Generazione di Numeri Casuali- Parte 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Generazione di Numeri Casuali- Parte 2"

Transcript

1 Esercitazione con generatori di numeri casuali Seconda parte Sommario Trasformazioni di Variabili Aleatorie Trasformazione non lineare: numeri casuali di tipo Lognormale Trasformazioni affini Numeri casuali di tipo T di student Vettori di numeri casuali 2 - Generazione di numeri casuali Parte 2 1

2 Introduzione Nelle lezioni di teoria si è visto come funzioni di variabili aleatorie siano anche esse variabili aleatorie. Trasformazioni lineari preservano la natura del tipo di variabile aleatoria In particolare, trasformazioni lineari di VA Gaussiane sono ancora Gaussiane Tale proprietà non è in genere verificata per trasformazioni non lineari Teoria 3 Esercizio Si generi un vettore di numeri casuali provenienti da una variabile aleatoria di tipo Gaussiano di media = 1.0 e deviazione standard =0.5 (Toolbox Statistics: normrnd; Stixbox: rnorm) Di ciascun esito casuale valutare la seguente trasformazione non lineare Z = exp(y) Calcolare media e varianza del nuovo campione di dati z 1. Rappresentare graficamente il campione di dati 2. Rappresentare in un opportuno istogramma normalizzato la distribuzione dei dati (comando histo) 3. Confrontare l istogramma con la funzione densità di probabilità di tipo lognormale con parametri lambda = 1.0 e zeta = 0.5 (la funzione densità di probabilità per la lognormale è disponibile con stixbox con il comando dlognorm, con il toolbox statistics, con il comando lognpdf) 4. Commentare eventualmente i risultati Programmi WEB 4 - Generazione di numeri casuali Parte 2 2

3 Esercizio (continua) La variabile aleatoria di tipo Lognormale è una derivata della gaussiana La media e la varianza della lognormale non coincidono con la media e la varianza della Gaussiana generatrice Programmi WEB 5 Esercizio Trasformazioni affini Si generino dei vettori di numero casuale di tipo Gaussiano di media 2 e deviazione standard 1.5 con il comando rnorm, (o, alternativamente il comando normrnd) ovvero dei vettori di numeri casuali provenienti da una VA: Y~N ( Y =2, 2 Y=1.5 2 ) Le dimensioni dei vettori siano 10,000 Si stimino per ciascuno dei vettori La media del campione La varianza del campione Si considerino quindi i vettori di numeri casuali ottenuti con la seguente trasformazione: Y Y 2 Y Z 1.5 Y 6 Programmi WEB - Generazione di numeri casuali Parte 2 3

4 Esercizio Trasformazioni affini Domande: 1. Valutare media e varianza della nuova Variabile Aleatoria Z 2. In genere, data una VA Y ~ N( Y, 2 Y) e la seguente trasformazione affine: Y Z quale è la media e la varianza della nuova VA Z? Tali valori cambiano al variare della media e della varianza? 3. Calcolare media e varianza del campione di dati trasformati e confrontare con i valori teorici Y Y Teoria 7 Esercizio Trasformazioni non lineari Si generino i seguenti gruppi di numeri casuali: 5 vettori colonna di numeri casuali provenienti da una variabile aleatoria normale di tipo standard ovvero di media 0 e varianza 1 Si consideri la seguente combinazione (non lineare) dei numeri casuali così generati Rappresentare graficamente il nuovo vettore di numeri casuali z Rappresentare i dati in un opportuno istogramma normalizzato usando il comando histo >> histo(z,400,0,1) z Programmi WEB (stixbox) x 1 x x x x Generazione di numeri casuali Parte 2 4

