Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni di Elettrotecnica: circuiti in regime stazionario"

Transcript

1 Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr

2 Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt sta a cap dl gnrator Utlzzando l qualnza sr paralllo l crcuto d rsstnz sto da s può rdurr ad un unco rsstor attrarso sgunt pass: S alcolar la rsstnza qualnt sta dal gnrator Utlzzando l qualnza sr paralllo l crcuto d rsstnz sto da s può rdurr ad un unco rsstor attrarso sgunt pass: // q q q q 87 Maffucc: rcut n rgm stazonaro r- S - alcolar la q sta a morstt - qulla sta a morstt -D sultato: 7 qd q S - alcolar la q sta a morstt - qulla sta a morstt -D sultato: 7 qd q S - alcolar l alor d tal ch a morstt - s abba q sultato: S - alcolar la q sta a morstt - qulla sta a morstt -D sultato: m 7 m qd q D D / 8 m m m m m D

3 Maffucc: rcut n rgm stazonaro r- Maffucc: rcut n rgm stazonaro r- S 7 - alcolar la tnson usando l parttor d tnson S 9 - alcolar la potnza rogata dal gnrator qulla assorbta dal rsstor V V Scglndo l corrnt com n fgura l potnz rchst sono dat da: Il parttor d tnson s applca a du rsstor n sr qund occorr prlmnarmnt rcondurs alla rt qualnt sgunt: pplcando ora l parttor d tnson s ha: V S 8 - alcolar la corrnt usando l parttor d corrnt Il parttor d corrnt s applca a du rsstor n paralllo qund occorr rfrrs alla rt qualnt sgunt: pplcando ora l parttor d corrnt s ha tnuto conto d rs: 8 m // m µ µ 8 µ rog La s aluta a partr dal calcolo dlla rsstnza qualnt sta a cap dl gnrator: q rog da cu s rcaa: 88 W Nota la corrnt s può rcaar la applcando du olt l parttor d corrnt Dapprma rcaamo dalla rt qualnt sgunt qund rcaamo rpartndo tra rsstor d : 9 7 mw S - alcolar la potnza rogata dal gnrator qulla assorbta dal rsstor rog sultato: W 7W // // q 88 q

4 Maffucc: rcut n rgm stazonaro r- Maffucc: rcut n rgm stazonaro r- S - alcolar la potnza rogata dal gnrator qulla assorbta da ogn rsstor Vrfcar la consrazon dll potnz sultato: rog 88 kw kw kw kw kw Sorapposzon dgl fftt S - alcolar la potnza total rogata da gnrator V S - alcolar la corrnt cc ch crcola nl corto-crcuto sultato: 87 cc cc V k k dottando la connzon dl gnrator su du gnrator dlla rt la potnza rogata da cascuno d ss sarà data da: rog rog La tnson la corrnt s possono alutar applcando la sorapposzon dgl fftt rsolndo du crcut auslar ottnut consdrando un solo gnrator accso: S - alcolar la tnson sul crcuto aprto n fgura sultato: V S - Valutar la potnza assorbta da rsstor dlla rt n fgura sultato: W V on rfrmnto al prmo crcuto auslaro l contrbuto è ottnuto alutando la rsstnza qualnt sta dal gnrator: // // 79 8 q q V r alutar s può utlzzar la tnson sul paralllo // : nll ultmo passaggo s è tnuto conto dlla connzon adottata su Nl scondo crcuto auslaro l contrbuto è ottnuto alutando la rsstnza qualnt sta dal gnrator: // / q q r alutar è utl passar attrarso l calcolo dlla corrnt dlla sr : S n conclud ch: rog V 77 W 7 kw rog S ossr ch n qusta rt l gnrator d tnson sta assorbndo potnza lttrca posta 7 8

5 Maffucc: rcut n rgm stazonaro r- Maffucc: rcut n rgm stazonaro r- S - alcolar la potnza total rogata da gnrator S - Dtrmnar la potnza rogata dal gnrator V V V rog rog sultato: 7 W kw S - alcolar la potnza total rogata da gnrator rog sultato: W rog rog sultato: 9 kw kw V S 7 - Utlzzando l prncpo d sorapposzon dgl fftt dtrmnar la tnson V m k k k S - alcolar la tnson la corrnt sultato: V sultato: V 9 V V S 8 - Utlzzando l prncpo d sorapposzon dgl fftt dtrmnar la corrnt la potnza assorbta da V m k k k sultato: 7 m 7mW S - Utlzzando la sorapposzon dgl fftt dmostrar la Formula d Mllmann S 9 - Valutar la corrnt la potnza rogata dal gnrator rog sultato: 8 8W V V 9

