Definizione unitaria delle coniche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Definizione unitaria delle coniche"

Transcript

1 Autore/i: M.Maddalena Bovetti docente di matematica della Scuola Media Superione Titolo: Definizione unitaria delle coniche Collocazione: Difficoltà: Livello di scolarità: Periodo scolastico: Abstract: Scuola Media superiore Media Quarto anno di Scuola Media Superiore Il periodo di trattazione dell'argomento dipende dalla programmazione individuale del docente Lo studio delle coniche è un argomento che si affronta nella classe terza del liceo scientifico dal punto di vista analitico, in quanto, la loro definizione come luogo geometrico di punti, permette di essere facilmente tradotta in un calcolo analitico. Si arriva così all equazione cartesiana e se ne studiano tutte le caratteristiche. Questa trattazione può essere approfondita nella classe successiva con l utilizzo delle coordinate polari. La Fx si presta molto bene per questa operazione in quanto ci consente di eseguire i grafici in coordinate polari con precisione, non solo, ma possiamo anche disegnare velocemente le diverse curve facendo variare i parametri che compaiono nell equazione, lasciandoci più tempo da dedicare alle nostre considerazioni didattiche. L obiettivo di questo esercizio è, perciò, quello di studiare le coniche da un punto di vista unitario, partendo dal concetto di eccentricità e mostrare come, variando il valore di tale numero, si ottengano le quattro coniche. Prerequisiti d'ingresso: Prerequisiti Cognitivi Conoscenza del piano cartesiano e delle modalità di rappresentazione grafica Conoscenza delle funzioni goniometriche Conoscenza dell equazione e delle caratteristiche delle coniche da un punto di vista analitico Prerequisiti strumentali: Conoscenza dei Menu della Calcolatrice Usare i tasti principali della calcolatrice,saper passare da un menù all'altro, utilizzare i tasti con più funzioni, conoscere i tasti FN per attivare i comandi posti sulla parte bassa dello schermo, i tasti di cancellazione, saper memorizzare un lavoro, ecc. Risultati attesi: Al termine dell unità gli allievi devono: Aver compreso le tappe dello sviluppo della teoria sulle coniche contestualizzandola storicamente.

2 Saper determinare l equazione i una conica in un riferimento polare. Saper riconoscere una conica riferita ad un sistema di coordinate polari. Fasi e tempi: 1ª parte: tempo previsto 2 ore Eventuale "addestramento" sull'uso dei comandi principali della calcolatrice 2ª parte: tempo previsto 2 ore Studio dell equazione polare di una conica;realizzazione dei grafici con la calcolatrice e considerazioni sul variare del valore dell eccentricità. Metodi e strumenti: Gli studenti lavorano a gruppi di due con una calcolatrice. Verranno dunque utilizzati i seguenti strumenti: - calcolatrici per gli studenti - calcolatrice per l'insegnante e view screen per la proiezione Modalità di lavoro: L'attività viene svolta contemporaneamente da insegnante e allievi;. sarà privilegiato l'apprendimento attraverso il fare; questo servirà a migliorare le strategie per imparare, in modo che imparare non sia solo memorizzare, ma anche e soprattutto comprendere.