5 >> histo(z,400,0,1) Per una rappresentazione grafica significativa si suggerisce di scalare gli assi in modo da evidenziare le variazioni nella zona di maggior interesse >> axis([-5,5,0, 0.45]) Xmin Xmax Ymin Ymax Confrontare i risultati dell istogramma con la funzione densita di probabilità della T di student a 4 gradi di libertà >> xx = [-5:0.01:5]; >> yy = tpdf(xx,4); (o alternativamente: yy = dt(xx,4);) >> hold on >> plot(xx,yy,'r') - Programmi WEB 9 Esercizio (continua) Confrontare infine con la funzione densità di probabilità di una Gaussiana standard >> yg = normpdf(xx,0,1); >> plot(xx,yg, k') alternativa (Stixbox): >> xx = [-5:0.01:5]; >> yg = dnorm(xx,0,1); Programmi WEB 10 - Generazione di numeri casuali Parte 2 5

6 Variabili aleatorie vettoriali Introduzione Nelle applicazioni, l esito di un processo casuale può essere anche rappresentato da più componenti, e non da un semplice scalare Esempi: misure di concentrazione di più composti sullo stesso campione Misure di pressione e temperatura in un reattore nelle stesse condizioni etc. etc. In tal caso l esito dell esperienza aleatoria non è più uno scalare ma un vettore ad N dimensioni Teoria 11 Variabili aleatorie vettoriali Nella parte di teoria si è introdotto il concetto di variabile aleatoria di tipo Vettoriale. Il Toolbox Statistics di Matlab permette di generare anche numeri casuali legati a variabili aleatorie di tipo vettoriale. L unico tipo di VA presa in considerazione è di tipo normale (e quella cosiddetta di Student) Interesse soprattutto dal punto di vista didattico 12 - Generazione di numeri casuali Parte 2 6

7 Istruzioni per l uso Per generare numeri casuali (di tipo scalare) provenienti da una VA di tipo normale era necessario definire: La media La deviazione standard Nel caso di una VA vettoriale (di dimensione 2) sarà quindi necessario introdurre almeno: Due medie Due varianze 13 Istruzioni per l uso Le variabili da definire nel generatore di numeri casuali: Un vettore mu delle medie delle singole componenti della VA Una matrice sigma che includa le varianze delle singole componenti della VA e le covarianze esistenti tra le VA 14 - Generazione di numeri casuali Parte 2 7

8 Creazione di numeri casuali vettoriali Definizione media Come primo passo si definiscano le medie delle singole componenti. >> mu = [0,0] mu = 0 0 Ovvero: La marginale relativa a Y1 ha media 0 La marginale relativa a Y2 ha media Creazione di numeri casuali vettoriali Definizione varianza Le varianze delle singole marginali è definita nella matrice sigma. lungo la diagonale >> sigma = [1.0,0;0,2] sigma = Varianza di Y1 Varianza di Y2 I termini fuori diagonale sono nulli (per il momento) 16 - Generazione di numeri casuali Parte 2 8

9 Generazione di numeri casuali vettoriali - Istruzioni È possibile ora generare coppie di numeri casuali di tipo vettoriali con le medie e le covarianze definite prima. Il comando da eseguire è: >> xvec= mvnrnd(mu,sigma,n); Output Matrice numeri casuali generati. [n d] Ciascuna colonna si riferisce ad un esperienza. Le righe sono le differenti componenti Input Vettore media della VA vettoriale [d 1] Matrice varianze della VA vettoriale [d d] Numero di coppie di numeri casuali da generare (scalare: n) 17 Variabili aleatorie vettoriali Analisi delle singole componenti Rappresentazione su grafico delle osservazioni della prima componente del vettore di numeri casuali >> xvec1 = xvec(:,1) >> plot(xvec1, r. ); Rappresentazione su istogramma (normalizzato) della prima componente del campione >> histo(xvec1, 40, 0, 1) Programmi WEB 18 - Generazione di numeri casuali Parte 2 9