6 Maffucc: rcut n rgm stazonaro r- Maffucc: rcut n rgm stazonaro r- nrator qualnt d Thénn d Norton S - alcolar l qualnt d Thénn sto a cap d morstt a-b La rsstnza qualnt s ottn spgnndo l unco gnrator qund studando la rt sgunt La tnson a uoto s ottn alutando la tnson tra morstt aprt Tnuto conto ch n qust condzon non crcola corrnt sul rsstor è dnt ch la è anch la tnson su oché d sono n sr la tnson s può rcaar da un smplc parttor d tnson: a b a b a b q // I cc s not ch d sono cortocrcutat Il contrbuto I cc douto al gnrator d tnson s aluta sosttundo l gnrator d corrnt con un crcuto aprto In qusto crcuto I cc è propro la corrnt ch crcola nl gnrator d tnson s not ch su tal gnrator è fatta la connzon dll'utlzzator: I cc do // rtanto la I cc sarà I cc I cc Icc S - Utlzzando l'qualnt d Norton calcolar la corrnt ch crcola n ducndo la rt sta a cap d con l torma d Norton s ottn la rt sgunt dalla qual s nc ch I cc q q V I cc q S - alcolar l qualnt d Norton sto a cap d morstt a-b a b V I crcut pr alutar paramtr d Norton sono rportat d sguto: q I cc I cc La rsstnza qualnt s ottn spgnndo gnrator: q //[ // ] La corrnt I cc è la corrnt ch crcola da a a b quando du morstt sono n corto-crcuto pplcando l prncpo d sorapposzon dgl fftt l contrbuto I cc douto al solo gnrator d corrnt s aluta sosttundo l gnrator d tnson con un corto-crcuto applcando la formula dl parttor d corrnt: S arà allora q // La corrnt I cc s può alutar applcando l prncpo d sorapposzon dgl fftt Il contrbuto I cc douto al solo gnrator d corrnt s aluta sosttundo l gnrator d tnson con un corto-crcuto applcando la formula dl parttor d corrnt:

7 Maffucc: rcut n rgm stazonaro r- Maffucc: rcut n rgm stazonaro r- I cc // Il contrbuto I cc douto al gnrator d tnson s aluta sosttundo l gnrator d corrnt con un crcuto aprto pplcando l parttor d tnson s può rcaar la tnson sul paralllo p // qund rcaar la corrnt rchsta ch crcola n S ottn n dfnta p 7 p p I cc p I cc Icc Icc 87 S - Utlzzando l torma d Norton calcolar la potnza assorbta dal rsstor sultato: µw V µ M 8 k k S - Utlzzando l torma d Thénn calcolar la potnza assorbta dal rsstor S 7 - Utlzzando l torma d Thénn calcolar la potnza assorbta da V m k k k m m k k k sultato: 8 mw sultato: 87 µw S - Utlzzando l torma d Thénn calcolar la corrnt V k k k S 8 - Vrfcar ch l rsstor non è prcorso da corrnt s tra l rsstnz è la sgunt rlazon pont d Whatston: sultato: 8 m Suggrmnto: applcar Norton a cap d d mporr ch sa nulla la corrnt I cc

