Definizione unitaria delle coniche

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Definizione unitaria delle coniche"

Transcript

1 Autore/i: M.Maddalena Bovetti docente di matematica della Scuola Media Superione Titolo: Definizione unitaria delle coniche Collocazione: Difficoltà: Livello di scolarità: Periodo scolastico: Abstract: Scuola Media superiore Media Quarto anno di Scuola Media Superiore Il periodo di trattazione dell'argomento dipende dalla programmazione individuale del docente Lo studio delle coniche è un argomento che si affronta nella classe terza del liceo scientifico dal punto di vista analitico, in quanto, la loro definizione come luogo geometrico di punti, permette di essere facilmente tradotta in un calcolo analitico. Si arriva così all equazione cartesiana e se ne studiano tutte le caratteristiche. Questa trattazione può essere approfondita nella classe successiva con l utilizzo delle coordinate polari. La Fx si presta molto bene per questa operazione in quanto ci consente di eseguire i grafici in coordinate polari con precisione, non solo, ma possiamo anche disegnare velocemente le diverse curve facendo variare i parametri che compaiono nell equazione, lasciandoci più tempo da dedicare alle nostre considerazioni didattiche. L obiettivo di questo esercizio è, perciò, quello di studiare le coniche da un punto di vista unitario, partendo dal concetto di eccentricità e mostrare come, variando il valore di tale numero, si ottengano le quattro coniche. Prerequisiti d'ingresso: Prerequisiti Cognitivi Conoscenza del piano cartesiano e delle modalità di rappresentazione grafica Conoscenza delle funzioni goniometriche Conoscenza dell equazione e delle caratteristiche delle coniche da un punto di vista analitico Prerequisiti strumentali: Conoscenza dei Menu della Calcolatrice Usare i tasti principali della calcolatrice,saper passare da un menù all'altro, utilizzare i tasti con più funzioni, conoscere i tasti FN per attivare i comandi posti sulla parte bassa dello schermo, i tasti di cancellazione, saper memorizzare un lavoro, ecc. Risultati attesi: Al termine dell unità gli allievi devono: Aver compreso le tappe dello sviluppo della teoria sulle coniche contestualizzandola storicamente.

2 Saper determinare l equazione i una conica in un riferimento polare. Saper riconoscere una conica riferita ad un sistema di coordinate polari. Fasi e tempi: 1ª parte: tempo previsto 2 ore Eventuale "addestramento" sull'uso dei comandi principali della calcolatrice 2ª parte: tempo previsto 2 ore Studio dell equazione polare di una conica;realizzazione dei grafici con la calcolatrice e considerazioni sul variare del valore dell eccentricità. Metodi e strumenti: Gli studenti lavorano a gruppi di due con una calcolatrice. Verranno dunque utilizzati i seguenti strumenti: - calcolatrici per gli studenti - calcolatrice per l'insegnante e view screen per la proiezione Modalità di lavoro: L'attività viene svolta contemporaneamente da insegnante e allievi;. sarà privilegiato l'apprendimento attraverso il fare; questo servirà a migliorare le strategie per imparare, in modo che imparare non sia solo memorizzare, ma anche e soprattutto comprendere.