3 Definizione unitaria delle coniche La calcolatrice grafica e programmabile rappresenta un valido aiuto nella didattica se non permettiamo che gli allievi commettano l errore di pensare che questo strumento possa compensare la loro mancanza di conoscenza o di competenze. La calcolatrice è uno strumento e come tale non si può sostituire allo studioso, sia esso docente o discente, ma l aiuta in numerose operazioni: due fra tante, quelle di tipo ripetitivo o di esecuzione di più grafici con caratteristiche comuni, la cui precisione non è facilmente ottenibile operando a mano, impedendone così una interpretazione significativa. Come esempio di quanto affermato, affrontiamo un esercizio che riguarda lo studio delle coniche, argomento che, solitamente, si affronta nella classe terza del liceo scientifico: in genere queste curve vengono studiate dal punto di vista analitico, in quanto la loro definizione come luogo geometrico di punti si presta bene ad essere tradotta in un calcolo analitico. Si arriva così all equazione cartesiana e se ne studiano tutte le caratteristiche. Questa trattazione fornisce agli allievi una buona conoscenza dell argomento che può essere approfondita nella classe successiva con l utilizzo delle coordinate polari. La Fx si presta molto bene per questa operazione in quanto ci permette di eseguire i grafici in coordinate polari con precisione, non solo, ma possiamo anche disegnare velocemente più curve facendo variare i parametri che compaiono nell equazione, lasciandoci più tempo da dedicare alle nostre considerazioni didattiche. L obiettivo di questo esercizio è quello di studiare le coniche da un punto di vista unitario, partendo dal concetto di eccentricità e mostrare come, variando il valore di tale numero, si ottengano curve differenti. Questo mostrerà come curve di forma molto diverse tra loro siano in effetti legate da un elemento comune che, cambiando di valore, fa mutare anche la loro forma. Questo elemento è, come abbiamo già detto, l eccentricità. Iniziamo la lezione: dopo aver definito la conica come il luogo dei punti del piano per i quali è costante il rapporto tra la loro distanza da un punto detto fuoco e una retta detta direttrice, l insegnante arriverà all equazione polare della conica. A questo punto entra in gioco la nostra FX: infatti la calcolatrice mette a disposizione un menù (Dyna Graph) che permette di disegnare, come recita il manuale, versioni multiple di un grafico variando i valori assegnati alle variabili in una funzione. Vediamo di capire meglio. Come è noto l equazione polare di una conica è: R= dove p è un parametro ed E rappresenta l eccentricità. Al variare del valore di E si ottengono coniche diverse e, più precisamente, E=0 si ottiene una circonferenza 0<E<1 si ottiene un ellisse E=1 si ottiene una parabola E>1 si ottiene una iperbole. Accendiamo la CG-20 e scegliamo il menù Dyna Graph: ci appare la schermata sotto raffigurata:

4 poiché vogliamo scrivere l equazione in coordinate polari digitiamo F3 (Type) seguito da F2 (r=). Digitiamo la nostra equazione badando di inserire il denominatore tra parentesi e attribuiamo a p il valore 0.5 e lasciando indicato E. Questo ci permetterà di ottenere grafici più chiari che non si otterrebbero con valori maggiori di p, date le dimensioni dello schermo. Digitato EXE, digitiamo F4 (Var): nella schermata che appare alla variabile E, a cui è stato attribuito il valore 1(o un altro valore che non ci interessa).sempre da questa schermata scegliamo F2 (Set) che permette di inserire l intervallo di variabilità di E. Poniamo Start: 0(seguito da EXE) End:1,5 (seguito da EXE) Step: 0,1(seguito da EXE) Usciamo e torniamo alla videata precedente: digitiamo F6 (Dyna) e aspettiamo. Alla fine dell elaborazione cominceranno ad apparire le curve abbinate ai diversi valori assunti da E che possiamo controllare sulla parte bassa dello schermo.. Ecco alcune schermate significative:

5 A questo punto l insegnante potrà fare tutte le considerazioni che riterrà opportune. Una di queste può essere quella di inserire valori di E negativi. Per visualizzare le varie curve si può scegliere di farle comparire automaticamente aumentando o diminuendo la velocità oppure farle comparire una alla volta. Vediamo come. Digitiamo due volte Exit per tornare alla videata Dynamic var, e digitiamo F3 (Speed). La videata che compare è la seguente: Il significato delle varie opzioni è abbastanza chiaro; quella che vorrei evidenziare è l opzione corrispondente a F1 che, visualizzata una curva corrispondente ad un determinato valore di E, si ferma e riparte digitando i tasti direzione..

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari:

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Figura 1 Per passare da coordinate polari a quelle cartesiane usiamo { x = r cos θ y = r sin

Dettagli

FINALITA DELLA DISCIPLINA (finalità formative generali cui tende la disciplina):

FINALITA DELLA DISCIPLINA (finalità formative generali cui tende la disciplina): ANNO SCOLASTICO: 2015 /2016 MATERIA: MATEMATICA INSEGNANTE: PIERANGELA NEGRO CLASSE: 3 A ODONTOTECNICO/ottico FINALITA DELLA DISCIPLINA (finalità formative generali cui tende la disciplina): L insegnamento

Dettagli

UNITA DIDATTICA. Conoscenze. Abilità

UNITA DIDATTICA. Conoscenze. Abilità Titolo: Problemi di geometria analitica : la parabola e l iperbole Codice: B1_S Ore previste:15 Equazione della parabola e coordinate del vertice Grafico di una parabola Equazione dell iperbole equilatera