8 Maffucc: rcut n rgm stazonaro r- Mtod gnral pr l anals dll rt n rgm stazonaro S - Dat l sgunt rt d bpol scrr un sstma complto d quazon d Krchhoff ndpndnt t a Orntando l grafo com n fgura scglndo ad smpo l albro ndcato un possbl sstma complto d quazon d Krchhoff è dato da: LK LKT t b Orntando l grafo com n fgura scglndo ad smpo l albro ndcato un possbl sstma complto d q d Krchhoff è dato da: LK LKT S ossr ch su tutt bpol dll rt a b è stata adottata la stssa connzon a b Maffucc: rcut n rgm stazonaro r- S - Utlzzando l mtodo d potnzal nodal calcolar la corrnt nl rsstor S ndduno nod dlla rt s orntno tutt l corrnt n rsstor adottando su d ss la connzon normal: ndo sclto com potnzal d rfrmnto qullo dl nodo D l ncognt saranno potnzal dgl altr tr nod: r l connzon adottat s ha: pplcando la LK a nod sosttundo l carattrstch d rsstor scrtt con rfrmnto all conduttanz s ottn l sstma: S ossr ch tal sstma può ssr posto nlla forma matrcal: solndo tal sstma s ottn: V V V 8 7 da cu: D

9 Maffucc: rcut n rgm stazonaro r- 7 S - Utlzzando l mtodo d potnzal nodal modfcato calcolar la potnza rogata da du gnrator la potnza assorbta da rsstor rfcar la consrazon dll potnz S ndduno nod dlla rt s orntno tutt l corrnt n rsstor adottando su d ss la connzon normal: ndo sclto com potnzal d rfrmnto qullo dl nodo D l ncognt saranno potnzal dgl altr tr nod: r la prsnza dl gnrator d tnson tra nodo nodo D s ha banalmnt on l connzon adottat s ha: pplcando la LK a nod sosttundo l carattrstch d rsstor scrtt con rfrmnto all conduttanz s ottn l sstma: solndo tal sstma s ottn: kv kv dottando la connzon dl gnrator su du gnrator s ha: kw rog kw rog 8 kw kw kw 98 kw 7 È facl rfcar ch rog rog 8 V D Maffucc: rcut n rgm stazonaro r- 8 S - on rfrmnto alla sgunt rt: a scrr l sstma complto dll quazon d Krchhoff dll quazon carattrstch utlzzar grafo albro co-albro b scrr l suddtto sstma n forma matrcal ndduando l matrc d ncdnza rdotta d magla fondamntal S - Utlzzando l mtodo dll corrnt d magla calcolar la corrnt n sultato: S - Utlzzando l mtodo dll corrnt d magla calcolar la potnza rogata da cascun gnrator dlla rt sultato: W W W µ µ µ rog rog rog mv m 7

10 Maffucc: rcut n rgm stazonaro r- Maffucc: rcut n rgm stazonaro r- nals d rt con dopp-bpol rsst gnrator plotat a L lmnto è dfnto com: S - nalzzando sgunt dopp-bpol: schma a T stlla schma a Π trangolo a rfcar ch lo schma a T ralzza una qualunqu matrc con l poszon sgunt formul d snts: ; m m m b rfcar ch lo schma a Π ralzza una qualunqu matrc con l poszon sgunt formul d snts: ; m m m c rfcar l sgunt formul d trasformazon stlla-trangolo suggrmnto: mporr l qualnza tra gl schm a T a Π: Y Y S - on rfrmnto alla sgunt rt: a carattrzzar attrarso la matrc l doppo bpolo rssto sto a cap d gnrator; b utlzzar la matrc pr calcolar la potnza assorbta dal doppo-bpolo; V qund corrspond alla conduttanza d ngrsso dlla rt dscrtta n alto pplcando l rgol d qualnza sr paralllo d conduttanz s ottn: S r la smmtra dlla rt rsptto all du port s ha anch s pro a dmostrarlo L lmnto è dfnto com: Il crcuto pr l calcolo d tal paramtro è dsgnato n alto S ossr ch: qund c s rporta al calcolo d parttor d corrnt: x ch può ssr ffttuato con l applcazon rtrata dl x / / da cu: 8 S S pro a rfcar ch m proprtà alda pr tutt dopp-bpol rcproc T b Introdotto l ttor la potnza assorbta dal doppo-bpolo è sprmbl com: T T m W 9

