli

Il I principio della termodinamica. Calore, lavoro ed energia interna

Il I principio della termodinamica. Calore, lavoro ed energia interna Il I principio della termodinamica Calore, lavoro ed energia interna Riassunto Sistemi termodinamici Un sistema termodinamico è una porzione di materia descritto da funzioni di stato che ne caratterizzano

Dettagli

Introduzione al primo principio della termodinamica. Liceo scientifico M. Curie Savignano s R.

Introduzione al primo principio della termodinamica. Liceo scientifico M. Curie Savignano s R. Introduzione al primo principio della termodinamica Liceo scientifico M. Curie Savignano s R. La termodinamica si basa sul concetto di sistema macroscopico (o sistema termodinamico). Lo stato di un sistema

Dettagli

Entalpia. L'entalpia è una funzione di stato ed è una grandezza estensiva. dh=du+pdv+vdp --> du+pdv = dh - Vdp

Entalpia. L'entalpia è una funzione di stato ed è una grandezza estensiva. dh=du+pdv+vdp --> du+pdv = dh - Vdp Entalpia Si definisce entalpia la grandezza H ( 1 H = U + pv L'entalpia è una funzione di stato ed è una grandezza estensiva. Differenziando la (1) si ha dh=du+pdv+vdp --> du+pdv = dh - Vdp In una generica

Dettagli

PDF Compressor Pro. La termodinamica. Prof Giovanni Ianne

PDF Compressor Pro. La termodinamica. Prof Giovanni Ianne La termodinamica Prof Giovanni Ianne Atomi e molecole La molecola è il «grano» più piccolo da cui è costituita una sostanza. A ogni atomo corrisponde un elemento semplice, non ulteriormente scomponibile

Dettagli

Esonero 20 Gennaio 2016

Esonero 20 Gennaio 2016 Esonero 20 Gennaio 2016 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 2015-2016 Esonero 2 - Fisica Generale I per matematici 20 Gennaio

Dettagli

Termodinamica(3) Fabrizio Margaroli

Termodinamica(3) Fabrizio Margaroli Termodinamica(3) Fabrizio Margaroli 1 Macchine termiche e frigoriferi MACCHINA TERMICA Dispositivo che assorbe calore da una sorgente calda, compie lavoro meccanico, cede calore non utilizzato ad una sorgente

Dettagli

Macchina termica Q Q Q. η = L Q ass

Macchina termica Q Q Q. η = L Q ass Macchina termica Dispositivo che scambia calore Q con l ambiente e produce lavoro L: Ogni macchina termica contiene un fluido motore (per es. acqua, miscela aria-benzina); Per produrre lavoro in modo continuativo,

Dettagli

Lez 14 16/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 14 16/11/2016. Lezioni in   didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 14 16/11/2016 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 1 Esperienza di Joule E. Fiandrini Fis. Sper. e 2 Esperienza di Joule

Dettagli

Chimica Generale ed Inorganica: Programma del Corso

Chimica Generale ed Inorganica: Programma del Corso Chimica Generale ed Inorganica: Programma del Corso Gli atomi I legami chimici Forma e struttura delle molecole Le proprietà dei gas Liquidi e solidi Termodinamica Equilibri fisici Equilibri chimici Equilibri

Dettagli

IX ESERCITAZIONE - 16 Dicembre 2013

IX ESERCITAZIONE - 16 Dicembre 2013 IX ESERCITAZIONE - 16 Dicembre 2013 I. RENDIMENTO Un gas perfetto monoatomico compie il ciclo schematicamente mostrato in figura, attraverso trasformazioni reversibili. I valori di pressione e volume sono

Dettagli

Riepilogo di calorimetria

Riepilogo di calorimetria Riepilogo di calorimetria Applicate la conservazione dell energia: Calore assorbito = Calore ceduto Se non ci sono trasformazioni di fase: 1. Calore assorbito = massa x calore specifico x (T fin T iniz

Dettagli

Approfondimento di TERMODINAMICA

Approfondimento di TERMODINAMICA Approfondimento di TERMODINAMICA Per la teoria si faccia riferimento al testo di fisica in adozione, 2 volume. In allegato, si vedano: scheda sulle pompe a mano video sulla macchina di Newcomen per ulteriore

Dettagli

Main training FISICA. Lorenzo Manganaro. Lezione 10 Termodinamica III: Macchine Termiche

