ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico"

Transcript

1 AZIONI ANALISI STRUTTURALE sistma STRUTTURA STATO I modlli mccanici possono suddividrsi in: MODELLI CONTINUI Forz Coazioni STRUTTURA = modllo mccanico IDEALIZZAZIONE DELLA STRUTTURA Posizion Vlocità Acclrazion Dformazion Tnsion VALUTAZIONE DELLA RISPOSTA DEL DEL MODELLO ALLE AZIONI 1) IDEALIZZAZIONE DELLA STRUTTURA Modllo gomtrico --statico statico Modllo di di matriali costitunti la la struttura Dscrizion dlla CINEMATICA dlla STATICA Dscrizion dl LEGAME costitutivo IPOTESI : smplificar la formulazion dl modllo, liminando qugli asptti ritnuti ininflunti sulla risposta dlla struttura DESCRIZIONE APPROSSIMATA 1 L variabili di stato sono sprss mdiant funzioni continu dlla posizion dl tmpo MODELLI DISCRETI Il problma dll quilibrio o dl moto è formulato in un numro finito di variabili di stato incognit la cui dtrminazion richid la soluzion di problmi discrti, sprimibili in forma algbrica Mtodo: FORZE Solidi: stati 2D 3D Struttur: Travi Lastr / Gusci Problma diffrnzial SPOSTAMENTI Problma algbrico 2

2 2) VALUTAZIONE DELLA RISPOSTA DEL MODELLO AD AZIONI ASSEGNATE Mtodologia di soluzion: succssion di oprazioni da ffttuar sui dati dl problma pr dtrminar la soluzion. ALGORITMO: Procdimnto di calcolo splicito dscrivibil con un numro (finito) di rgol ch conduc al risultato dopo un numro (finito) di oprazioni, cioè di applicazion dll rgol. Esistono 2 tipologi di soluzion: SOLUZIONE IN FORMA CHIUSA La soluzion è sprssa tramit una dipndnza funzional ottnibil con i METODI ANALITICI (mtodologi di soluzion ottnut mdiant succssioni di oprazioni simbolich sull rlazioni funzionali rlativ al modllo). SOLUZIONE IN FORMA NUMERICA Valori numrici assunti dall variabili di stato incognit, in corrispondnza di azioni prcisat in trmini quantitativi. La soluzion vin ottnuta mdiant una succssion di oprazioni numrich sui dati ch costituisc il METODO NUMERICO. La rapprsntazion numrica comporta la possibilità di dscrivr lo stato attravrso la quantificazion di un numro finito di variabili. La La soluzion numrica non non è gnral in in quanto si rifrisc a prcisati valori di dati. La soluzion numrica dscriv con compltzza i modlli strutturali discrti (= problmi algbrici) I I modlli strutturali continui possono ssr risolti con con mtodi numrici solo solo s s trasformati in in modlli discrti Modllo continuo Modllo discrto o numrico PROBLEMA DIFFERENZIALE Discrtizzazion = Approssimazion ultrior PROBLEMA ALGEBRICO METODI DI DISCRETIZZAZIONE Discrtizzazion dl modllo continuo = individuazion di un numro finito di variabili significativ di stato Discrtizzazion dl problma matmatico = Mtodi all diffrnz finit Mtodi ai rsidui psati Mtodi variazionali Discrtizzazion dl modllo struttural = Mtodi agli lmnti finiti (FEM) Mtodi agli lmnti al contorno (BEM) quanto si rifrisc a prcisati valori di dati. 3 4