Dettagli

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica? Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Programmazione attività Laboratorio di Matematica e Complementi di Matematica A.S. 2012/13

Programmazione attività Laboratorio di Matematica e Complementi di Matematica A.S. 2012/13 Programmazione attività Laboratorio di Matematica e Complementi di Matematica A.S. 2012/13 Indirizzi: Informatica, Scienze Applicate, Scientifico Tecnologico Pur non essendo più prevista dai nuovi ordinamenti

Dettagli

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 lsantone@liceoantonelli.novara.it http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.

Dettagli

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche

Dettagli

PIANO di LAVORO CLASSE 3 D

PIANO di LAVORO CLASSE 3 D Istituto di Istruzione Superiore Statale Carlo Emilio Gadda Presidenza e Segreteria: v. Nazionale 6 43045 Fornovo di Taro (PR) Tel. 0525 400229 Fax 0525 39300 E-mail: ssitsos@scuole.pr.it Sito web: www.itsosgadda.it

Dettagli

Un punto, una retta e infinite circonferenze

Un punto, una retta e infinite circonferenze Un punto, una retta e infinite circonferenze Leila Lisa d Angelo leiladangelo@lillinet.org 1 Introduzione L idea di capire come affrontare in classe il tema dei fasci di curve è nata dal seguente dialogo

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

Anno 2. Sistemi di equazioni di secondo grado

Anno 2. Sistemi di equazioni di secondo grado Anno 2 Sistemi di equazioni di secondo grado 1 Introduzione In questa lezione verrà data una definizione di sistema di equazioni di secondo grado, verrà illustrata la loro risoluzione e le applicazioni.

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

Studio di funzioni goniometriche. di Carmelo Di Stefano 1

Studio di funzioni goniometriche. di Carmelo Di Stefano 1 Studio di funzioni goniometriche di Carmelo Di Stefano 1 Sommario. Lo studio della goniometria è considerato, non del tutto a torto, uno dei più noiosi da parte degli studenti. L argomento viene visto

Dettagli

MODULO 1: EQUAZIONI E DISEQUAZIONI 15 ore 1 quadrimestre

MODULO 1: EQUAZIONI E DISEQUAZIONI 15 ore 1 quadrimestre MODULI CLASSE TERZA TEMA ALGEBRA MODULO 1: EQUAZIONI E DISEQUAZIONI 15 ore 1 quadrimestre COMPETENZE: utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico, rappresentandole anche sotto

Dettagli

CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO

CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO Nuclei tematici Il numero Traguardi per lo sviluppo della competenza - Muoversi con sicurezza nel calcolo anche con i numeri razionali e stimare

Dettagli

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA Pag. 1 di 5 ANNO SCOLASTICO 2014-15 DIPARTIMENTO DI Matematica INDIRIZZO Liceo scientifico CLASSE BIENNIO TRIENNIO DOCENTI: De Masi, Zaganelli, Dalmonte, Fidanza. NUCLEI FONDAMENTALI DI CONOSCENZE I QUADRIMESTRE

Dettagli

3. 3. Livelli di partenza (pre-requisiti e modalità di osservazione concordate per la rilevazione)

3. 3. Livelli di partenza (pre-requisiti e modalità di osservazione concordate per la rilevazione) Pag 1 di 8 Area disciplinare: Matematica Responsabile di dipartimento: Prof. Maria Clara Di Murro Insegnanti coinvolti: Proff: Molle Vincenzo, Di Murro Maria Clara, Martino Angela Maria 1. Analisi degli

Dettagli

MOD P07.01 PIANO DI LAVORO RIPASSO MATEMATICA FINANZIARIA DOCUMENTO DEL SISTEMA QUALITA ANNO SCOLASTICO

MOD P07.01 PIANO DI LAVORO RIPASSO MATEMATICA FINANZIARIA DOCUMENTO DEL SISTEMA QUALITA ANNO SCOLASTICO Pagina 1 di 7 DOCENTE SOLIDA ANTONIA ANNO SCOLASTICO 2016-2017 INDIRIZZO A.F.M. MATERIA MATEMATICA CLASSE 3 A PIANO RIASSUNTIVO DELLE UNITÀ FORMATIVE DI APPRENDIMENTO U.F.A. N 1 TITOLO DELLE U.F.A. RIPASSO