Main training FISICA. Lorenzo Manganaro. Lezione 10 Termodinamica III: Macchine Termiche Main training 2017-2018 FISICA Lorenzo Manganaro Lezione 10 Termodinamica III: Macchine Termiche Lezione 10 Macchine Termiche Lezione 10 Macchine Termiche 1. Trasformazioni cicliche 2. 2 principio, Macchine

Dettagli

Unità didattica 6. Sesta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 6. Sesta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 6 Termodinamica (2 a parte) Teoria cinetica dei gas... 2 Teoria cinetica e legge dei gas perfetti...3 Sistema e stato.. 4 Trasformazioni termodinamiche.. 5 Trasformazione isoterma... 6

Dettagli

Introduzione. Trasmissione del calore Prof. Ing. Marina Mistretta

Introduzione. Trasmissione del calore Prof. Ing. Marina Mistretta Introduzione Trasmissione del calore Prof. Ing. Marina Mistretta Cos è la Fisica Tecnica Studio degli scambi di energia e di materia tra i sistemi e l ambiente circostante. Il calore si disperde nel verso

Dettagli

Il primo principio della termodinamica

Il primo principio della termodinamica 1 Il primo principio della termodinamica Il primo principio della termodinamica Nelle lezioni precedenti abbiamo visto che per far innalzare la temperatura di un sistema vi sono due possibilità: fornendo

Dettagli

Energia e termodinamica Applicazioni del Primo principio Le machine termiche

Energia e termodinamica Applicazioni del Primo principio Le machine termiche Energia e termodinamica Applicazioni del Primo principio Le machine termiche Prof. Piercarlo Romagnoni Dorsoduro 2206 3023 Venezia pierca@iuav.it 0 h m h m L j i e i e i i u i u,,,, U VC L j j u, k k,

Dettagli

TERMODINAMICA DEL CALORE SISTEMI APERTI

TERMODINAMICA DEL CALORE SISTEMI APERTI CAPITOLO QUINTO TERMODINAMICA DEL CALORE SISTEMI APERTI Sistemi aperti Essi possono essere considerati come una scatola, racchiudente organi di vario genere, che, oltre a scambiare calore e lavoro, sono

Dettagli

IL SECONDO PRINCIPIO DELLA TERMODINAMICA. Lezioni d'autore

IL SECONDO PRINCIPIO DELLA TERMODINAMICA. Lezioni d'autore IL SECONDO PRINCIPIO DELLA TERMODINAMICA Lezioni d'autore Un video : Clic Lo studio di una macchina termica ideale (I) [ ] Si può paragonare molto bene la potenza motrice del calore a quella di una cascata

Dettagli

Termodinamica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Termodinamica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Termodinamica Studia sistemi estesi caratterizzati da pressione, volume e temperatura Si basa sulla definizione della temperatura e su tre principi Il primo principio riguarda la conservazione dell energia

Dettagli

I PRINCIPI DELLA TERMODINAMICA

I PRINCIPI DELLA TERMODINAMICA I RINCII DLLA TRMODINAMICA Il diagramma - Un sistema termodinamico è una quantità di materia racchiusa all interno di una superficie chiusa, che può scambiare energia con l ambiente esterno. Lo stato di

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE

PROGRAMMAZIONE DIDATTICA DISCIPLINARE Pag. 1 di 6 PROGRAMMAZIONE DIDATTICA DISCIPLINARE Disciplina MECCANICA E MACCHINE a.s. 2013/2014 Classe: TERZA Sez. B INDIRIZZO: CONDUZIONE DEGLI IMPIANTI E DEGLI APPARATI MARITTIMI Docenti : Proff. M.