3 IL METODO MATRICIALE DEGLI SPOSTAMENTI PER L ANALISI DELLE TRAVATURE Una travatura può ssr dscritta com un sistma formato da travi (lmnti), di data gomtria matrial costitutivo, intrconnss ni punti strmi (nodi). La soluzion può ssr dtrminata attravrso il METODO DEGLI SPOSTAMENTI (considriamo il caso lastico, spostamnti infinitsimi): Dfiniti: Gradi di librtà (DOF dgr of frdom) La connssion (vincolo intrno) impdisc lo spostamnto rigido nlla dirzion in cui il vincolo agisc. Pr garantir l assnza di atti di moto rigido (nlla totalità in parti dlla struttura) sono ncssari vincoli strni in alcun dirzioni fficaci. Azioni Azioni sulla sulla travatura: forz forz gnralizzat ni ni nodi nodi forz forz concntrat o distribuit ngli ngli lmnti variazioni trmich sugli sugli lmnti cdimnti, distorsioni Dtrminazion di: di: spostamnti dformazioni ngli ngli lmnti sollcitazioni ngli ngli lmnti razioni vincolari 5 u xi u yi u zi ui Travatura nllo spazio: ai = = ϕ { } xi ϕi ϕyi a ϕ zi 1 Vttor dgli a = complssivo (N nodi) spostamnti nodali: a N Forza nodali quivalnt (lmnto) = Azion srcitata sull lmnto nl nodo i t xi t yi tzi t i qi = = mxi mi myi m zi Elmnto a 2 nodi (i,j) Matric di rigidzza (lmnto) - simmtrica K K K = K ii ij Kii ji K jj 6x6 trav nllo spazio 6

4 Forz nodali strn sxi s yi s zi si ri = c = { } xi ci cyi c zi nodo i-simo r1 r = rn complssivo (N nodi) 1. Si dtrmina il sistma principal (gomtricamnt dtrminato) a nodi bloccati (univoco). 2. Si applicano l azioni strn sull travi. 3. L incognit sono gli spostamnti nodali: assgnando ad ssi valori arbitrari, si hanno configurazioni congrunti. In ciascuna trav l quilibrio è vrificato, ma non lo è ni nodi. 4. Imponndo in ogni nodo l quazioni di quilibrio tra forz nodali quivalnti (trasmss dall travi incidnti) l forz strn gnralizzat agnti nl nodo, ottngo il valor dll incognit. m ri = qi i = 1...N ; m = travi nl nodo i dov: = 1 q = K a + K a + f i ii i ij j i 5. Dtrminazion dll sollcitazioni agli strmi dll travi. 6. Dtrminazion dll carattristich di sollcitazion nll travi. 7. Dtrminazion dll carattristich di dformazion nll travi. 8. Spostamnto dlla gnrica trav. 7 Riscritt in forma compatta l M (6N pr travi nllo spazio) quazioni di quilibrio risultano: Ka = r f Dov: K è la matric complssiva di rigidzza r f è vttor di trmini noti In matrici vttori complssivi ogni trmin tin conto di contributi di tutti gli lmnti (ASSEMBLAGGIO). Nl caso gnral, il sistma global di rifrimnto non coincid con qullo local dll lmnto, quindi si sussguono tr fasi: Dscrizion dl comportamnto dll lmnto nl rifrimnto local ' ' q = K' a'+ f Trasformazion dll (*) nl rifrimnto global, tramit ROTAZIONE (matric di rotazion) q = Ka+ f (*) Assmblaggio dll lmnto nl sistma di quazioni risolvnti 8