Dettagli

Una libreria di funzioni per la geometria analitica

Una libreria di funzioni per la geometria analitica Una libreria di funzioni per la geometria analitica Michele Impedovo La geometria analitica del piano costituisce uno dei più importanti e consolidati argomenti di matematica. Un lavoro interessante parallelo

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato

Dettagli

Ore annue: 132 MODULO 1

Ore annue: 132 MODULO 1 Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI 2 e Programmazione Didattica Disciplina: Ore annue: 132 Matematica Settembre ottobre MODULO 1 novembre Disequazioni numeriche

Dettagli

matematica classe terza Liceo scientifico

matematica classe terza Liceo scientifico LICEO SCIENTIFICO STATALE LEONARDO DA VINCI Anno scolastico 2013/2014 LE COMPETENZE ESSENZIALI CONSIDERATE ACCETTABILI PER LA SUFFICIENZA Si precisa che gli obiettivi indicati sono da raggiungere in relazione

Dettagli

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA Pag. 1 di 6 ANNO SCOLASTICO 2015-16 DIPARTIMENTO DI Matematica INDIRIZZO Liceo scientifico CLASSE BIENNIO TRIENNIO DOCENTI: De Masi, Zaganelli, Dalmonte, Fidanza. NUCLEI FONDAMENTALI DI CONOSCENZE I QUADRIMESTRE

Dettagli

Programmazione classi quinte Sezione A Architettura

Programmazione classi quinte Sezione A Architettura Liceo Artistico Statale A. Caravillani Dipartimento di Matematica Docente Patrizia Domenicone Programmazione classi quinte Sezione A Architettura Enrico Ravà, Mare di casa, 2000 Programmazione di Matematica

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Programmazione Disciplinare: Tecnologie e tecniche di rappresentazione grafica Classe: Seconda

Programmazione Disciplinare: Tecnologie e tecniche di rappresentazione grafica Classe: Seconda Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Tecnologie e tecniche di rappresentazione grafica Classe: Seconda I Docenti della Disciplina Salerno, lì... settembre

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI-PACINOTTI - BOLOGNA

ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI-PACINOTTI - BOLOGNA ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI-PACINOTTI - BOLOGNA PIANO DI LAVORO A.S. 2016-2017 PROF. GIUSEPPE FALANGA MATERIA: MATEMATICA CLASSE 3 A indirizzi AFM-SIA DATA DI PRESENTAZIONE: 5

Dettagli

Soluzione dei sistemi lineari con metodo grafico classe 2H

Soluzione dei sistemi lineari con metodo grafico classe 2H Soluzione dei sistemi lineari con metodo grafico classe H (con esempi di utilizzo del software open source multipiattaforma Geogebra e calcolatrice grafica Texas Instruments TI-89) Metodo grafico Il metodo

Dettagli

a.s. 1999/2000 Preside Prof. D Emilia Maria Pia Spaziani

a.s. 1999/2000 Preside Prof. D Emilia Maria Pia Spaziani Corso abilitante a.s. 1999/2000 Unità didattica Preside Prof. D Emilia Maria Pia Spaziani GRUPPO Sacco Vittoria Monforte Nicola Tartaglione Antonio Perone Elena Fiorini Stefania Pennace Sandra Unità Didattica:

Dettagli

PROGRAMMAZIONE ANNUALE A.S / 2017 FIOCCO ELIO MANNELLI MARIA GRAZIA OCCHINO SEBASTIANO-PASELLO DIANA

PROGRAMMAZIONE ANNUALE A.S / 2017 FIOCCO ELIO MANNELLI MARIA GRAZIA OCCHINO SEBASTIANO-PASELLO DIANA INDIRIZZO SCOLASTICO DISCIPLINA DOCENTE / I CLASSE / I MECCANICA e MECCATRONICA ELETTRONICA LOGISTICA e TRASPORTI X LICEO SCIENTIFICO Matematica PROGRAMMAZIONE ANNUALE A.S. 2016 / 2017 FIOCCO ELIO MANNELLI