Dettagli

2) Primo principio della Termodinamica

2) Primo principio della Termodinamica 2) Primo principio della Termodinamica Antefatto: conservazione dell energia dalla descrizione molecolare (secondo la meccanica classica/quantistica) del sistema materiale Energia() = energia cinetica

Dettagli

Primo principio. Energia interna di un sistema. Sistema e stato termodinamico Trasformazioni termodinamiche ΔU =Q L

Primo principio. Energia interna di un sistema. Sistema e stato termodinamico Trasformazioni termodinamiche ΔU =Q L Primo principio Energia interna di un sistema Funzione di stato Aumenta se viene dato calore al sistema Aumenta se viene fatto lavoro dall esterno sul sistema ΔU =Q L Sistema e stato termodinamico Trasformazioni

Dettagli

Capitolo 16 L energia si trasferisce

Capitolo 16 L energia si trasferisce Capitolo 16 L energia si trasferisce 1. L «ABC» dei trasferimenti energetici 2. Le reazioni scambiano energia con l ambiente 3. Durante le reazioni varia l energia chimica del sistema 4. L energia chimica

Dettagli

Temperatura e Calore (parte 3) 07/05/15 Macchine termiche e Secondo Principio della Termodinamica

Temperatura e Calore (parte 3) 07/05/15 Macchine termiche e Secondo Principio della Termodinamica Temperatura e Calore (parte 3) 1 Macchine Termiche o Le prima macchine termiche (a vapore) furono inventate nel 17 secolo. o Intorno al 2000 la più recente innovazione sui motori termici: il COMMON RAIL

Dettagli

LCE Umberto I - Fisica Compito S 1

LCE Umberto I - Fisica Compito S 1 LCE Umberto I - Fisica Compito S 1 Cognome Nome Data Classe Scegliere le risposte corrette e poi scriverle nella riga in fondo al foglio 1 Quale è la definizione corretta di unità di massa atomica? A]

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE

PROGRAMMAZIONE DIDATTICA DISCIPLINARE Pag. 1 di 5 PROGRAMMAZIONE DIDATTICA DISCIPLINARE Anno scolastico 2013/2014 Disciplina MECCANICA E MACCHINE Classe: TERZA Sez. A INDIRIZZO: CONDUZIONE DEL MEZZO NAVALE Docenti Leonardo Saba Antonio Carreras

Dettagli

Termodinamica chimica

Termodinamica chimica I processi naturali hanno un verso spontaneo di evoluzione (es. gas si espandono, caduta dei gravi nell aria, una palla che rotola su di un piano inclinato) E possibile condurre i processi opposti solo

Dettagli

Dinamica delle reazioni chimiche (attenzione: mancano i disegni)

Dinamica delle reazioni chimiche (attenzione: mancano i disegni) Dinamica delle reazioni chimiche (attenzione: mancano i disegni) Primo principio della termodinamica L energia non si può creare o distruggere, ma solo convertire da una forma all altra. Questo significa

Dettagli

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione Bagatti, Corradi, Desco, Ropa Chimica seconda edizione Bagatti, Corradi, Desco, Ropa, Chimica seconda edizione Capitolo 2. La carta d identità delle sostanze SEGUI LA MAPPA descrivere atomica 1 descrivere

Dettagli

PASSAGGI DI STATO. sublimazione fusione ebollizione. solidificazione. condensazione. brinamento. Calore. Scrittura in formule:

PASSAGGI DI STATO. sublimazione fusione ebollizione. solidificazione. condensazione. brinamento. Calore. Scrittura in formule: PASSAGGI DI STATO sublimazione fusione ebollizione S solidificazione L condensazione V brinamento Calore Scrittura in formule: - H O (s) H 2 2 O (l) fusione - H O (l) H 2 2 O (g) evaporazione - H O (s)

Dettagli

numero complessivo di variabili = c f + 2

numero complessivo di variabili = c f + 2 Regola delle fasi Definiamo sostanza pura quella che ha composizione chimica costante Diremo fase di una sostanza pura una sua regione omogenea dal punto di vista fisico. Lo stato di un sistema è individuato

Dettagli

CALORE SPECIFICO E CAPACITÀ TERMICA

CALORE SPECIFICO E CAPACITÀ TERMICA 1 CALORE SPECIFICO E CAPACITÀ TERMICA 1. (Da Veterinaria 2004) Una scatola di polistirolo (materiale sistemico bianco, leggero, a basso coefficiente di conducibilità termica) contiene 100 g di acqua a

Dettagli

Un problema di grande interesse è la possibilità di prevedere se due o più sostanze poste a contatto sono in grado di reagire.

Un problema di grande interesse è la possibilità di prevedere se due o più sostanze poste a contatto sono in grado di reagire. Un problema di grande interesse è la possibilità di prevedere se due o più sostanze poste a contatto sono in grado di reagire. Molte reazioni procedono in modo incompleto; è importante quindi determinare

Dettagli