5 IL METODO AGLI ELEMENTI FINITI L impostazion dl problma prcdnt è simil a qulla dl problma dll quilibrio di solidi di struttur (1D 2D). In qust ultimo caso si dv ffttuar una prliminar approssimazion, lgata al passaggio da modllo continuo a discrto. suddivision dl dominio in un numro finito di parti (ELEMENTI) individuazion di un numro finito di punti (NODI) di intrconnssion dgli lmnti Sistma ffttivo Modllo discrto FEM Noti gli spostamnti nodali u i dscritta la lgg di comportamnto di singoli lmnti, è anch noto il campo di spostamnti û ch approssima il campo di spostamnti ffttivo u(x) di punti dl continuo. La diffrnza risptto al caso prcdnt sta nll arbitrarità dlla sclta dl modllo discrto. Inoltr, l approssimazioni insit nl mtodo sono lgat alla dnsità di nodi alla lgg di comportamnto di singoli lmnti. (dagli appunti di Analisi computazional dll struttur Prof. Gambarotta) 9 IL PROGRAMMA DI CALCOLO ANSYS ANSYS (Swanson Analysis Systm Inc.) è un codic di calcolo agli lmnti finiti, ch si basa sulla formulazion ngli spostamnti. E un codic multi-purpos, in cui si possono ffttuar analisi di solidi struttur 2D, 1D, in fas linar o non linar, in quilibrio o in moto. Può ssr impigato nll analisi di travatur (infatti sono disponibili lmnti asta trav nllo spazio 2D 3D). L ultima vrsion è ANSYS E disponibil una vrsion ANSYS EDUCATIONAL, con alcun limitazioni d utilizzo. ANSYS/ED FEA Limits Maximum DOF 2,000 (14,000 for FLOTRAN) Maximum Nod Numbr 1,000 (2,000 for FLOTRAN) Maximum Elmnt Numbr 500 (2,000 for FLOTRAN) Maximum Mastr DOF Numbr 50 ANSYS/ED Solid Modling Limits Maximum Kypoint Numbr 100 Maximum Lin Numbr 100 Maximum Ara Numbr 50 Maximum Volum Numbr 10 ANSYS/ED Elmnt Typ Limits No composit lmnts (SOLID46, SHELL91, and SHELL99) 10

6 Il programma ANSYS è strutturato in tr moduli oprativi. PREP7 PREP7 --PREPROCESSOR Gnrazion dl dl modllo discrto Spcificazion dlla dlla gomtria dlla dlla struttura Crazion dl dl modllo SOLU SOLU --PROCESSOR Analisi dl dl modllo discrto Soluzion dlla dlla struttura Stato Stato di di sforzo sforzo dformazion POST1 POST1 / POST26 --POSTPROCESSOR Rapprsntazion d d laborazion di di risultati Dformata, diagrammi dll dll sollcitazioni Vrifich di di rsistnza 11 12

7 Alcuni lmnti prsnti nlla librria di ANSYS: Alcuni lmnti prsnti nlla librria di ANSYS: Mass Ast travi Lastr gusci Solidi Vari (lmnti di vincolo lastico o unilatral, pip, cc.) 13 14

8 15 16

9 17

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

ANALISI STRUTTURALE AD ELEMENTI FINITI CON APPROCCIO AGLI SPOSTAMENTI

ANALISI STRUTTURALE AD ELEMENTI FINITI CON APPROCCIO AGLI SPOSTAMENTI ANAISI SRUURAE AD EEMENI FINII CON APPROCCIO AGI SPOSAMENI Abbiamo già avuto occasion di vdr ch con l tcnich ad lmnti finiti il procsso di discrtizzazion passa attravrso l'individuazion di un st discrto

Dettagli

METODO DI NEWTON Esempio di non convergenza

METODO DI NEWTON Esempio di non convergenza METODO DI NEWTON S F(x) è C 2 si sa ch (x R k ) F(x+h) = F(x) + F(x) t h + 1/2 h t H(x)h +o( h 3 ) d una stima possibil dl punto di minimo è data da x# = x - H(x) -1 F(x) dov H(x) è la matric hssiana in

Dettagli

Statistica multivariata Donata Rodi 04/11/2016

Statistica multivariata Donata Rodi 04/11/2016 Statistica multivariata Donata Rodi 4//6 La rgrssion logistica Costruzion di un modllo ch intrprti la dipndnza di una variabil catgorial dicotomica da un insim di variabili splicativ Trasformazioni da

Dettagli

PROCESSI DI CONSOLIDAZIONE

PROCESSI DI CONSOLIDAZIONE PROCESSI DI CONSOLIDAZIONE L applicazion di un carico su un trrno comporta l insorgr di sovrapprssion dll acqua intrstizial, la cui ntità varia da punto a punto all intrno dl volum individuato dal bulbo