3 Definizione unitaria delle coniche La calcolatrice grafica e programmabile rappresenta un valido aiuto nella didattica se non permettiamo che gli allievi commettano l errore di pensare che questo strumento possa compensare la loro mancanza di conoscenza o di competenze. La calcolatrice è uno strumento e come tale non si può sostituire allo studioso, sia esso docente o discente, ma l aiuta in numerose operazioni: due fra tante, quelle di tipo ripetitivo o di esecuzione di più grafici con caratteristiche comuni, la cui precisione non è facilmente ottenibile operando a mano, impedendone così una interpretazione significativa. Come esempio di quanto affermato, affrontiamo un esercizio che riguarda lo studio delle coniche, argomento che, solitamente, si affronta nella classe terza del liceo scientifico: in genere queste curve vengono studiate dal punto di vista analitico, in quanto la loro definizione come luogo geometrico di punti si presta bene ad essere tradotta in un calcolo analitico. Si arriva così all equazione cartesiana e se ne studiano tutte le caratteristiche. Questa trattazione fornisce agli allievi una buona conoscenza dell argomento che può essere approfondita nella classe successiva con l utilizzo delle coordinate polari. La Fx si presta molto bene per questa operazione in quanto ci permette di eseguire i grafici in coordinate polari con precisione, non solo, ma possiamo anche disegnare velocemente più curve facendo variare i parametri che compaiono nell equazione, lasciandoci più tempo da dedicare alle nostre considerazioni didattiche. L obiettivo di questo esercizio è quello di studiare le coniche da un punto di vista unitario, partendo dal concetto di eccentricità e mostrare come, variando il valore di tale numero, si ottengano curve differenti. Questo mostrerà come curve di forma molto diverse tra loro siano in effetti legate da un elemento comune che, cambiando di valore, fa mutare anche la loro forma. Questo elemento è, come abbiamo già detto, l eccentricità. Iniziamo la lezione: dopo aver definito la conica come il luogo dei punti del piano per i quali è costante il rapporto tra la loro distanza da un punto detto fuoco e una retta detta direttrice, l insegnante arriverà all equazione polare della conica. A questo punto entra in gioco la nostra FX: infatti la calcolatrice mette a disposizione un menù (Dyna Graph) che permette di disegnare, come recita il manuale, versioni multiple di un grafico variando i valori assegnati alle variabili in una funzione. Vediamo di capire meglio. Come è noto l equazione polare di una conica è: R= dove p è un parametro ed E rappresenta l eccentricità. Al variare del valore di E si ottengono coniche diverse e, più precisamente, E=0 si ottiene una circonferenza 0<E<1 si ottiene un ellisse E=1 si ottiene una parabola E>1 si ottiene una iperbole. Accendiamo la CG-20 e scegliamo il menù Dyna Graph: ci appare la schermata sotto raffigurata:

4 poiché vogliamo scrivere l equazione in coordinate polari digitiamo F3 (Type) seguito da F2 (r=). Digitiamo la nostra equazione badando di inserire il denominatore tra parentesi e attribuiamo a p il valore 0.5 e lasciando indicato E. Questo ci permetterà di ottenere grafici più chiari che non si otterrebbero con valori maggiori di p, date le dimensioni dello schermo. Digitato EXE, digitiamo F4 (Var): nella schermata che appare alla variabile E, a cui è stato attribuito il valore 1(o un altro valore che non ci interessa).sempre da questa schermata scegliamo F2 (Set) che permette di inserire l intervallo di variabilità di E. Poniamo Start: 0(seguito da EXE) End:1,5 (seguito da EXE) Step: 0,1(seguito da EXE) Usciamo e torniamo alla videata precedente: digitiamo F6 (Dyna) e aspettiamo. Alla fine dell elaborazione cominceranno ad apparire le curve abbinate ai diversi valori assunti da E che possiamo controllare sulla parte bassa dello schermo.. Ecco alcune schermate significative:

5 A questo punto l insegnante potrà fare tutte le considerazioni che riterrà opportune. Una di queste può essere quella di inserire valori di E negativi. Per visualizzare le varie curve si può scegliere di farle comparire automaticamente aumentando o diminuendo la velocità oppure farle comparire una alla volta. Vediamo come. Digitiamo due volte Exit per tornare alla videata Dynamic var, e digitiamo F3 (Speed). La videata che compare è la seguente: Il significato delle varie opzioni è abbastanza chiaro; quella che vorrei evidenziare è l opzione corrispondente a F1 che, visualizzata una curva corrispondente ad un determinato valore di E, si ferma e riparte digitando i tasti direzione..

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari:

Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Un punto del piano può essere individuato dalle sue coordinate cartesiane o anche dalle sue coordinate polari: Figura 1 Per passare da coordinate polari a quelle cartesiane usiamo { x = r cos θ y = r sin

Dettagli

Geometria analitica del piano

Geometria analitica del piano Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema

Dettagli

Triangoli equilateri e parabole

Triangoli equilateri e parabole Triangoli equilateri e parabole Livello scolare: 2 biennio Abilità interessate Realizzare semplici costruzioni di luoghi geometrici. Risolvere semplici problemi riguardanti rette, circonferenze, parabole.