Dettagli

Storia del pensiero matematico

Storia del pensiero matematico Storia della Matematica 1 Storia del pensiero matematico Le coniche di Apollonio L'opera di Apollonio Ad Apollonio possiamo riconoscere due grandi meriti: il primo è una sintesi completa dei lavori precedenti

Dettagli

Anno 3 Equazione dell'ellisse

Anno 3 Equazione dell'ellisse Anno Equazione dell'ellisse 1 Introduzione In questa lezione affronteremo una serie di problemi che ci chiederanno di determinare l equazione di un ellisse sotto certe condizioni. Al termine della lezione

Dettagli

MATEMATICA: LAVORO ESTIVO CLASSE 3GTscintifico. PROGRAMMA DI MATEMATICA PER IL RECUPERO / AIUTO CLASSE 3GTSCINTIFICO prof.

MATEMATICA: LAVORO ESTIVO CLASSE 3GTscintifico. PROGRAMMA DI MATEMATICA PER IL RECUPERO / AIUTO CLASSE 3GTSCINTIFICO prof. LICEO CLASSICO L.GALVANI A.S. 2016/17 MATEMATICA: LAVORO ESTIVO CLASSE 3GTscintifico Docente Paola Giacconi PROGRAMMA DI MATEMATICA PER IL RECUPERO / AIUTO CLASSE 3GTSCINTIFICO prof. Paola Giacconi Testo

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO MATEMATICA. Competenze da conseguire alla fine del IV anno relativamente all asse culturale:

PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO MATEMATICA. Competenze da conseguire alla fine del IV anno relativamente all asse culturale: PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO MATEMATICA Competenze da conseguire alla fine del IV anno relativamente all asse culturale: C O M P E T E N Z E ASSE DEI LINGUAGGI

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDIRIZZO TECNICO ECONOMICO PER IL TURISMO MATERIA MATEMATICA ANNO DI CORSO CLASSE TERZA

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDIRIZZO TECNICO ECONOMICO PER IL TURISMO MATERIA MATEMATICA ANNO DI CORSO CLASSE TERZA INDICE DELLE UFC N. DENOMINAZIONE 1 PIANO CARTESIANO E RETTA 2 DISEQUAZIONI DI 1 E 2 GRADO E SISTEMI DI 1 GRADO 3 CONICHE: PARABOLA E DISEQUAZIONI DI 2 GRADO, ELLISSE E IPERBOLE 4 FUNZIONI ESPONENZIALI

Dettagli

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS ISTITUTO TECNICO INDUSTRIALE G. FERRARIS EMPOLI PIANO DI LAVORO PROF. BICCI ANDREA CONSIGLIO DI CLASSE 3 SEZ. B Informatica INDIRIZZO INFORMATICO ANNO SCOLASTICO 2015-2016 MATERIE MATEMATICA (tre ore settimanali)

Dettagli

IV Liceo Artistico Statale A.Caravillani. Anno Scolastico 2016/2017. Programmazione Didattica. Matematica

IV Liceo Artistico Statale A.Caravillani. Anno Scolastico 2016/2017. Programmazione Didattica. Matematica IV Liceo Artistico Statale A.Caravillani Anno Scolastico 2016/2017 Programmazione Didattica Matematica Classe V sez. D Modulo 1 Modulo 2 Modulo 3 Modulo 4 Titolo Funzioni Limiti Derivate Lo studio delle

Dettagli

LICEO SCIENTIFICO STATALE

LICEO SCIENTIFICO STATALE LICEO SCIENTIFICO STATALE GALILEO GALILEI PdQ - 7.06 Ediz.: 1 Rev.: 0 Data 02/09/05 Alleg.: D01 PROG. M2 PROCEDURA della QUALITA' Programma Didattico Annuale Anno Scolastico 2011/2012 MATERIA : Matematica

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

LEZIONE 4. Per semplificarne la comprensione della tastiera possiamo suddividere i tasti in diversi gruppi in base alla funzione che possono svolgere:

LEZIONE 4. Per semplificarne la comprensione della tastiera possiamo suddividere i tasti in diversi gruppi in base alla funzione che possono svolgere: LEZIONE 4 La tastiera è lo strumento principale per l'immissione di informazioni nel computer, ma non tutti sanno, però, che è possibile utilizzare la tastiera anche per controllare il computer e i vari