11 Maffucc: rcut n rgm stazonaro r- Maffucc: rcut n rgm stazonaro r- S - on rfrmnto alla sgunt rt: a carattrzzar attrarso la matrc H l doppo bpolo rssto sto a cap d gnrator; b utlzzar la matrc H pr calcolar la potnza assorbta da tal doppo-bpolo; sultato: a H 99 H 7 S H H ; b kw V r calcolar V basta applcar la LK la LKT: r calcolar β β β q β β V β q occorr spgnr tutt sol gnrator ndpndnt coè alutar q r β > s ha < rsultato plausbl sto ch nlla rt è prsnt un bpolo atto r β non sst l crcuto qualnt d Thénn β S - on rfrmnto al sgunt doppo-bpolo: a carattrzzarlo attrarso la matrc ; b snttzzar un doppo-bpolo qualnt con uno schma a T; sultato: a 8 ; b 8 m S - Valutar l'qualnt d Thénn a cap d morstt -' sultato: V q β β β t S - r l crcuto n sam dtrmnar l alor d ch rnd massma la potnza assorbta dallo stsso rsstor La condzon d massmo trasfrmnto d potnza su s può troar mmdatamnt una olta rapprsntata tutta la rt sta a cap d attrarso l gnrator qualnt d Thénn: q q Il calcolo d q può ssr ffttuato faclmnt applcando V Krchhoff: q V

12 Maffucc: rcut n rgm stazonaro r- Maffucc: rcut n rgm stazonaro r- S 7 - r l crcuto Il sgunt crcuto rapprsnta lo schma qualnt d un amplfcator d tnson alcolar: a la matrc dll conduttanz dl doppo bpolo a cap d morstt -' -'; b l guadagno d tnson U / S c alor d paramtr n d out pr cu l guadagno è massmo a Orntando corrnt tnson dl doppo-bpolo com nlla fgura a lato la matrc dll conduttanz s aluta applcando la dfnzon: S n ; n ; n n n n S out α n t U U n out α t S 8 - alcolar potnzal d nodo dl crcuto sgunt Indcando con V V potnzal d nod s ha ch V V V V α αv V α pplcando l mtodo d potnzal nodal modfcato s ha: V V V α V V V V α V α V α V V α α α ; out out S ossr ch coè l doppo-bpolo non è rcproco b analzzando la magla alla porta qulla alla porta s ottn: da cu n n s n S u out out U αn U out S 9 - alcolar la potnza dsspata n sultato: W β V β n U α u s n c Ossrando l'sprsson d è smplc rfcar ch l massmo è dato da S out U S - on rfrmnto al sgunt crcuto alutar l qualnt d Norton a cap d la corrnt crcolant n tal rsstnza max α β s ottn pr n out q sultato: I cc β q I cc β q

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale LTTOTCNCA nggnra ndutral MTOD D ANALS TASFOMATO DAL MUTU NDUTTANZ Stfano Pator Dpartmnto d nggnra Archtttura Coro d lttrotcnca (04N) a.a. 0-4 Torma d Thnn Condramo un bpolo L collgato al rto dl crcuto

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Indice delle lezioni (Prof. Storti-Gajani)

Indice delle lezioni (Prof. Storti-Gajani) Indc dll lzon (Prof. Stort-Gajan) Lzon numro cham d Elttromagntsmo Marzo 999 Lzon numro Approssmazon a paramtr Marzo 999 concntrat Lgg d Krchhoff d Ohm Bpol lttrc Collgamnt n sr n paralllo Lzon numro Potnza

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Introduon al METODO DEGLI ELEMENTI FINITI Ossrvaon su mtod varaonal approssmat classc L unon approssmant dvono: Soddsar rqust d contnutà Essr lnarmnt ndpndnt complt Soddsar l condon al contorno ssnal Dcoltà:

Dettagli

Trasformatore. Parte 2 Trasformatori trifase www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-11-2012) Trasformatore trifase (1)

Trasformatore. Parte 2 Trasformatori trifase www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-11-2012) Trasformatore trifase (1) Trasformator Part Trasformator trfas www.d.ng.unbo.t/prs/mastr/ddattca.htm (vrson dl 1-11-01) Trasformator trfas Pr trasfrr nrga lttrca tra du rt trfas s possono utlzzar tr trasformator monofas, ugual

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

Norma UNI EN ISO 13788

Norma UNI EN ISO 13788 UNI EN ISO 13788 (2003: PRESTAZIONE IGROTERMICA DEI COMPONENTI E DEGLI ELEMENTI PER EDILIZIA TEMPERATURA SUPERFICIALE INTERNA PER EVITARE L'UMIDITA' SUPERFICIALE CRITICA E CONDENSAZIONE INTERSTIZIALE METODO