Dettagli

FINALITA DELLA DISCIPLINA (finalità formative generali cui tende la disciplina):

FINALITA DELLA DISCIPLINA (finalità formative generali cui tende la disciplina): ANNO SCOLASTICO: 2015 /2016 MATERIA: MATEMATICA INSEGNANTE: PIERANGELA NEGRO CLASSE: 3 A ODONTOTECNICO/ottico FINALITA DELLA DISCIPLINA (finalità formative generali cui tende la disciplina): L insegnamento

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

N.I413R UNI EN ISO 9001:2008

N.I413R UNI EN ISO 9001:2008 Anno scolastico 2014/ 2015 Classe Sezione Indirizzo Materia Terza AM Meccatronica Matematica Docente Nome e cognome Maria Cavalieri Firma PERCORSO FORMATIVO E DIDATTICO Modulo n.1: equazioni, disequazioni

Dettagli

MATERIA Matematica UF N 1: EQUAZIONI, DISEQUAZIONI, SISTEMI. DOCENTE: Cocchini

MATERIA Matematica UF N 1: EQUAZIONI, DISEQUAZIONI, SISTEMI. DOCENTE: Cocchini MATERIA Matematica CLASSE 3^ ITIS DOCENTE: Cocchini UF N 1: EQUAZIONI, DISEQUAZIONI, SISTEMI 20 ORE UF N 2 : GONIOMETRIA E TRIGONOMETRIA 25 ORE UF N 3 : GEOMETRIA ANALITICA E LE CONICHE 20 ORE UF N 4 FUNZIONE

Dettagli

STATALE SECONDARIO ISTITUTO SUPERIORE MAZZINI. Savona ANNO SCOLASTICO: 2017 /2018 MATERIA: MATEMATICA INSEGNANTE: GRAZIELLA VALLARINO CLASSE: 3 B SC.

STATALE SECONDARIO ISTITUTO SUPERIORE MAZZINI. Savona ANNO SCOLASTICO: 2017 /2018 MATERIA: MATEMATICA INSEGNANTE: GRAZIELLA VALLARINO CLASSE: 3 B SC. ANNO SCOLASTICO: 2017 /2018 MATERIA: MATEMATICA INSEGNANTE: GRAZIELLA VALLARINO CLASSE: 3 B SC. FINALITA DELLA DISCIPLINA (finalità formative generali cui tende la disciplina): L insegnamento della matematica

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica?

[ RITORNA ALLE DOMANDE] 2) Definisci la parabola come luogo geometrico. 1) Che cos è una conica? Matematica 1) Che cos è una conica? 2) Definisci la parabola come luogo geometrico. 3) Qual è l equazione di una parabola con asse di simmetria parallelo all asse delle y? 4) Qual è l equazione di una

Dettagli

UNITA DIDATTICA. Conoscenze. Abilità

UNITA DIDATTICA. Conoscenze. Abilità Titolo: Problemi di geometria analitica : la parabola e l iperbole Codice: B1_S Ore previste:15 Equazione della parabola e coordinate del vertice Grafico di una parabola Equazione dell iperbole equilatera

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

Terza BM Meccanica. Matematica. Docente

Terza BM Meccanica. Matematica. Docente Anno scolastico 2014/ 2015 Classe Sezione Indirizzo Materia Terza BM Meccanica Nome e cognome Rita Demartini Docente Firma Pagina 1 di 7 PERCORSO FORMATIVO E DIDATTICO Modulo n.1: Ripasso equazioni, disequazioni

Dettagli

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 lsantone@liceoantonelli.novara.it http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.

Dettagli

Anno 2. Sistemi di equazioni di secondo grado

Anno 2. Sistemi di equazioni di secondo grado Anno 2 Sistemi di equazioni di secondo grado 1 Introduzione In questa lezione verrà data una definizione di sistema di equazioni di secondo grado, verrà illustrata la loro risoluzione e le applicazioni.

Dettagli

UNITÀ DIDATTICA IL CERCHIO DI APOLLONIO

UNITÀ DIDATTICA IL CERCHIO DI APOLLONIO Università degli Studi di Palermo Scuola Interuniversitaria Siciliana di Specializzazione per l Insegnamento Secondario Anno accademico 001/00 Laboratorio di Giochi Matematici Prof. G. E. Perez UNITÀ DIDATTICA

Dettagli

PIANO di LAVORO CLASSE 3 D

PIANO di LAVORO CLASSE 3 D Istituto di Istruzione Superiore Statale Carlo Emilio Gadda Presidenza e Segreteria: v. Nazionale 6 43045 Fornovo di Taro (PR) Tel. 0525 400229 Fax 0525 39300 E-mail: ssitsos@scuole.pr.it Sito web: www.itsosgadda.it

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Quarta BM Meccanici Matematica. Docente

Quarta BM Meccanici Matematica. Docente itis.volta.alessan Anno scolastico 2014/ 2015 Classe Sezione Indirizzo Materia Quarta BM Meccanici Matematica Docente Nome e cognome Rita Demartini Firma Pagina 1 di 7 itis.volta.alessan PERCORSO FORMATIVO