10 Variabili aleatorie vettoriali Analisi delle singole componenti Confronto con la pdf di una VA scalare Gaussiana di media e varianza coincidenti con la prima componente: >> hold on >> xx = [-3:0.05:3] ; >> yy = normpdf(xx,0,sqrt(0.5)); >> plot(xx,yy, r- ) Stima scalari associati alla prima componente del campione (da confrontare quindi con la marginale Y 1 ): >> mean(xvec1) >> var(xvec1) - Programmi WEB 19 Variabili aleatorie vettoriali Analisi delle singole componenti Ripetere la procedura per la seconda componente. >> xvec2 = xvec(:,2) In particolare: Valutare media e varianza Confrontare graficamente l istogramma delle frequenze relative normalizzato con la pdf di una Gaussiana di media =0 e deviazione standard = 2 È possibile trarre delle prime conclusioni sul set di dati? - Programmi WEB 20 - Generazione di numeri casuali Parte 2 10

11 Variabili aleatorie vettoriali Più interessante potrebbe essere l analisi CONGIUNTA delle due componenti >> cov(xvec1,xvec2) >> corrcoef(xvec1,xvec2 Anche per via grafica: >> plot(xvec1,xvec2, r. ) >> axis square È possibile anche una rappresentazione tridimensionale della frequenza relativa Programmi WEB >> gkde2(xvec) 21 Variabili aleatorie vettoriali Esercizio: Si ripeta la procedura considerando il seguente vettore media e la seguente matrice di covarianza: >> mu = [0, 0] ; >> sigma = [1.0, 1.3; 1.3, 2.0]; Commentare i risultati 22 - Generazione di numeri casuali Parte 2 11

12 Esercizio: Si ripeta la procedura considerando il seguente vettore media e la seguente matrice di covarianza: >> mu = [0, 0] ; >> sigma = [1.0,sqrt(2)-0.001;sqrt(2)-0.001,2.0]; Commentare i risultati - Programmi WEB 23 Generazione di numeri casuali - Esempio In conclusione: Entrambi le componenti Y1 e Y2 sono casuali e la probabilità che ciascuna di esse (indipendentemente dall altra) assuma un certo valore è stabilito dalla sua media e varianza. PERÒ La probabilità che Y1 assuma un certo valore è sensibilmente condizionata da quello che fa Y2, e viceversa. Le Variabili Aleatorie Y1 e Y2 sono DIPENDENTI. Teoria 24 - Generazione di numeri casuali Parte 2 12

13 Generazione di numeri casuali di tipo vettoriale - Considerazioni La dipendenza tra le due VA Y1 e Y2 è stabilita dal termine fuori diagonale della matrice La matrice in questione prende il nome di Matrice di Covarianza Nel primo caso (termine fuori diagonale nullo) la dispersione di Y1 non dipendeva da Y2 (e viceversa). Le VA erano INDIPENDENTI Viceversa, la presenza di un termine fuori diagonale diverso da zero indica la presenza di dipendenza tra le componenti la VA Teoria 25 Generazione di numeri casuali - Esempio Ultimo esempio: Si ripeta la procedura precedente considerando il seguente caso (limite): >> sigma = [0.5,1.0;1.0,2] sigma = Commentare eventualmente i risultati - Programmi WEB 26 - Generazione di numeri casuali Parte 2 13

Funzioni di probabilità con Matlab

Funzioni di probabilità con Matlab Funzioni densità di probabilità e distribuzioni cumulative - Introduzione: Riepilogo Concetti Teoria - Distribuzioni densità di probabilità con - Distribuzioni cumulative - Inverse distribuzioni cumulative

Dettagli

Analisi dei Processi Chimici e Biotecnologici Matlab

Analisi dei Processi Chimici e Biotecnologici Matlab Applicazioni con generatori di numeri casuali - Istruzioni per l uso - Simulazione numerica di un esperimento - Generatori di numeri casuali: cenni sulla teoria - Generazione di numeri casuali: rumore

Dettagli

Analisi dei Processi Chimici e Biotecnologici Matlab

Analisi dei Processi Chimici e Biotecnologici Matlab Applicazioni con generatori di numeri casuali - Istruzioni per l uso - Simulazione numerica di un esperimento - Generatori di numeri casuali: cenni sulla teoria - Generazione di numeri casuali: rumore

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Misura dell associazione tra due caratteri Uno store manager è interessato a studiare la relazione

Dettagli

Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010.

Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010. Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010 Statistica Esercitazione 4 12 maggio 2010 Dipendenza in media. Covarianza e

Dettagli

ESERCIZI DI RIEPILOGO 1

ESERCIZI DI RIEPILOGO 1 ESERCIZI DI RIEPILOGO 1 ESERCIZIO 1 La tabella seguente contiene la distribuzione di frequenza della variabile X = età (misurata in anni) per un campione casuale di bambini: x i 4.6 8 3.2 3 5.4 6 2.6 2

Dettagli

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza

Dettagli

I VETTORI GAUSSIANI E. DI NARDO

I VETTORI GAUSSIANI E. DI NARDO I VETTOI GAUSSIANI E. DI NADO. L importanza della distribuzione gaussiana I vettori di v.a. gaussiane sono senza dubbio uno degli strumenti più utili in statistica. Nell analisi multivariata, per esempio,

Dettagli

Test delle Ipotesi Parte I

Test delle Ipotesi Parte I Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

RANGO DI UNA MATRICE ρ(a)

RANGO DI UNA MATRICE ρ(a) RANGO DI UNA MATRICE (A) a,... a A M M am,... a, n mn, K É il massimo ordine di un minore estratto con determinante non nullo. Equivalentemente è il massimo numero di righe (colonne) linearmente indipendenti.

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati

Laboratorio di Statistica 1 con R Esercizi per la Relazione. I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati Laboratorio di Statistica 1 con R Esercizi per la Relazione I testi e/o i dati degli esercizi contassegnati da sono tratti dai libri consigliati nel corso. Esercizio 1. 1. Facendo uso dei comandi

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 5 Abbiamo visto: Modelli probabilistici nel continuo Distribuzione uniforme continua Distribuzione

Dettagli

Esercizi di MatLab. Sommario Esercizi di introduzione a MatLab per il corso di Calcolo Numerico e Laboratorio, A.A

Esercizi di MatLab. Sommario Esercizi di introduzione a MatLab per il corso di Calcolo Numerico e Laboratorio, A.A Esercizi di MatLab Sommario Esercizi di introduzione a MatLab per il corso di Calcolo Numerico e Laboratorio, AA 2017 2018 Gli esercizi sono divisi in due gruppi: fondamentali ed avanzati I primi sono

Dettagli

3. Matrici e algebra lineare in MATLAB

3. Matrici e algebra lineare in MATLAB 3. Matrici e algebra lineare in MATLAB Riferimenti bibliografici Getting Started with MATLAB, Version 7, The MathWorks, www.mathworks.com (Capitolo 2) Mathematics, Version 7, The MathWorks, www.mathworks.com

Dettagli

Esercitazioni di Statistica Metodologica

Esercitazioni di Statistica Metodologica Esercitazioni di Statistica Metodologica June 22, 2009 1 Esercizio La compagnia di telefonia fissa Happy Line ha svolto una indagine sul numero di telefonate effettuate dai suoi clienti la settimana scorsa.

Dettagli

Variabili aleatorie. continue. Discreto continuo

Variabili aleatorie. continue. Discreto continuo Variabili aleatorie continue Discreto continuo.18 Uniforme discreta, n=11 n=21 n=11 n=6 n=51 n=51 Uniforme.16.14.12.1.8.6?.4.2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 Per passare dal modello discreto al modello continuo

Dettagli

Variabili aleatorie Parte I

Variabili aleatorie Parte I Variabili aleatorie Parte I Variabili aleatorie Scalari - Definizione Funzioni di distribuzione di una VA Funzioni densità di probabilità di una VA Indici di posizione di una distribuzione Indici di dispersione

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 5. La correlazione lineare Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario 1 Tipi di relazione

Dettagli

Fin qui si sono considerate le variabili casuali ciascuna per proprio conto. Ora consideriamo la possibilità di relazioni tra variabili.