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario Crcut elettrc n regme stazonaro Component www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-00) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Componenti resistivi

Componenti resistivi omponent resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-03) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Errori a regime per controlli in retroazione unitaria

Errori a regime per controlli in retroazione unitaria Appunt d ontoll Autoatc Eo a g n sst n toazon Eo a g p contoll n toazon untaa... Eo a g nlla sposta al gadno (o d poszon)... Eo a g nlla sposta alla apa (o d vloctà)...3 Eo a g nlla sposta alla paabola

Dettagli

Bipoli resistivi. (versione del ) Bipoli resistivi

Bipoli resistivi.  (versione del ) Bipoli resistivi Bpol resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6--0) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics)

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics) CONOMIA INTRNAZIONAL Bnno CLM - Prof. B. Quntr IL TASSO DI CAMBIO Anno Accadmco 2012-2013, I Smstr (Tratto da: Fnstra-Taylor: Intrnatonal conomcs) S propon, d sguto, una brv rassgna d prncp fondamntal

Dettagli

RIFLETTOMETRIA NEL DOMINIO DEL TEMPO (TDR)

RIFLETTOMETRIA NEL DOMINIO DEL TEMPO (TDR) RFLETTOMETRA NEL DOMNO DEL TEMPO (TDR) Scopo dll srctaon La rflttomtra nl domno dl tmpo è una tcnca frquntmnt utlata, mpgando prncp dll co, pr carattrar ln d comuncaon, localar guast sa nll ln d trasmsson

Dettagli

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I.

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I. Eserctazone ottobre 0 Trasformazon crcutal Sere e parallelo S consderno crcut n Fg e che rappresentano rspettvamente un parttore d tensone e uno d corrente v v v v Fg : Parttore d tensone Fg : Parttore

Dettagli

MACCHINE ELETTRICHE TEORIA 14 febbraio Energia _ Elettrotecnica _ Energetica _ Altro _ 9 CFU _ 6 / 7 CFU _

MACCHINE ELETTRICHE TEORIA 14 febbraio Energia _ Elettrotecnica _ Energetica _ Altro _ 9 CFU _ 6 / 7 CFU _ MACCHNE ELETTRCHE TEORA 14 fbbraio 211 1) Trasformator monofas: corrnt magntizzant armonich componnti, calcolo dlla rattanza a vuoto. 2) Gnrator sincrono trifas: andamnti dlla f.m.m. di ccitazion dll induzion

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Processi di separazione

Processi di separazione 6. Procss d sparazon 6.. Carattrstch d procss d sparazon La sparazon d soluzon mscl n loro sngol componnt costtusc un oprazon d grand mportanza pr l ndustra chmca, ptrolchmca ptrolfra. Quas tutt procss

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Autoinduzione. 4 L: coefficiente di autoinduzione o. 4 r. Un circuito percorso da corrente genera un B (legge di Ampere-Laplace):

Autoinduzione. 4 L: coefficiente di autoinduzione o. 4 r. Un circuito percorso da corrente genera un B (legge di Ampere-Laplace): S ds u r Autonduzon Un crcuto prcorso da corrnt gnra un B (lgg d Ampr-aplac): ds ur B 4 r Produc un flusso attravrso l crcuto stsso (così com attravrso una ualunu S ch abba com contorno) nds r 4 : coffcnt

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Effetti di carico. Ai fini dei problemi di effetto di carico, i casi 3) e 4) sono equivalenti tra loro

Effetti di carico. Ai fini dei problemi di effetto di carico, i casi 3) e 4) sono equivalenti tra loro ppunt d Msur Elttrch Efftt d carco Introduzon... oltmtro ampromtro... Studo dgl fftt d carco pr una msura d tnson...2 Caso partcolar: msura d tnson con mpdnza ntrna dl crcuto rsstva 5 INTODUZIONE oglamo

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

Multivibratori. Si suddividono in: Bistabili Astabili (oscillatori a rilassamento) Monostabili