Dettagli

Studio di funzioni goniometriche. di Carmelo Di Stefano 1

Studio di funzioni goniometriche. di Carmelo Di Stefano 1 Studio di funzioni goniometriche di Carmelo Di Stefano 1 Sommario. Lo studio della goniometria è considerato, non del tutto a torto, uno dei più noiosi da parte degli studenti. L argomento viene visto

Dettagli

MODULO 1: EQUAZIONI E DISEQUAZIONI 15 ore 1 quadrimestre

MODULO 1: EQUAZIONI E DISEQUAZIONI 15 ore 1 quadrimestre MODULI CLASSE TERZA TEMA ALGEBRA MODULO 1: EQUAZIONI E DISEQUAZIONI 15 ore 1 quadrimestre COMPETENZE: utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico, rappresentandole anche sotto

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

MODULO 1 - Esponenziali e logaritmi

MODULO 1 - Esponenziali e logaritmi PROGRAMMAZIONE INDIVIDUALE A. S. 2014.15 DOCENTE: Gagliardi Stefano CLASSE: 3 a AT MATERIA: Matematica ASSE CULTURALE: Asse Matematico MODULO 1 - Esponenziali e logaritmi Le potenze e le proprietà delle

Dettagli

MATEMATICA. Anno scolastico PROGRAMMI DI MATEMATICA E FISICA CLASSE IV A

MATEMATICA. Anno scolastico PROGRAMMI DI MATEMATICA E FISICA CLASSE IV A Anno scolastico 2015-2016 MATEMATICA Ripasso: disequazioni di primo e secondo grado intere disequazioni fratte PROGRAMMI DI MATEMATICA E FISICA CLASSE IV A Geometria analitica: Coniche : definizione come

Dettagli

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche

Dettagli

Programmazione attività Laboratorio di Matematica e Complementi di Matematica A.S. 2012/13

Programmazione attività Laboratorio di Matematica e Complementi di Matematica A.S. 2012/13 Programmazione attività Laboratorio di Matematica e Complementi di Matematica A.S. 2012/13 Indirizzi: Informatica, Scienze Applicate, Scientifico Tecnologico Pur non essendo più prevista dai nuovi ordinamenti

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

Storia del pensiero matematico

Storia del pensiero matematico Storia della Matematica 1 Storia del pensiero matematico Le coniche di Apollonio L'opera di Apollonio Ad Apollonio possiamo riconoscere due grandi meriti: il primo è una sintesi completa dei lavori precedenti

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi.

La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi. La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi. Funzioni undo e redo Cancella tutto Crea nuove attività Penna Pennarello Copri tutto

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Tutte le parabole sono simili?

Tutte le parabole sono simili? Tutte le parabole sono simili? Livello scolare: biennio Abilità interessate Individuare proprietà invarianti per similitudini. Analizzare e risolvere semplici problemi mediante l'applicazione delle similitudini.

Dettagli

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

Un punto, una retta e infinite circonferenze

Un punto, una retta e infinite circonferenze Un punto, una retta e infinite circonferenze Leila Lisa d Angelo leiladangelo@lillinet.org 1 Introduzione L idea di capire come affrontare in classe il tema dei fasci di curve è nata dal seguente dialogo

Dettagli

ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI-PACINOTTI - BOLOGNA

ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI-PACINOTTI - BOLOGNA ISTITUTO TECNICO COMMERCIALE E PER GEOMETRI CRESCENZI-PACINOTTI - BOLOGNA PIANO DI LAVORO A.S. 2016-2017 PROF. GIUSEPPE FALANGA MATERIA: MATEMATICA CLASSE 3 A indirizzi AFM-SIA DATA DI PRESENTAZIONE: 5

Dettagli

MOD P07.01 PIANO DI LAVORO RIPASSO MATEMATICA FINANZIARIA DOCUMENTO DEL SISTEMA QUALITA ANNO SCOLASTICO

MOD P07.01 PIANO DI LAVORO RIPASSO MATEMATICA FINANZIARIA DOCUMENTO DEL SISTEMA QUALITA ANNO SCOLASTICO Pagina 1 di 7 DOCENTE SOLIDA ANTONIA ANNO SCOLASTICO 2016-2017 INDIRIZZO A.F.M. MATERIA MATEMATICA CLASSE 3 A PIANO RIASSUNTIVO DELLE UNITÀ FORMATIVE DI APPRENDIMENTO U.F.A. N 1 TITOLO DELLE U.F.A. RIPASSO