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

ANALISI DINAMICA CON IL MEF Principali tipi di analisi analisi modale

ANALISI DINAMICA CON IL MEF Principali tipi di analisi analisi modale AALISI DIAICA CO IL EF Principali tipi di analisi analisi modal analisi i dlla risposta armonica analisi di transitorio dinamico ESESIOE SISEA RISOLVEE I CAPO DIAICO/1 Contributo inrzia i Acclrazion k

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

Circolare n. 1 Prot. n. 758 Roma 29/01/2015

Circolare n. 1 Prot. n. 758 Roma 29/01/2015 Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar

Dettagli

STABILITÀ DELL EQILIBRIO 5. Tensione critica e snellezza. Al carico critico euleriano (1) N cr =

STABILITÀ DELL EQILIBRIO 5. Tensione critica e snellezza. Al carico critico euleriano (1) N cr = Tnsion critica snllzza Al carico critico ulriano STABILITÀ DELL EQILIBRIO 5 π EI cr () l do l è la lunghzza libra di inflssion corrispondnt alla smilunghzza d onda dlla sinusoid formata dalla lina lastica,

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO)

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) 10.11.2010 IT Gazztta ufficial dll'union uropa C 304 A/1 V (Avvisi) PROCEDIMENTI AMMINISTRATIVI UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) BANDO DI CONCORSI GENERALI EPSO/AST/109-110/10 CORRETTORI

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata Istituti Tcnici Industriali L curvatur di prcorsi scolastici vrso Robotica/Mccatronica avanzata MACRO-COMPETENZE IN USCITA VERSO LA ROBOTICA/MECCATRONICA AVANZATA Quattro Macro-Comptnz Spcialistich: 1.

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è "Trmodinamica trasmission dl calor 3/d" 1 - Yunus A. Çngl RISOLUZIONI cap.19 19.1 (a) La rsistnza trmica total dllo scambiator di calor, rifrita all'unità di lunghzza, è (b) Il cofficint global di scambio

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Università degli Studi di Firenze Dipartimento di Ingegneria Civile ed Ambientale

Università degli Studi di Firenze Dipartimento di Ingegneria Civile ed Ambientale Univrsità dgli Studi di Firnz Dipartimnto di Inggnria Civil d Ambintal TARIFFARIO DELLE PRESTAZIONI IN CONTO TERZI (Approvato dal Consiglio di Dipartimnto dl 24/01/2002) ATTIVITÀ E SERVIZI OFFERTI PROVE

Dettagli

MAGAZZINO EX GUALA VIA S. GIOVANNI BOSCO, - ALESSANDRIA PROCEDURA DI CONTROLLO DEGLI ACCESSI ALL INTERNO DELL AREA

MAGAZZINO EX GUALA VIA S. GIOVANNI BOSCO, - ALESSANDRIA PROCEDURA DI CONTROLLO DEGLI ACCESSI ALL INTERNO DELL AREA CITTÀ DI ALESSANDRIA SERVIZIO DI PREVENZIONE E PROTEZIONE PIAZZA DELLA LIBERTÀ n. 1 MAGAZZINO EX VIA S. GIOVANNI BOSCO, - ALESSANDRIA PROCEDURA DI CONTROLLO DEGLI ACCESSI ALL INTERNO DELL AREA FILE: procdura

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

NOTA: anche questa pagina bianca fa parte

NOTA: anche questa pagina bianca fa parte NOTA: anch qusta pagina bianca fa part dl blocco di pagin dlla tsi NOTA: tagliar il blocco di pagin dlla tsi (stampata front-rtro) lungo l du lin qui tracciat prima di ffttuar la rilgatura UNIVERSITÀ

Dettagli

PROVA EDOMETRICA A.A

PROVA EDOMETRICA A.A PROA EDOMETRICA La prova domtrica riproduc in laboratorio l condizioni di consolidazion monodimnsional PROA A INCREMENTO DI CARICO (IL) La consolidazion monodimnsional è simulata applicando una squnza

Dettagli

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA SETTORE ECONOMICO PROFESSIONALE 1 SETTORE EDILIZIA Procsso Costruzion di difici di opr di inggnria civil/industrial Squnza di procsso

Dettagli

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui 1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di