Dettagli

RELAZIONE FINALE DEL DOCENTE

RELAZIONE FINALE DEL DOCENTE RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA Classe 3^AeT A. S. 2015/2016 Docente: Clara De Antoni In relazione alla programmazione curriculare sono stati conseguiti, in termini di livello medio, i

Dettagli

Primi passi con Geogebra

Primi passi con Geogebra Primi passi con Geogebra La finestra di GeoGebra - versione 4 A. Aprire l applicazione GeoGebra 1. Sul desktop, fare doppio click sull icona di Geogebra B. Dopo l avvio di GeoGebra La finestra che normalmente

Dettagli

LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15

LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 CLASSE : 3N indirizzo scienze applicate DOCENTE: CAPRI MATTEO MATERIA: MATEMATICA Libro di testo utilizzato:

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi.

La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi. La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi. Funzioni undo e redo Cancella tutto Crea nuove attività Penna Pennarello Copri tutto

Dettagli

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Il corso prevede 3 ore settimanali Sono previste 2 verifiche scritte nel trimestre e 3 nel pentamestre PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Testo in adozione:

Dettagli

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE. CLASSI TERZE Anno scolastico 2015/ FINALITÀ DELL INSEGNAMENTO DELLA MATEMATICA

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE. CLASSI TERZE Anno scolastico 2015/ FINALITÀ DELL INSEGNAMENTO DELLA MATEMATICA DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE DI MATEMATICA CLASSI TERZE Anno scolastico 2015/2016 Ore di lezione previste nell anno: 165 (n. 5 ore sett. x 33 settimane) 1. FINALITÀ DELL INSEGNAMENTO

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2013 / 2014 Dipartimento (1) : MATEMATICA Coordinatore (1) : Classe: ROVETTA ROBERTA 3 Indirizzo: Servizi commerciali Ore di insegnamento settimanale:

Dettagli

Funzioni... senza limiti

Funzioni... senza limiti Funzioni... senza limiti Versione del 18 aprile 2007 Propongo, in questa nota, una serie di esempi di grafici di funzioni tracciati per via elementare, senza l uso del calcolo differenziale. Una trattazione

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

Secondo anno modulo recupero

Secondo anno modulo recupero Secondo anno modulo recupero Unità didattica_1 livello recupero: equazioni di primo grado e formule inverse Padroneggiare il linguaggio formale e i procedimenti dimostrativi. Riconoscere e saper applicare

Dettagli

NEWS Numero 0 Dicembre 2013

NEWS Numero 0 Dicembre 2013 NEWS Numero 0 Dicembre 2013 EDITORIALE Cari docenti, è con immenso piacere che vi presentiamo CASIO NEWS, la newsletter dedicata alle calcolatrici scolastiche Casio e al loro impiego nella didattica quotidiana!

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IIIB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 DISEQUAZIONI Disequazioni razionali intere di secondo

Dettagli

L INTERFACCIA GRAFICA DI EXCEL

L INTERFACCIA GRAFICA DI EXCEL Dopo l avvio del foglio elettronico apparirà un interfaccia grafica nella quale verrà aperta una nuova cartella di lavoro alla quale il PC assegnerà automaticamente il nome provvisorio di Cartel1. La cartella

Dettagli

LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA

LICEO SCIENTIFICO R. NUZZI - ANDRIA Anno Scolastico 2015/16 MATEMATICA LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA Il Dipartimento di Matematica per il corrente anno scolastico (2015/2016) ha individuato la realizzazione di diciannove corsi integrativi

Dettagli

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 PROGRAMMAZIONE III Geometri ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 B Geometria analitica 32 C Goniometria 30 D Trigonometria

Dettagli

OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO

OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO OBIETTIVI DELLE INDICAZIONI PER IL CURRICOLO OBIETTIVI DI APPRENDIMENTO ANNUALI Classe prima- secondaria Classe seconda secondaria

Dettagli

Cosa c è alla base? Un esempio

Cosa c è alla base? Un esempio Cosa c è alla base? Un esempio Competenza Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica Regolamento Obbligo Istruzione (Assi culturali

Dettagli

PROGRAMMAZIONE DI MATEMATICA 2016/2017

PROGRAMMAZIONE DI MATEMATICA 2016/2017 PROGRAMMAZIONE DI MATEMATICA 2016/2017 PRIMA CLASSE ARITMETICA Il sistema di numerazione decimale Leggere e scrivere i numeri interi e decimali Riconoscere il valore posizionale delle cifre in un numero