Dettagli

Simulazione della prova d esame. TIROCINIO INDIRETTO Nono Incontro

Simulazione della prova d esame. TIROCINIO INDIRETTO Nono Incontro UNIVERSITÀ DEGLI STUDI DI MACERATA SCUOLA INTERUNIVERSITARIA DI SPECIALIZZAZIONE ALL INSEGNAMENTO SECONDARIO Anno Accademico 2005/2006 VII Ciclo III semestre TIROCINIO INDIRETTO Nono Incontro Simulazione

Dettagli

Soluzione dei sistemi lineari con metodo grafico classe 2H

Soluzione dei sistemi lineari con metodo grafico classe 2H Soluzione dei sistemi lineari con metodo grafico classe H (con esempi di utilizzo del software open source multipiattaforma Geogebra e calcolatrice grafica Texas Instruments TI-89) Metodo grafico Il metodo

Dettagli

Programmazione annuale docente classi 1^ - 2^ - 3^ - 4^

Programmazione annuale docente classi 1^ - 2^ - 3^ - 4^ Programmazione annuale docente classi 1^ - 2^ - 3^ - 4^ Docente Anna Maria Candiani Classe 3 sez. A Indirizzo SISTEMI INFORMATIVI AZIENDALI AMMINISTRAZIONE FINANZA MARKETING Materia di insegnamento Matematica

Dettagli

a.s. 1999/2000 Preside Prof. D Emilia Maria Pia Spaziani

a.s. 1999/2000 Preside Prof. D Emilia Maria Pia Spaziani Corso abilitante a.s. 1999/2000 Unità didattica Preside Prof. D Emilia Maria Pia Spaziani GRUPPO Sacco Vittoria Monforte Nicola Tartaglione Antonio Perone Elena Fiorini Stefania Pennace Sandra Unità Didattica:

Dettagli

Ore annue: 132 MODULO 1

Ore annue: 132 MODULO 1 Liceo B. Russell VIA IV NOVEMBRE 35, 38023 CLES Indirizzo: Liceo Linguistico CLASSI 2 e Programmazione Didattica Disciplina: Ore annue: 132 Matematica Settembre ottobre MODULO 1 novembre Disequazioni numeriche

Dettagli

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco Contesto: Geometria analitica - Attività di recupero PRIMA 0) ti senti preparato sull argomento? si no abbastanza poco La parabola DOPO 0) ti senti preparato sull argomento? si no abbastanza poco 1)In

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1).

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1). Geometria Complementi ed esercizi sulle coniche 1 (a) Scrivere l equazione dell ellisse Γ che ha fuochi F 1 ( 1, 1), F (1, 1) e che passa per il punto P (1, 1) (b) Determinare il centro, gli assi e i vertici

Dettagli

matematica classe terza Liceo scientifico

matematica classe terza Liceo scientifico LICEO SCIENTIFICO STATALE LEONARDO DA VINCI Anno scolastico 2013/2014 LE COMPETENZE ESSENZIALI CONSIDERATE ACCETTABILI PER LA SUFFICIENZA Si precisa che gli obiettivi indicati sono da raggiungere in relazione

Dettagli

Primi passi con Geogebra

Primi passi con Geogebra Primi passi con Geogebra La finestra di GeoGebra - versione 4 A. Aprire l applicazione GeoGebra 1. Sul desktop, fare doppio click sull icona di Geogebra B. Dopo l avvio di GeoGebra La finestra che normalmente

Dettagli

Programmazione classi quinte Sezione A Architettura

Programmazione classi quinte Sezione A Architettura Liceo Artistico Statale A. Caravillani Dipartimento di Matematica Docente Patrizia Domenicone Programmazione classi quinte Sezione A Architettura Enrico Ravà, Mare di casa, 2000 Programmazione di Matematica

Dettagli

MATEMATICA: LAVORO ESTIVO CLASSE 3GTscintifico. PROGRAMMA DI MATEMATICA PER IL RECUPERO / AIUTO CLASSE 3GTSCINTIFICO prof.