Dettagli

Agenzia regionale per il lavoro Unità organizzativa: Osservatorio regionale del mercato del lavo

Agenzia regionale per il lavoro Unità organizzativa: Osservatorio regionale del mercato del lavo Agnzia rgional pr il lavoro Unità organizzativa: Ossrvatorio rgional dl mrcato dl lavo - Guida oprativa all strazion di dati dal SIL Sardgna scondo lo Standard Multirgional di Dati Amministrativi - Sttmbr

Dettagli

ORDINE DEGLI ARCHITETTI PIANIFICATORI PAESAGGISTI E CONSERVATORI DELLA PROVINCIA DI LODI

ORDINE DEGLI ARCHITETTI PIANIFICATORI PAESAGGISTI E CONSERVATORI DELLA PROVINCIA DI LODI PROGRAMMA CORSO BASE 10 ORE ORDINE ARCHITETTI PPC Moduli h OBIETTIVI DIRETTIVE LEGISLAZIONE E REGOLE TECNICHE DI PREVENZIONE INCENDI A 6 FISICA E CHIMICA DELL'INCENDIO B 10 TECNOLOGIA DEI MATERIALI E DELLE

Dettagli

TRAVE ELASTICA SU SUOLO ELASTICO (MODELLO ALLA WINKLER) Collana Calcolo di edifici in muratura (www.edificiinmuratura.it)

TRAVE ELASTICA SU SUOLO ELASTICO (MODELLO ALLA WINKLER) Collana Calcolo di edifici in muratura (www.edificiinmuratura.it) RAVE EASIA SU SUOO EASIO (MODEO AA WINKER) ollana alcolo di difici in muratura (www.dificiinmuratura.it) Articolo 7 uglio 5 rav lastica su suolo lastico (modllo alla Winlr) In qusta trattaion la trav

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

SCUOLE PRIMARIE CLASSI QUINTE

SCUOLE PRIMARIE CLASSI QUINTE ISTITUTO COMPRENSIVO N 5 SANTA LUCIA UNITÀ DI APPRENDIMENTO 1 o QUADRIMESTRE SCUOLE PRIMARIE CLASSI QUINTE UNITA DI APPRENDIMENTO Dnominazion Compito-prodotto Comptnz mirat Comuni /cittadinanza LA CIVILTA

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

MECCANICA COMPUTAZIONALE

MECCANICA COMPUTAZIONALE MECCANICA COMPUTAZIONALE Capitolo 1 Introduzione Rev. 21 aprile 2008 (rev. 21/04/2008) Capitolo 1: 1/28 Argomenti trattati nel capitolo 1 Esempi di problemi strutturali complessi Limiti degli approcci

Dettagli

Filtri ad alta efficienza CSF16 e CSF16T in acciaio inox per aria compressa

Filtri ad alta efficienza CSF16 e CSF16T in acciaio inox per aria compressa I dati tcnici forniti non sono impgnativi pr il costruttor ch si risrva la facoltà di modificarli snza obbligo di pravviso. Copyright 2012 TI-P185-11 ST Ed. 2 IT - 2015 Filtri ad alta fficinza CSF16 CSF16T

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152 Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi GLI ALBERI SRADICATI BINARI COME CONCETTO ESSENZIALE PER LA DESCRIZIONE DEI MODELLI DI EAB Ottobr 1996 n. 152 1 2 Francsca

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

CORSO BASE DI SPECIALIZZAZIONE IN PREVENZIONE INCENDI FINALIZZATO ALL ISCRIZIONE DEI PROFESSIONISTI NEGLI ELENCHI DEL MINISTERO DELL INTERNO

CORSO BASE DI SPECIALIZZAZIONE IN PREVENZIONE INCENDI FINALIZZATO ALL ISCRIZIONE DEI PROFESSIONISTI NEGLI ELENCHI DEL MINISTERO DELL INTERNO PROGRAMMA CORSO BASE DI SPECIALIZZAZIONE IN PREVENZIONE INCENDI FINALIZZATO ALL ISCRIZIONE DEI PROFESSIONISTI NEGLI ELENCHI DEL MINISTERO DELL INTERNO (in bas al D.M. Agosto 011, art. succssiv modifich)