Fin qui si sono considerate le variabili casuali ciascuna per proprio conto. Ora consideriamo la possibilità di relazioni tra variabili. Sistemi di variabili casuali Fin qui si sono considerate le variabili casuali ciascuna per proprio conto. Ora consideriamo la possibilità di relazioni tra variabili. Esempi: - il massimo annuale della

Dettagli

Esercitazione del

Esercitazione del Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17 C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica

Dettagli

Analisi delle corrispondenze

Analisi delle corrispondenze Capitolo 11 Analisi delle corrispondenze L obiettivo dell analisi delle corrispondenze, i cui primi sviluppi risalgono alla metà degli anni 60 in Francia ad opera di JP Benzécri e la sua equipe, è quello

Dettagli

Esplorazione grafica di dati multivariati. N. Del Buono

Esplorazione grafica di dati multivariati. N. Del Buono Esplorazione grafica di dati multivariati N. Del Buono Scatterplot Scatterplot permette di individuare graficamente le possibili associazioni tra due variabili Variabile descrittiva (explanatory variable)

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2011/2012 Statistica Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate.

Dettagli

Analisi delle corrispondenze

Analisi delle corrispondenze Analisi delle corrispondenze Obiettivo: analisi delle relazioni tra le modalità di due (o più) caratteri qualitativi Individuazione della struttura dell associazione interna a una tabella di contingenza

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Esplorazione dei dati. Lucidi e dataset tratti da Turini - Analisi dei Dati, Dip. Inf. Unipi

Esplorazione dei dati. Lucidi e dataset tratti da Turini - Analisi dei Dati, Dip. Inf. Unipi Esplorazione dei dati Lucidi e dataset tratti da Turini - Analisi dei Dati, Dip. Inf. Unipi Analisi mono e bivariata Si utilizzano indicatori sintetici che individuano, con un singolo valore, proprieta`

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici

Computazione per l interazione naturale: fondamenti probabilistici Computazione per l interazione naturale: fondamenti probabilistici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2016.html

Dettagli

Applicazioni lineari tra spazi euclidei. Cambi di base.

Applicazioni lineari tra spazi euclidei. Cambi di base. pplicazioni lineari tra spazi euclidei. Cambi di base. Esercizio. Data la seguente applicazione lineare f : R R : f(x, y, z) = (x z, x + y, y + z), scrivere la matrice B, rappresentativa di f rispetto

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 24 Outline 1 () Statistica 2 / 24 Outline 1 2 () Statistica 2 / 24 Outline 1 2 3 () Statistica 2 /

Dettagli

Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento

Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento Capitolo Suggerimenti agli esercizi a cura di Elena Siletti Esercizio.: Suggerimento Per verificare se due fenomeni sono dipendenti in media sarebbe necessario confrontare le medie condizionate, in questo

Dettagli

VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul

VIII Indice 2.6 Esperimenti Dicotomici Ripetuti: Binomiale ed Ipergeometrica Processi Stocastici: Bernoul 1 Introduzione alla Teoria della Probabilità... 1 1.1 Introduzione........................................ 1 1.2 Spazio dei Campioni ed Eventi Aleatori................ 2 1.3 Misura di Probabilità... 5

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: generazione di numeri casuali Il comando che permette di generare una matrice (n r,n c ) composta da

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2016/2017 ST410 Statistica 1 Lezione 1 - Mercoledì 28 Settembre 2016 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

Corso di Laurea in Amministrazione Aziendale Complex Learning. Statistica per l azienda (T) SECS-S/01 a. a. 2017/2018

Corso di Laurea in Amministrazione Aziendale Complex Learning. Statistica per l azienda (T) SECS-S/01 a. a. 2017/2018 Corso di Laurea in Amministrazione Aziendale Complex Learning Statistica l azienda (T) SECS-S/01 a. a. 2017/2018 DOCENTI TITOLARI : Prof. Nicoletta Melis ORE DI LEZIONE ON LINE : 18 ore : 6 3 TIPOLOGIE

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci

La statistica. Elaborazione e rappresentazione dei dati Gli indicatori statistici. Prof. Giuseppe Carucci La statistica Elaborazione e rappresentazione dei dati Gli indicatori statistici Introduzione La statistica raccoglie ed analizza gruppi di dati (su cose o persone) per trarne conclusioni e fare previsioni