MATEMATICA: LAVORO ESTIVO CLASSE 3GTscintifico. PROGRAMMA DI MATEMATICA PER IL RECUPERO / AIUTO CLASSE 3GTSCINTIFICO prof. LICEO CLASSICO L.GALVANI A.S. 2016/17 MATEMATICA: LAVORO ESTIVO CLASSE 3GTscintifico Docente Paola Giacconi PROGRAMMA DI MATEMATICA PER IL RECUPERO / AIUTO CLASSE 3GTSCINTIFICO prof. Paola Giacconi Testo

Dettagli

Funzioni... senza limiti

Funzioni... senza limiti Funzioni... senza limiti Versione del 18 aprile 2007 Propongo, in questa nota, una serie di esempi di grafici di funzioni tracciati per via elementare, senza l uso del calcolo differenziale. Una trattazione

Dettagli

Matematica (e Complementi) Docente/i

Matematica (e Complementi) Docente/i Anno scolastico 2014 / 2015 Classe 3 Sezione B Indirizzo Informatica Materia Matematica (e Complementi) Docente/i Nome e cognome Francesca Formicola Nome e cognome Firma Firma Modulo n:1 Modulo n:2 PERCORSO

Dettagli

La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi.

La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi. La prima schermata presenta i percorsi possibili. Oltre alle unità, anche tutti i video, i materiali extra e i giochi. Funzioni undo e redo Cancella tutto Crea nuove attività Penna Pennarello Copri tutto

Dettagli

CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO

CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO DI MATEMATICA SCUOLA SECONDARIA DI PRIMO GRADO Nuclei tematici Il numero Traguardi per lo sviluppo della competenza - Muoversi con sicurezza nel calcolo anche con i numeri razionali e stimare

Dettagli

ANNO SCOLASTICO Piano di lavoro individuale

ANNO SCOLASTICO Piano di lavoro individuale ANNO SCOLASTICO 2014 2015 Piano di lavoro individuale Classe: 3^H TUR Materia: MATEMATICA Docente: ELISABETTA MILLI Situazione di partenza della classe La classe è formata da 25 alunni (22 femmine e 3

Dettagli

L INTERFACCIA GRAFICA DI EXCEL

L INTERFACCIA GRAFICA DI EXCEL Dopo l avvio del foglio elettronico apparirà un interfaccia grafica nella quale verrà aperta una nuova cartella di lavoro alla quale il PC assegnerà automaticamente il nome provvisorio di Cartel1. La cartella

Dettagli

LEZIONE 4. Per semplificarne la comprensione della tastiera possiamo suddividere i tasti in diversi gruppi in base alla funzione che possono svolgere:

LEZIONE 4. Per semplificarne la comprensione della tastiera possiamo suddividere i tasti in diversi gruppi in base alla funzione che possono svolgere: LEZIONE 4 La tastiera è lo strumento principale per l'immissione di informazioni nel computer, ma non tutti sanno, però, che è possibile utilizzare la tastiera anche per controllare il computer e i vari

Dettagli

3. 3. Livelli di partenza (pre-requisiti e modalità di osservazione concordate per la rilevazione)

3. 3. Livelli di partenza (pre-requisiti e modalità di osservazione concordate per la rilevazione) Pag 1 di 8 Area disciplinare: Matematica Responsabile di dipartimento: Prof. Maria Clara Di Murro Insegnanti coinvolti: Proff: Molle Vincenzo, Di Murro Maria Clara, Martino Angela Maria 1. Analisi degli

Dettagli

Corso di Formazione sulle Nuove Tecnologie per l insegnamento delle discipline scientifiche

Corso di Formazione sulle Nuove Tecnologie per l insegnamento delle discipline scientifiche Corso di Formazione Nuove Tecnologie per l insegnamento delle Discipline Scientifiche rivolto agli insegnanti dell Istituto Istruzione Secondaria Statale di Casarano Corso di Formazione sulle Nuove Tecnologie

Dettagli

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDIRIZZO TECNICO ECONOMICO PER IL TURISMO MATERIA MATEMATICA ANNO DI CORSO CLASSE TERZA

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDIRIZZO TECNICO ECONOMICO PER IL TURISMO MATERIA MATEMATICA ANNO DI CORSO CLASSE TERZA INDICE DELLE UFC N. DENOMINAZIONE 1 PIANO CARTESIANO E RETTA 2 DISEQUAZIONI DI 1 E 2 GRADO E SISTEMI DI 1 GRADO 3 CONICHE: PARABOLA E DISEQUAZIONI DI 2 GRADO, ELLISSE E IPERBOLE 4 FUNZIONI ESPONENZIALI

Dettagli

Una libreria di funzioni per la geometria analitica

Una libreria di funzioni per la geometria analitica Una libreria di funzioni per la geometria analitica Michele Impedovo La geometria analitica del piano costituisce uno dei più importanti e consolidati argomenti di matematica. Un lavoro interessante parallelo