Multivibratori. Si suddividono in: Bistabili Astabili (oscillatori a rilassamento) Monostabili Elttronica - anzoni Multiibratori Si dfiniscono multiibratori i circuiti in grado di gnrar transizioni di alcun grandzz tnsioni o corrnti con tmpi di commutazion di durata br risptto al priodo. Pr qusta

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase Ssm rfas www.d.ng.unbo./prs/masr/ddaca.hm vrson dl 0-0-0 Ssm rfas l rasporo la dsrbuzon d nrga lrca avvngono n prvalnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

LE MACCHINE SINCRONE

LE MACCHINE SINCRONE Applcazon ndutral Elttrch L Macchn Sncron LE MACCHNE SNCRONE ntroduzon L macchn ncron trovano la maggor part dll applcazon nl funzonamnto da gnrator, anch con l voluzon dlla tcnologa d convrttor tatc d

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

DAI CIRCUITI AI GRAFI

DAI CIRCUITI AI GRAFI MTODI P 'NISI DI IUITI Nel seguto engono llustrat, medante esemp, alcun tra metod pù utlzzat per l'anals de crcut elettrc. Il problema che s uole rsolere è l seguente: assegnato l crcuto elettrco e le

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Capgemini Italia Spa. Ingegneria del Software. Roma, 11 Dicembre 2009

Capgemini Italia Spa. Ingegneria del Software. Roma, 11 Dicembre 2009 Capgmn Ita Spa Inggnra dl Softwar Roma, 11 Dcmbr 2009 Soc Ntwork Gorfrnzato su Mobl Fzon Rzzar soc ntwork (tpo facbook o lnkn) n cu è possbl aggornar nl propro proflo propra poszon attu (tt longt) rndr

Dettagli

CAPITOLO 3 CIRCUITI DI RESISTORI

CAPITOLO 3 CIRCUITI DI RESISTORI CAPITOLO 3 CIRCUITI DI RESISTORI Pagna 3. Introduzone 70 3. Connessone n sere e connessone n parallelo 70 3.. Bpol resstv n sere 7 3.. Bpol resstv n parallel 77 3.3 Crcut resstv lnear e sovrapposzone degl

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------ CAPITOLO ELEMENTI DI TERMOFLUIDODINAMICA ------------------------------------------------------------------------------------------------

Dettagli

Raccolta di procedure di calcolo ed esercizi fascicolo 1 - raccolta di temi d esonero e di scritti nelle varie sessioni - parte seconda

Raccolta di procedure di calcolo ed esercizi fascicolo 1 - raccolta di temi d esonero e di scritti nelle varie sessioni - parte seconda POLITENIO DI TOINO DIPATIMENTO DI ELETTONIA DIPLOMA UNIVEITAIO IN INGEGNEIA ELETTONIA OO DI ELETTONIA I G.Gachno accolta d procdur d calcolo d srcz fasccolo - raccolta d tm d sonro d scrtt nll ar ssson

Dettagli

ESEMPIO DI AMPLIFICATORE A BJT A COLLETTORE COMUNE (EMITTER FOLLOWER)

ESEMPIO DI AMPLIFICATORE A BJT A COLLETTORE COMUNE (EMITTER FOLLOWER) SMPIO DI AMPLIFIATO A JT A OLLTTO OMUN (MITT FOLLOW) (Dat uual all spo d par.8..2, F.8.55 dl tsto..spnr & M.M.Ghaus: Introduton to ltron rut Dsn) alolar l punto d laoro dl JT Q d F., l aplfazon a da frqunza

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Ottobre 1996 n. 152 Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi GLI ALBERI SRADICATI BINARI COME CONCETTO ESSENZIALE PER LA DESCRIZIONE DEI MODELLI DI EAB Ottobr 1996 n. 152 1 2 Francsca

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

La carta di Smith. Origine

La carta di Smith. Origine a carta d Smth uca nctt a.a. 08-09 Orgn Fu ntrodotta da P. Smth d Bll abs nl 1939 Error rtnrla suprata da mtod numrc Molt strumnt d msura CAD prsntano dat n output su carta d Smth Molt problm sull ln d