Dettagli

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4

Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 Classi: Prime IA; IB; IC; ID; IE; IF Disciplina: MATEMATICA Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Prerequisiti per l'accesso al modulo

Dettagli

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE TERZA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE TERZA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE TERZA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: DIVISIONE

Dettagli

LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA

LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA LICEO SCIENTIFICO - OPZIONE DELLE SCIENZE APPLICATE MATEMATICA OBIETTIVI SPECIFICI DEL BIENNIO 1) utilizzare consapevolmente le tecniche e le procedure di calcolo basilari studiate; 2) riconoscere nei

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 7 Insegnante MIANI LUCIO Classe 4LTS Materia matematica preventivo consuntivo 96 0 titolo modulo 1. Funzione esponenziale e logaritmica 2. Le coniche 3. Disequazioni

Dettagli

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0 Calcolo Algebrico Equazioni e disequazioni in una incognita e coefficienti reali: Primo grado ax + b = 0 (a 0) x = b a Secondo grado ax 2 + bx + c = 0 (a 0) Si hanno due soluzioni che possono essere reali

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Corso di Formazione sulle Nuove Tecnologie per l insegnamento delle discipline scientifiche

Corso di Formazione sulle Nuove Tecnologie per l insegnamento delle discipline scientifiche Corso di Formazione Nuove Tecnologie per l insegnamento delle Discipline Scientifiche rivolto agli insegnanti dell Istituto Istruzione Secondaria Statale di Casarano Corso di Formazione sulle Nuove Tecnologie

Dettagli

Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009. Classe 3 a ARGOMENTI STUDIATI IN MATEMATICA

Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009. Classe 3 a ARGOMENTI STUDIATI IN MATEMATICA Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009 Classe 3 a C ARGOMENTI STUDIATI IN MATEMATICA Docente : prof. GUISO Agostino Logica matematica La Logica degli enunciati.nozioni fondamentali.

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica? Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi.

La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi. La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi. Funzioni undo e redo Cancella tutto Crea nuove attività Penna Pennarello Copri tutto

Dettagli

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI. Istituto Statale d Istruzione Superiore Vincenzo Manzini di San Daniele del Friuli

ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI. Istituto Statale d Istruzione Superiore Vincenzo Manzini di San Daniele del Friuli ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI Istituto Statale d Istruzione Superiore Vincenzo Manzini di San Daniele del Friuli ------------------------------------------- Piazza IV Novembre

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

Excel: guida alle operazioni di base per la risoluzione dell esercizio 13

Excel: guida alle operazioni di base per la risoluzione dell esercizio 13 Excel: guida alle operazioni di base per la risoluzione dell esercizio 13 1) Inserire i dati nel foglio excel 2) Per aggiungere le colonne utili alla risoluzione del problema cliccare sulla cella desiderata

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

ISTITUTO SCOLASTICO COMPRENSIVO MINEO

ISTITUTO SCOLASTICO COMPRENSIVO MINEO ISTITUTO SCOLASTICO COMPRENSIVO MINEO CURRICOLO DI MATEMATICA SCUOLA PRIMARIA Classe QUINTA INDICATORI NUMERI OBIETTIVI D'APPRENDIMENTO a. Leggere, scrivere, confrontare numeri decimali. b. Interpretare

Dettagli

ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI PACINOTTI. PIANO DI LAVORO PREVENTIVO a. s

ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI PACINOTTI. PIANO DI LAVORO PREVENTIVO a. s ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI PACINOTTI PIANO DI LAVORO PREVENTIVO a. s. 2016-2017 Classe 2 Cafm Materia Matematica Applicata Docente Tania Notarantonio LIVELLO DI PARTENZA La docente

Dettagli

1 EQUAZIONI E FUNZIONI ESPONENZIALI E LOGARITMICHE

1 EQUAZIONI E FUNZIONI ESPONENZIALI E LOGARITMICHE INDICE DELLE UFC N. DENOMINAZIONE 1 EQUAZIONI E FUNZIONI ESPONENZIALI E LOGARITMICHE 2 GONIOMETRIA E TRIGONOMETRIA 3 SUCCESSIONI E PROGRESSIONI 4 STUDIO DI FUNZIONI: DOMINIO E LIMITI n.b. Solo per l anno