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

Gazzetta ufficiale dell'unione europea

Gazzetta ufficiale dell'unione europea L 68/4 Gazztta ufficial dll'union uropa 15.3.2016 REGOLAMENTO DELEGATO (UE) 2016/364 DELLA COMMISSIONE dal 1 o luglio 2015 rlativo alla classificazion dlla prstazion di prodotti da costruzion in rlazion

Dettagli

DIPARTIMENTO DI MATEMATICA E FISICA PROGRAMMAZIONE EDUCATIVO DIDATTICA. DISCIPLINA: Matematica (Biennio)

DIPARTIMENTO DI MATEMATICA E FISICA PROGRAMMAZIONE EDUCATIVO DIDATTICA. DISCIPLINA: Matematica (Biennio) DIPARTIMENTO DI MATEMATICA E FISICA PROGRAMMAZIONE EDUCATIVO DIDATTICA DISCIPLINA: Matmatica (Binnio) Il coordinator dl Dipartimnto pr l anno 2013-2014 Prof. Tommaso Bologns Profilo dllo studnt in uscita

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007 ispns orso ostr Zon ismica 2 mod _Prof amillo Nuti_ AA 2006 2007 AZIONI IMIHE RAMIE PERO I RIPOA- LA NUOVA NORMA 2007 AZIONI IMIHE L azioni sismich di protto con l quali valutar il risptto di divrsi stati

Dettagli

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la

Dettagli

UNI EN 1555 - PE 80 Ø75x6,8 S5 SDR 11 - M.O.P. 5 bar - POLIETILENE 100% VERGINE

UNI EN 1555 - PE 80 Ø75x6,8 S5 SDR 11 - M.O.P. 5 bar - POLIETILENE 100% VERGINE rsin 103 UNI EN 1555 - PE 80 Ø75x6,8 S5 SDR 11 - M.O.P. 5 bar - POLIETILENE % VERGINE Dalmin rsin UNI EN 12666 U Ø2 S16 PE SN 2 Dalminrs PEbd DN 40 PN 6 PER ACQUA POTABILE - POLIETILENE % VERGINE 103 UNI

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Introduon al METODO DEGLI ELEMENTI FINITI Ossrvaon su mtod varaonal approssmat classc L unon approssmant dvono: Soddsar rqust d contnutà Essr lnarmnt ndpndnt complt Soddsar l condon al contorno ssnal Dcoltà:

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml

Classe di abilitazione (o classe di concorso) Reclutamento docenti e Graduatorie http://www.istruzione.it/urp/reclutamento.shtml Class di abilitazion (o class di concorso) La class di concorso è una sigla alfa numrica con la qual si indica l insim di matri ch possono ssr insgnat da un docnt. Indica una particolar cattdra di insgnamnto,

Dettagli

TABELLA D EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE

TABELLA D EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE TABELLA D EFFICACIA ED EFFICIENZA NELLE ATTIVITÀ PRECEDENTEMENTE REALIZZATE D1) Rapporto tra risors conomich invstit pr la comunicazion l innovazion tcnologica volum di affari drivant dall attività di

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

Deliberazione n. 246 del 10 aprile 2014

Deliberazione n. 246 del 10 aprile 2014 Dlibrazion n. 246 dl 10 april Dirttor Gnral Dr. Robrto Bollina Coadiuvato da: Giancarlo Bortolotti Dirttor Amministrativo Carlo Albrto Trsalvi Dirttor Sanitario Giuspp Giorgio Inì Dirttor Social Il prsnt

Dettagli

Corso di Teoria delle Strutture Dispense - parte #1 Richiami di Elasticità Lineare

Corso di Teoria delle Strutture Dispense - parte #1 Richiami di Elasticità Lineare Corso di Toria dll Struttur Dispns - part # Richiami di Elasticità Linar A.A. 26 27 Vrsion.. Indic Sistma di Rifrimnto 3. Cambio di bas..................................... 4.2 Cambio dlla bas di Lin...............................