Dettagli

LEZIONE N 11 IL CEMENTO ARMATO PRECOMPRESSO

LEZIONE N 11 IL CEMENTO ARMATO PRECOMPRESSO Unvrstà dgl Stud d Roma Tr Facoltà d Inggnra Corso d Tcnca dll dll Costruon I Modulo / 007-0808 LEZIOE 11 IL CEMETO RMTO PRECOMPRESSO IL CO RISULTTE IL SISTEM EQUILETE LL PRECOMPRESSIOE Gnraltà Il sstma

Dettagli

CARATTERISTICHE DELL INVOLUCRO EDILIZIO

CARATTERISTICHE DELL INVOLUCRO EDILIZIO CAATTEISTICHE DELL INVOLUCO EDILIZIO Lvo d Santol, Francsco Mancn Unvrstà La Sapnza d oma lvo.dsantol@unroma1.t francsco.mancn@unroma1.t www.plus.t www.ngnrga.t Trasmttanza d una part opaca 2 La trasmttanza

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

INDICI DI POSIZIONE O DI TENDENZA CENTRALE

INDICI DI POSIZIONE O DI TENDENZA CENTRALE IDICI DI POSIZIOE O DI TEDEZA CETRALE Gl ndc d poszon, o d tndnza cntral, sono numr ch sprmono la snts numrca d una dstrbuzon statstca (d ora n avant ndcata dal smbolo ) d una varabl X. I valor ossrvat

Dettagli

730, Unico 2014 e Studi di settore

730, Unico 2014 e Studi di settore 730, Unico 2014 Stu sttor Pillol aggiornamnto N. 39 27.06.2014 Il prosptto Dati bilancio in Unico2014 ENC. La riconciliazion dati dllo Stato Patrimonial nl prosptto Dati bilancio. Catgoria: Dichiarazion

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

Il Metodo degli Elementi Finiti

Il Metodo degli Elementi Finiti Il Mtodo dgl Elmnt Fnt Il Mtodo dgl Elmnt Fnt Dall dspns dl prof. Daro Amodo dall lzon dl prof. Govann Santucc L.Corts Progttazon Mccanca agl Elmnt Fnt (a.a. 20-202) Il Mtodo dgl Elmnt Fnt Introduzon In

Dettagli

9i c. A I s B 10 V. Is = 10i. v s. i c = 1) Determinare il bipolo equivalente di Norton ai morsetti. i c

9i c. A I s B 10 V. Is = 10i. v s. i c = 1) Determinare il bipolo equivalente di Norton ai morsetti. i c ? "!$# " %#&('"'() *,+.-0/0 E 0 Ω 9 ) Determnare l bpolo equalente d Norton a morsett. ) S dca quale delle seguent affermazon è corretta, gustfcando la rsposta: a) l bpolo è passo, b) l bpolo è controllable

Dettagli

OBIETTIVI POST VARIAZIONE PEG 2012 (approvata con delibera di Giunta Comunale n. 428 dell 11/12/2012) Responsabile Filippo Toscano

OBIETTIVI POST VARIAZIONE PEG 2012 (approvata con delibera di Giunta Comunale n. 428 dell 11/12/2012) Responsabile Filippo Toscano OBIETTIVI POST VARIAZIONE PEG 2012 (approvata con dlbra d Gunta Comunal n. 428 dll 11/12/2012) Rsponsa Flppo Dscrz Az / Isttuz Agnza pr la famgla Isttuz dll Agnza pr la famgla 01/01/12 31/12/12 Obttvo

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Tekla Structures Guida di riferimento per le opzioni avanzate. Versione del prodotto 21.1 agosto 2015. 2015 Tekla Corporation

Tekla Structures Guida di riferimento per le opzioni avanzate. Versione del prodotto 21.1 agosto 2015. 2015 Tekla Corporation Tkla Structurs Guda d rfrmnto pr l opzon avanzat Vrson dl prodotto 21.1 agosto 2015 2015 Tkla Corporaton Indc 1 Guda d rfrmnto pr l opzon avanzat... 17 1.1 Catgor nlla fnstra d dalogo Opzon avanzat...