Dettagli

COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali)

COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali) COMPETENZE al termine della scuola secondaria di 1 grado (dalle Indicazioni Nazionali) Utilizzare con sicurezza le tecniche e le procedure nel calcolo aritmetico e algebrico, scritto e mentale, anche con

Dettagli

Liceo Artistico Statale A. Caravillani Dipartimento di Matematica. Programmazione classi seconde

Liceo Artistico Statale A. Caravillani Dipartimento di Matematica. Programmazione classi seconde Liceo Artistico Statale A. Caravillani Dipartimento di Matematica Docente Patrizia Domenicone Programmazione classi seconde Sezione A The red tree, Piet Mondrian, 1908 Programmazione di Matematica Classi

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Anno Scolastico 2014-2015 Istituto PROFESSIONALE grafico PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA PRIMO BIENNIO CLASSI PRIME OBIETTIVI GENERALI/ FINALITA' Alla fine del primo biennio,

Dettagli

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili.

L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. 1 I Numeri Complessi L esigenza di introdurre i numeri complessi è dovuta al fatto che diverse operazioni sui numeri reali R non sempre sono possibili. x 2 + 1 = 0? log( 10)? log 2 3? 1? Allo scopo di

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE Liceo scientifico Anno scolastico Materia Classi 2013-2014 Matematica Terze-Quarte

PROGRAMMAZIONE DIDATTICA DISCIPLINARE Liceo scientifico Anno scolastico Materia Classi 2013-2014 Matematica Terze-Quarte PROGRAMMAZIONE DIDATTICA DISCIPLINARE Liceo scientifico Anno scolastico Materia Classi 2013-2014 Matematica Terze-Quarte 1. al termine del percorso di studio Al termine del liceo scientifico lo studente

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima Liceo Artistico e Musicale - Numeri naturali, interi, razionali

Dettagli

GRIGLIA DI VALUTAZIONE DISCIPLINARE MATEMATICA CLASSI I II III

GRIGLIA DI VALUTAZIONE DISCIPLINARE MATEMATICA CLASSI I II III GRIGLIA DI VALUTAZIONE DISCIPLINARE MATEMATICA CLASSI I II III NUCLEI TEMATICI: o NUMERO e PROBLEM SOLVING o SPAZIO E FIGURE o RELAZIONI E FUNZIONI o DATI E PREVISIONI NUMERO e PROBLEM SOLVING L alunno

Dettagli

Conosco il sistema metrico decimale e le unità di misura di capacità e di peso

Conosco il sistema metrico decimale e le unità di misura di capacità e di peso 30 Cognome... data... Nome... classe... LE COMPETENZE CHE HO ACQUISITO IN MATEMATICA ALLA FINE DELLA SCUOLA PRIMARIA Segna con una crocetta il livello di acquisizione della competenza 1. La competenza

Dettagli

ISTITUTO STATALE G.V.GRAVINA CROTONE

ISTITUTO STATALE G.V.GRAVINA CROTONE ISTITUTO STATALE G.V.GRAVINA CROTONE PROGRAMMAZIONE DI MATEMATICA ANNO SCOLASTICO 2012/2013 DOCENTE: PIETROPAOLO MARIA DROSOLINA CLASSE: IIIA LICEO SCIENZE UMANE opz. Economico-Sociale MATEMATICA IIIA

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Piano annuale di lavoro anno scolastico classe quinta Corsi Giunti Scuola Annarita Monaco PROGETTAZIONE DIDATTICA.

Piano annuale di lavoro anno scolastico classe quinta Corsi Giunti Scuola Annarita Monaco PROGETTAZIONE DIDATTICA. PROGETTAZIONE DIDATTICA Competenze Alla fine della classe quinta L alunno/a: Opera tra numeri naturali e decimali: per iscritto, mentalmente, con strumenti di calcolo Risolve problemi, usando il ragionamento

Dettagli

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica -

CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI. Scuola Secondaria di Primo Grado Matematica - CURRICOLO VERTICALE PER COMPETENZE DISCIPLINARI Scuola Secondaria di Primo Grado Matematica - Classe Prima COMPETENZA CHIAVE EUROPEA: COMPETENZA MATEMATICA Profilo dello studente al termine del Primo ciclo

Dettagli