Dettagli

Generali operative. Ausiliario Sui compiti Semplice Interne con pochi soggetti. Di tipo indiretto. Discreta ampiezza delle soluzioni.

Generali operative. Ausiliario Sui compiti Semplice Interne con pochi soggetti. Di tipo indiretto. Discreta ampiezza delle soluzioni. ,352),/,352)(66,21$/,1(*/,(17,/2&$/,813266,%,/(02'(//2', '(6&5,=,21('(//$9252 GL5LFFDUGR*LRYDQQHWWL&H3$±/,8& A distanza di circa quattro anni dalla introduzion dl nuovo sistma di inquadramnto dl prsonal

Dettagli

SERVIZIO LUCE 3 - Criteri di sostenibilità

SERVIZIO LUCE 3 - Criteri di sostenibilità SERVIZIO LUCE 3 - Critri sostnibilità 1. Oggtto dll iniziativa La Convnzion ha com oggtto l attività acquisto dll nrgia lttrica, srcizio manutnzion dgli impianti illuminazion pubblica, nonché gli intrvnti

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

17 settembre 2008 Palazzo della Cultura e dei Congressi di Bologna Dott. Fabrizio Zecchin SCS Azioninnova S.p.A.

17 settembre 2008 Palazzo della Cultura e dei Congressi di Bologna Dott. Fabrizio Zecchin SCS Azioninnova S.p.A. I SGSL il Modllo Organizzativo L lin guida INAIL la OHSAS 18001: carattristich spcificità 17 sttmbr 2008 Palazzo dlla Cultura di Congrssi di Bologna Dott. Fabrizio Zcchin SCS Azioninnova S.p.A. OBIETTIVO

Dettagli

di disequazioni lineari

di disequazioni lineari Capitolo Disquazioni Esrcizi sistmi di disquazioni linari Toria p. 68 L disquazioni l loro soluzioni Pr ciascuna dll sgunti disquazioni, invnta un problma ch possa ssr risolto con la disquazion stssa.

Dettagli

FORMAZIONE TELEMATICA

FORMAZIONE TELEMATICA 9 Trimstral Anno IV Numro 46 Focus - Via dll Industri, 8/ - 35 Ponzano Vnto (TV. Spdizion in abbonamnto postal D.L. 353/3 (conv. in L. 7//4 N 46 art., comma DCB TV FORMAZIONE TELEMATICA snza sps di viaggio

Dettagli

RIFLETTORI: Sistemi a Doppio Riflettore

RIFLETTORI: Sistemi a Doppio Riflettore RIFLETTORI: Sistmi a Doppio Riflttor L antnna a riflttor parabolico, alimntata da un fd lmntar posto nl suo fuoco, non prmtt di controllar adguatamnt la distribuzion di potnza sul piano di aprtura dll

Dettagli

Esame di Dispositivi Optoelettronici 29 Gennaio 2007

Esame di Dispositivi Optoelettronici 29 Gennaio 2007 Esam di Dispositivi Optolttronici 9 Gnnaio 007 Domanda di toria : a: Introdurr il conctto di momnto rticolar di un lttron in un potnzial priodico d il suo lgam con la forza agnt sul portator. b: Discutr

Dettagli

COMUNE DI TREVISO SETTORE BIBLIOTECHE E MUSEI. DOCUMENTO UNICO DI VALUTAZIONE DEI RISCHI INTERFERENTI (ART. 26, COMMA 3, DLGS. N. 81/2008 e s.m.i.