Dettagli

Alessandro Ottola matr. 208003 lezione del 11/3/2010 ora 10:30-13:30. Parete omogenea sottoposta a differenze termiche e diffusione

Alessandro Ottola matr. 208003 lezione del 11/3/2010 ora 10:30-13:30. Parete omogenea sottoposta a differenze termiche e diffusione Alssandro Ottola matr. 0800 lzon dl //00 ora 0:0-:0 Indc Dagramma d Glasr... Part omogna sottoosta a dffrnz trmch dffuson... Dagramma d Glasr r art omogna... 4 Dagramma d Glasr r art multstrato... 5 Esrczo

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Principio di sostituzione - I

Principio di sostituzione - I 67 Prncpo d sosttuzone - I In una rete elettrca (lneare o non-lneare) un coponente elettrco, o un nsee d coponent elettrc (lnear o non lnear), può essere sosttuto con un altro coponente o nsee d coponent

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010 racc olt d rcz ulla raon dl alor Prof. trtta a.a. 009/00 Erczo n. S condr una part d atton alta 4 larga 6 pa 0 la cu ucbltà trca è λ λ 0 8 [/( )]. In un crto gorno alor urat dll tpratur dlla uprfc ntrna

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori (a.a. 2010/11)

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori (a.a. 2010/11) orso di Laura in Inggnria Informatica orso di Rti di alcolatori (a.a. /) Robrto anonico (robrto.canonico@unina.it) Giorgio Vntr (giorgio.vntr@unina.it) lgoritmo di ijkstra novmbr I lucidi prsntati al corso

Dettagli

METODI PER L ANALISI DEI CIRCUITI CIRCUITI PRIVI DI MEMORIA.

METODI PER L ANALISI DEI CIRCUITI CIRCUITI PRIVI DI MEMORIA. MTODI P NISI DI IUITI Nel seguto vengono llustrat, medante esemp, alcun tra metod pù utlzzat per l'anals de crcut elettrc. Il problema che s vuole rsolvere è l seguente: assegnato l crcuto elettrco e le

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

STUDIO DELL AMPLIFICAZIONE MEDIANTE I PARAMETRI IBRIDI h PARTE TERZA: CONNESSIONI A B ASE COMUNE E A COLLETTORE COMUNE, L INVERTITORE DI FASE

STUDIO DELL AMPLIFICAZIONE MEDIANTE I PARAMETRI IBRIDI h PARTE TERZA: CONNESSIONI A B ASE COMUNE E A COLLETTORE COMUNE, L INVERTITORE DI FASE N.d.C. mplfazon N STUDIO DLL MPLIFICZION MDINT I PRMTRI IBRIDI PRT TRZ: CONNSSIONI B S COMUN COLLTTOR COMUN, L INVRTITOR DI FS 0). L LTR CONNSSIONI Fnora aamo parlato dlla onnsson ad mtttor omun, rapprsntata

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Definizione della lossodromia Figura 6.1

Definizione della lossodromia Figura 6.1 MRIO UTGGIO CPITOO NIGZIONE OSSODROMI E ORTODROMIC.0 a navgazon utlzza dffrnt trmn pr dscrvr dvrs mtod matmatc pr dfnr la drzon la dstanza tra du dffrnt punt sulla suprfc dlla trra. S possono dfnr l sgunt

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora

Soluzione. Un punto generico ha coordinate ( x, y) Per cui. Le coordinate del centro sono allora Sssion suppltiva LS_ORD 7 Soluzion di D Rosa Nicola Soluzion Un punto gnrico ha coordinat, pr cui si ha: PO PA Pr cui PO PA [ ] L coordinat dl cntro sono allora O,, è R. C, d il raggio, visto ch la circonfrnza

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

TTRG LAVORO ESTIVO 2H a.s

TTRG LAVORO ESTIVO 2H a.s TTRG LAVORO STVO H a.s. 04 05 SRCZ RSSTNZ N SR PARALLLO ) Si determini la resistenza in serie ed in parallelo dei seguenti resistori: R = 0 kω; R = 0 kω; R = 5kΩ; R4 = 5 kω. ) Si determini la resistenza

Dettagli

Relazioni costitutive e proprietà dei componenti. Reti algebriche

Relazioni costitutive e proprietà dei componenti. Reti algebriche 43 Relazon costtute e propretà de component Ret algebrce Un componente elettrco (a 2 o pù morsett) s dce pro d memora (o senza memora, o adnamco) se la sua relazone costtuta esprme un legame tra tenson

Dettagli