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE. CLASSI TERZE Anno scolastico 2015/ FINALITÀ DELL INSEGNAMENTO DELLA MATEMATICA

DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE. CLASSI TERZE Anno scolastico 2015/ FINALITÀ DELL INSEGNAMENTO DELLA MATEMATICA DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE DI MATEMATICA CLASSI TERZE Anno scolastico 2015/2016 Ore di lezione previste nell anno: 165 (n. 5 ore sett. x 33 settimane) 1. FINALITÀ DELL INSEGNAMENTO

Dettagli

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0

Calcolo Algebrico. Primo grado. ax 2 + bx + c = 0. Secondo grado. (a 0) Equazioni e disequazioni in una incognita e coefficienti reali: ax + b = 0 Calcolo Algebrico Equazioni e disequazioni in una incognita e coefficienti reali: Primo grado ax + b = 0 (a 0) x = b a Secondo grado ax 2 + bx + c = 0 (a 0) Si hanno due soluzioni che possono essere reali

Dettagli

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA Pag. 1 di 5 ANNO SCOLASTICO 2014-15 DIPARTIMENTO DI Matematica INDIRIZZO Liceo scientifico CLASSE BIENNIO TRIENNIO DOCENTI: De Masi, Zaganelli, Dalmonte, Fidanza. NUCLEI FONDAMENTALI DI CONOSCENZE I QUADRIMESTRE

Dettagli

LICEO SCIENTIFICO STATALE

LICEO SCIENTIFICO STATALE LICEO SCIENTIFICO STATALE GALILEO GALILEI PdQ - 7.06 Ediz.: 1 Rev.: 0 Data 02/09/05 Alleg.: D01 PROG. M2 PROCEDURA della QUALITA' Programma Didattico Annuale Anno Scolastico 2011/2012 MATERIA : Matematica

Dettagli

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7

Stampa Preventivo. A.S. 2009-2010 Pagina 1 di 7 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 7 Insegnante MIANI LUCIO Classe 4LTS Materia matematica preventivo consuntivo 96 0 titolo modulo 1. Funzione esponenziale e logaritmica 2. Le coniche 3. Disequazioni

Dettagli

Anno 3 Equazione dell'ellisse

Anno 3 Equazione dell'ellisse Anno Equazione dell'ellisse 1 Introduzione In questa lezione affronteremo una serie di problemi che ci chiederanno di determinare l equazione di un ellisse sotto certe condizioni. Al termine della lezione

Dettagli

LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15

LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 CLASSE : 3N indirizzo scienze applicate DOCENTE: CAPRI MATTEO MATERIA: MATEMATICA Libro di testo utilizzato:

Dettagli

Anno scolastico ISTITUTO TECNICO SETTORE TECNOLOGICO. INDIRIZZO INFORMATICA E TELECOMUNICAZIONI Articolazione: Informatica

Anno scolastico ISTITUTO TECNICO SETTORE TECNOLOGICO. INDIRIZZO INFORMATICA E TELECOMUNICAZIONI Articolazione: Informatica Anno scolastico 2012-13 ISTITUTO TECNICO SETTORE TECNOLOGICO INDIRIZZO INFORMATICA E TELECOMUNICAZIONI Articolazione: Informatica PROGRAMMA CONSUNTIVO MATERIA MATEMATICA (area generale) DOCENTE Monica

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE Liceo scientifico Anno scolastico Materia Classi 2013-2014 Matematica Terze-Quarte

PROGRAMMAZIONE DIDATTICA DISCIPLINARE Liceo scientifico Anno scolastico Materia Classi 2013-2014 Matematica Terze-Quarte PROGRAMMAZIONE DIDATTICA DISCIPLINARE Liceo scientifico Anno scolastico Materia Classi 2013-2014 Matematica Terze-Quarte 1. al termine del percorso di studio Al termine del liceo scientifico lo studente

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2013 / 2014 Dipartimento (1) : MATEMATICA Coordinatore (1) : Classe: ROVETTA ROBERTA 3 Indirizzo: Servizi commerciali Ore di insegnamento settimanale:

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte. Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:

Dettagli

IV Liceo Artistico Statale A.Caravillani. Anno Scolastico 2016/2017. Programmazione Didattica. Matematica