Dettagli

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,

Dettagli

Prima di iniziare: Inviare una mail all indirizzo : Scaricare i files per la lezione di oggi dal sito:

Prima di iniziare: Inviare una mail all indirizzo : Scaricare i files per la lezione di oggi dal sito: Prima di iniziare: Inviare una mail all indirizzo : rmgmrc@unife.it Scaricare i files per la lezione di oggi dal sito: http://www.unife.it/ing/lm.meccanica/insegnamenti/statistica-e-modellidi-dati-sperimentali

Dettagli

Richiami di algebra lineare

Richiami di algebra lineare 2 Richiami di algebra lineare 2.1 Prodotto scalare, prodotto vettoriale e prodotto misto Sia V lo spazio vettoriale tridimensionale ordinario, che dotiamo di una base ortonormale (e 1, e 2, e 3 ), e i

Dettagli

Statistica Applicata all edilizia: il modello di regressione

Statistica Applicata all edilizia: il modello di regressione Statistica Applicata all edilizia: il modello di regressione E-mail: orietta.nicolis@unibg.it 27 aprile 2009 Indice Il modello di Regressione Lineare 1 Il modello di Regressione Lineare Analisi di regressione

Dettagli

Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione

Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione Alessandra Mattei Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) Università degli Studi di Firenze

Dettagli

PROBABILITÀ ELEMENTARE

PROBABILITÀ ELEMENTARE Prefazione alla seconda edizione XI Capitolo 1 PROBABILITÀ ELEMENTARE 1 Esperimenti casuali 1 Spazi dei campioni 1 Eventi 2 Il concetto di probabilità 3 Gli assiomi della probabilità 3 Alcuni importanti

Dettagli

Laboratorio per l Elaborazione MultiMediale Esercitazione 5 - Il Restauro dei Segnali Audio

Laboratorio per l Elaborazione MultiMediale Esercitazione 5 - Il Restauro dei Segnali Audio Laboratorio per l Elaborazione MultiMediale Esercitazione 5 - Il Restauro dei Segnali Audio Prof. Michele Scarpiniti Dipartimento di Ingegneria dell Informazione, Elettronica e Telecomunicazioni Sapienza

Dettagli

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Università di Siena Corso di STATISTICA Parte seconda: Teoria della stima Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Master E 2 C Centro per lo Studio dei Sistemi Complessi Università di

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 41 Outline 1 2 3 4 5 () Statistica 2 / 41 Misura del legame Data una variabile doppia (X, Y ), la

Dettagli

Variabili aleatorie scalari

Variabili aleatorie scalari Metodi di Analisi dei Dati Sperimentali AA /2010 Pier Luca Maffettone Variabili aleatorie scalari Sommario della Introduzione CDF e PDF: definizione CDF e PDF: proprietà Distribuzioni uniforme e Gaussiana

Dettagli

Esplorazione grafica di dati multivariati. N. Del Buono

Esplorazione grafica di dati multivariati. N. Del Buono Esplorazione grafica di dati multivariati N. Del Buono Scatterplot Scatterplot permette di individuare graficamente le possibili associazioni tra due variabili Variabile descrittiva (explanatory variable)

Dettagli

Analisi statistica e matematico-finanziaria II. Alfonso Iodice D Enza Università degli studi di Cassino e del Lazio Meridionale

Analisi statistica e matematico-finanziaria II. Alfonso Iodice D Enza Università degli studi di Cassino e del Lazio Meridionale delle sui delle Analisi statistica e matematico-finanziaria II Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino e del Lazio Meridionale sulle particolari ali dei dati Outline

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7:

STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7: esercitazione 7 p. 1/13 STATISTICA 1, metodi matematici e statistici Introduzione al linguaggio R Esercitazione 7: 20-05-2004 Luca Monno Università degli studi di Pavia luca.monno@unipv.it http://www.lucamonno.it

Dettagli

La distribuzione delle frequenze. T 10 (s)

La distribuzione delle frequenze. T 10 (s) 1 La distribuzione delle frequenze Si vuole misurare il periodo di oscillazione di un pendolo costituito da una sferetta metallica agganciata a un filo (fig. 1). A Figura 1 B Ricordiamo che il periodo

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

REGRESSIONE E CORRELAZIONE

REGRESSIONE E CORRELAZIONE REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.