COMUNE DI TREVISO SETTORE BIBLIOTECHE E MUSEI. DOCUMENTO UNICO DI VALUTAZIONE DEI RISCHI INTERFERENTI (ART. 26, COMMA 3, DLGS. N. 81/2008 e s.m.i. COMUNE DI TREVISO SETTORE BIBLIOTECHE E MUSEI DOCUMENTO UNICO DI VALUTAZIONE DEI RISCHI INTERFERENTI (ART. 26, COMMA 3, DLGS. N. 81/2008 s.m.i.) DIRIGENTE DEL SETTORE: dr. Emilio Lippi Dirignt dl Sttor

Dettagli

COMUNE DI MONTERIGGIONI DOCUMENTO UNICO DI VALUTAZIONE RICOGNITIVA DEI RISCHI INTERFERENTI STANDARD PARTE II SEZIONE IDENTIFICATIVA DEI RISCHI SPECIFICI DELL AMBIENTE E MISURE DI PREVENZIONE E PROTEZIONE

Dettagli

OPZIONE SPECIFICA FISICA ED APPLICAZIONI DELLA MATEMATICA

OPZIONE SPECIFICA FISICA ED APPLICAZIONI DELLA MATEMATICA Lico Cantonal Lugano Vial C Cattano 4 CH-6900 Lugano Lugano, giugno 00 ESAME SCRITTO DI MATURITÀ 009/00 OPZIONE SPECIFICA FISICA ED APPLICAZIONI DELLA MATEMATICA Durata dll sam: Tr or (dall 0800 all 00)

Dettagli

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE TESI DI LAUREA IN MECCANICA DEI MATERIALI DESIGN OTTIMO DI UN ANTENNA

Dettagli

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA SETTORE ECONOMICO PROFESSIONALE 1 SETTORE EDILIZIA Squnza di procsso Progttazion dil gstion dl cantir Ara di Attività ADA 1.2: Ralizzazion

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Meccanica della frattura coesiva: legami costitutivi olonomi e criteri di propagazione

Meccanica della frattura coesiva: legami costitutivi olonomi e criteri di propagazione UNIVERSITÀ DEGLI STUDI DI BRESCIA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE Tsi di laura Mccanica dlla frattura cosiva: lgami costitutivi olonomi critri di roagazion Rlator: Dott. Ing.

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100 Mrcato dl lavoro Popolazion civil Forza lavoro (FL) Inattivi (bambini, pnsionati, casalinghi, studnti) Occupati () Disoccupati (U) Tasso di partcipazion alla forza lavoro (Forza lavoro/popolazion civil)

Dettagli

Lampade di. emergenza MY HOME. emergenza. Lampade di

Lampade di. emergenza MY HOME. emergenza. Lampade di Lampad di Lampad di MY HOME 97 Lampad Carattristich gnrali Scopi dll illuminazion Ngli ambinti rsidnziali gli apparcchi di illuminazion non sono imposti da lggi o norm, ma divntano comunqu prziosi ausilii.

Dettagli

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga Provvdimnto di Prdisposizion dl Programma Annual dll'srcizio finanziario 2014 Il Dsga Visto Il Rgolamnto crnnt l istruzioni gnrali sulla gstion amministrativotabil dll Istituzioni scolastich Dcrto 01 Fbbraio

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Le città vengono modificate anche all interno degli spazi già costruiti

Le città vengono modificate anche all interno degli spazi già costruiti La città ch cra il progtto snsibil L città vngono modificat anch all intrno dgli spazi già costruiti pnso sia molto più intrssant quando si usa il trmin nuovo far rifrimnto a qualcosa di divrso, cioè alla

Dettagli

CLASSIFICAZIONE DEI PRODOTTI DA COSTRUZIONE

CLASSIFICAZIONE DEI PRODOTTI DA COSTRUZIONE ALLEGATO A CLASSIFICAZIONE DEI PRODOTTI DA COSTRUZIONE Quando la condizion di uso final di un prodotto da costruzion è tal da contribuir alla gnrazion alla propagazion dl fuoco dl fumo all intrno dl local

Dettagli

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT.

Coordinamento tra le protezioni della rete MT del Distributore e la protezione generale. degli Utenti MT. Coordinamnto tra l protzioni dlla rt MT dl Distributor la protzion gnral 1. PREMESSA. dgli Utnti MT. ll rti di distribuzion a mdia tnsion (MT), l unico organo di manovra automatico è l intrruttor di lina

Dettagli