IV Liceo Artistico Statale A.Caravillani. Anno Scolastico 2016/2017. Programmazione Didattica. Matematica IV Liceo Artistico Statale A.Caravillani Anno Scolastico 2016/2017 Programmazione Didattica Matematica Classe V sez. D Modulo 1 Modulo 2 Modulo 3 Modulo 4 Titolo Funzioni Limiti Derivate Lo studio delle

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Sistemi di equazioni di secondo grado

Sistemi di equazioni di secondo grado 1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione

Dettagli

Anno scolastico 2016 / 2017

Anno scolastico 2016 / 2017 Alessandria, 20 ottobre 2016 Anno scolastico 2016 / 2017 Classe 3 AM Indirizzo Materia Meccatronica Matematica e Complementi di Matematica Docente/i Nome e cognome Maria Cavalieri Firma Mod. SGQ-MOD-06

Dettagli

LICEO ARTISTICO STATALE M. F. CAMPANILE MELFI a.s. 2016/2017

LICEO ARTISTICO STATALE M. F. CAMPANILE MELFI a.s. 2016/2017 LICEO ARTISTICO STATALE M. F. CAMPANILE MELFI a.s. 2016/2017 PROGRAMMAZIONE DIDATTICA DISCIPLINARE. CLASSE: I A. DOCENTE : Russo Diego. MATERIA: Discipline Geometriche. TESTO: Metodo Disegno Smart. MONTE

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "G.VERONESE G. MARCONI"

ISTITUTO D ISTRUZIONE SUPERIORE G.VERONESE G. MARCONI ISTITUTO D ISTRUZIONE SUPERIORE "G.VERONESE G. MARCONI" SEDE CENTRALE G. VERONESE : Via P. Togliatti, 833-30015 CHIOGGIA (VE) Indirizzi: liceo Scientifico Scienze Applicate Classico Linguistico Scienze

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA

PIANO DI LAVORO ANNUALE DEL DIPARTIMENTO DI MATERIA Pag. 1 di 6 ANNO SCOLASTICO 2015-16 DIPARTIMENTO DI Matematica INDIRIZZO Liceo scientifico CLASSE BIENNIO TRIENNIO DOCENTI: De Masi, Zaganelli, Dalmonte, Fidanza. NUCLEI FONDAMENTALI DI CONOSCENZE I QUADRIMESTRE

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002 Compito di Geometria assegnato il 1 Febbraio 2002 Trovare l equazione della conica irriducibile tangente all asse x nel punto A(2, 0), tangente all asse y e passante per i punti B(1, 1) e C(2, 2) Scrivere

Dettagli

LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA

LICEO SCIENTIFICO R. NUZZI - ANDRIA Anno Scolastico 2015/16 MATEMATICA LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA Il Dipartimento di Matematica per il corrente anno scolastico (2015/2016) ha individuato la realizzazione di diciannove corsi integrativi

Dettagli

I.I.S. C. MARCHESI. INSEGNANTE: Prof. Sarto Sabrina CL. 4 SEZ. A E

I.I.S. C. MARCHESI. INSEGNANTE: Prof. Sarto Sabrina CL. 4 SEZ. A E Pag. 1 di 5 ANNO SCOLASTICO 2015/2016 PIANO ANNUALE DI LAVORO INSEGNANTE: Prof. Sarto Sabrina CL. 4 SEZ. A E MATERIA: Matematica 1) PROFILO INIZIALE DELLA CLASSE a) comportamento partecipazione: Non sempre

Dettagli

RELAZIONE FINALE DEL DOCENTE

RELAZIONE FINALE DEL DOCENTE RELAZIONE FINALE DEL DOCENTE Materia: MATEMATICA Classe 3^AeT A. S. 2015/2016 Docente: Clara De Antoni In relazione alla programmazione curriculare sono stati conseguiti, in termini di livello medio, i

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

PROGRAMMAZIONE ANNUALE

PROGRAMMAZIONE ANNUALE ISTITUTO D ISTRUZIONE SUPERIORE G. VERONESE LICEO: SCIENTIFICO P.N.I. - SCIENTIFICO BROCCA CLASSICO - SOCIO PSICOPEDAGOGICO Via Togliatti 30015 - CHIOGGIA (VE) - Tel. 041/5542997-5543371 - FAX 5548665

Dettagli

Laboratorio di informatica

Laboratorio di informatica Laboratorio di informatica GEOMETRIA DELLO SPAZIO Introduzione a Geogebra 3D La versione 5 di Geogebra prevede anche la possibilità di lavorare in ambiente 3D. Basta aprire Visualizza - Grafici 3D: sullo

Dettagli