Dettagli

1 Alcuni risultati sulle variabili Gaussiane multivariate

1 Alcuni risultati sulle variabili Gaussiane multivariate Il modello lineare-gaussiano e il filtro di Kalman Prof. P.Dai Pra 1 Alcuni risultati sulle variabili Gaussiane multivariate In questo paragrafo verranno enunciate e dimostrate alcune proprietà del valor

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 43 I principali test statistici per la verifica di ipotesi: Il test del χ 2 per tavole di contingenza a 2 vie Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia

Dettagli

Soluzione degli esercizi di riepilogo sul controllo statistico di qualità e sull ANOVA.

Soluzione degli esercizi di riepilogo sul controllo statistico di qualità e sull ANOVA. Soluzione degli esercizi di riepilogo sul controllo statistico di qualità e sull ANOVA.. Si tratta di un ANOVA a due fattori senza repliche. Gli effetti sono fissi sia sulle righe che sulle colonne. Effettuiamo

Dettagli

Analisi della correlazione canonica

Analisi della correlazione canonica Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Lezione n. 1 (a cura di Irene Tibidò)

Lezione n. 1 (a cura di Irene Tibidò) Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Prova scritta di Complementi di Probabilità e Statistica. 7 Dicembre 2012

Prova scritta di Complementi di Probabilità e Statistica. 7 Dicembre 2012 Prova scritta di Complementi di Probabilità e Statistica 7 Dicembre. Un ingegnere vuole investigare se le caratteristiche di una superficie metallica sono influenzate dal tipo di pittura usata e dal tempo

Dettagli

ANALISI MULTIDIMENSIONALE DEI DATI (AMD)

ANALISI MULTIDIMENSIONALE DEI DATI (AMD) ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Analisi Multidimensionale dei Dati (AMD) è una famiglia di tecniche il cui obiettivo principale è la visualizzazione, la classificazione e l interpretazione della

Dettagli

ESERCITAZIONE MATLAB

ESERCITAZIONE MATLAB ESERCITAZIONE MATLAB Di seguito sono ripostati alcuni esercizi da eseguire in ambiente MatLab. Gli esercizi sono divisi per argomenti. Ogni esercizio è preceduto da una serie di esempi che aiutano nello

Dettagli

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell

Dettagli

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

Statistica multivariata 27/09/2016. D.Rodi, 2016

Statistica multivariata 27/09/2016. D.Rodi, 2016 Statistica multivariata 27/09/2016 Metodi Statistici Statistica Descrittiva Studio di uno o più fenomeni osservati sull INTERA popolazione di interesse (rilevazione esaustiva) Descrizione delle caratteristiche

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

8.8 Modificare i file di testo I processi La stampa Accesso alle periferiche 176

8.8 Modificare i file di testo I processi La stampa Accesso alle periferiche 176 INDICE i Statistica ed analisi dei dati 1 1 Propagazione degli errori. Parte I 5 1.1 Terminologia 5 1.2 Propagazione dell incertezza massima (errore massimo) 7 1.2.1 Somma 8 1.2.2 Differenza 9 1.2.3 Prodotto

Dettagli

Prendiamo in considerazione la matrice tridiagonale

Prendiamo in considerazione la matrice tridiagonale Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

Esercitazione 4: Vettori e Matrici

Esercitazione 4: Vettori e Matrici Esercitazione 4: Vettori e Matrici Richiami di teoria: Norme di vettore Principali norme di vettore:. x = n i= x i 2. x 2 = n i= x i 2 3. x = max i n x i Ad esempio dato il vettore x = (, 2, 3, 4) abbiamo.

Dettagli

STIMA DELLA VARIANZA CAMPIONARIA

STIMA DELLA VARIANZA CAMPIONARIA STIMA DELLA VARIANZA CAMPIONARIA Abbiamo visto che una stima puntuale corretta per il valore atteso µ delle variabili aleatorie X i è x n = (x 1 +.. + x n )/n. Una stima puntuale della varianza σ 2 delle

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

docente: J. Mortera/P. Vicard Nome

docente: J. Mortera/P. Vicard Nome A opportuni passaggi). Verrà accettato in consegna solo il presente plico. 2. [9] Una certa zona è servita da 4 compagnie telefoniche. Per ciascuna compagnia è stato rilevato il costo al minuto (in centesimi

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative

Dettagli

Corso di Identificazione dei Modelli e Analisi dei Dati

Corso di Identificazione dei Modelli e Analisi dei Dati Corso di Identificazione dei Modelli e Analisi dei Dati Prof. Sergio Bittanti Esercitazione di Laboratorio A.A. 2010-11 Sistemi dinamici lineari a tempo discreto 1. Si consideri il sistema dinamico a tempo

Dettagli

1) Hamming bound, coset, codici equivalenti

1) Hamming bound, coset, codici equivalenti Argomenti della Lezione ) Hamming bound, coset, codici equivalenti 2) Esercizi sui codici lineari a blocchi Osservazione () Per effettuare la decodifica a rivelazione di errore si può seguire una delle

Dettagli

Distribuzione esponenziale. f(x) = 0 x < 0

Distribuzione esponenziale. f(x) = 0 x < 0 Distribuzione esponenziale Funzione densità f(x) = λe λx x 0 0 x < 0 Funzione parametrica (λ) 72 Funzione di densità della distribuzione esponenziale 1 0.9 0.8 0.7 λ=1 0.6 f(x) 0.5 0.4 0.3 λ=1/2 0.2 0.1

Dettagli

Y M F Calcolare X e darne un adeguata interpretazione;

Y M F Calcolare X e darne un adeguata interpretazione; Corso di Laurea INTERACOLTÀ - Esercitazione di tatistica n 4 EERCIZIO 1: Nella tabella sono riportati i dati inerenti il numero di anni di attività () ed il sesso () di 48 agenti di commercio dell azienda

Dettagli

Distribuzioni di probabilità e principi del metodo di Montecarlo. Montecarlo

Distribuzioni di probabilità e principi del metodo di Montecarlo. Montecarlo Distribuzioni di probabilità e principi del metodo di Montecarlo Simulazione di sistemi complessi Distribuzioni di probabilità Istogrammi Generazione di numeri casuali Esempi di applicazione del metodo

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014

Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014 Calcolo Numerico (A.A. 2014-2015) Lab n. 12 Approssimazione 17-12-2014 1 Approssimazione di dati e funzioni Problema Data la tabella {x i, y i }, i = 0,..., n, si vuole trovare una funzione analitica ϕ

Dettagli

Scale di Misurazione Lezione 2

Scale di Misurazione Lezione 2 Last updated April 26, 2016 Scale di Misurazione Lezione 2 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura II anno, II semestre Tipi di Variabili 1 Scale di Misurazione 1. Variabile

Dettagli

a.a. : Ore: 56 Crediti totali: 6 Tipologia di insegnamento: intero Docente: Prof. Emilio Mariotti associato

a.a. : Ore: 56 Crediti totali: 6 Tipologia di insegnamento: intero Docente: Prof. Emilio Mariotti associato Titolo: FISICA SPERIMENTALE per geologia (I modulo, mutuato come Istituzioni di Fisica da Scienze Naturali e Scienze Ambientali) Facoltà: Scienze M.F.N. a.a. : 2004-2005 Ore: 56 Crediti totali: 6 Tipologia

Dettagli

Distribuzioni campionarie. Antonello Maruotti

Distribuzioni campionarie. Antonello Maruotti Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento

Dettagli

Laboratorio di Calcolo B 68

Laboratorio di Calcolo B 68 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli