METODI DI CONVERSIONE FRA MISURE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "METODI DI CONVERSIONE FRA MISURE"

Transcript

1 METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle unità di misura. I metodi utilizzabili sono vari e ogni allievo dovrà scegliere quello che più gli è congeniale, anche sulla base delle abilità acquisite negli anni di scuola media. Se una conversione è apparentemente banale, ad esempio può essere banale trasformare 432 metri in chilometri, è meno banale trasformare 0,0035 cm in μm. Eppure la procedura richiesta per la conversione in tutti e due i casi è sempre la stessa. Innanzitutto bisogna: a) stabilire l equivalenza tra l unità e il suo multiplo o sottomultiplo (o viceversa). b) e poi utilizzare un metodo efficace di conversione che trasformi il dato di partenza nel dato richiesto. I metodi proposti sono quattro: il primo utilizza la tabella già introdotta per il passaggio dall unità ai suoi multipli e sottomultipli di 10 (lo chiameremo metodo per spostamento); il secondo sostituisce l unità di misura data con quella richiesta (lo chiameremo metodo per sostituzione); il terzo poggia sulla proporzione e sue proprietà ed è il metodo che molti allievi inizialmente preferiscono; l ultimo, sempre più utilizzato anche a livello universitario, utilizza il fattore di conversione (metodo del fattore di conversione). Metodo 1) Per spostamento Come già visto si presta a conversioni di multipli e sottomultipli di 10. Proviamo ad esempio a trasformare 432 m nei corrispondenti chilometri: scriviamo le tre cifre in modo tale che l ultima cifra cada in corrispondenza dei metri. Spostiamo ora la virgola a sinistra di tre posizioni per cui 432 m risultano pari a 0, 432 km. simbolo M k h da u d c m μ n , Se vogliamo invece trasformare 0,0035 cm in μm il primo dei tre zeri dovrà corrispondere al simbolo c di centi mentre l ultima cifra cade proprio sotto il simbolo μ per cui si ha che 0,0035 cm = 35 μm. Ci siamo spostati verso destra di quattro posizioni, infatti 1 cm =10000 μm simbolo M k h da u d c m μ n 0,

2 2) Per sostituzione Questo metodo si presta bene quando passare da una unità di misura a quella immediatamente vicina è un po più complicato che spostare la virgola di una sola posizione. E ad esempio il caso delle conversioni di superfici o di volumi espressi come multipli della lunghezza. Si tratta allora di passare dall unità di misura di una grandezza a quella di una grandezza derivata sfruttando la relazione algebrica che lega le due grandezze coinvolte nella trasformazione. Vogliamo sapere ad esempio a quanti ml corrispondono 4,5 m 3 di acqua. La domanda è: dobbiamo però sapere già in partenza che: e che: ed inoltre che: per cui, sostituendo al metro cubo l equivalente in decimetri cubi si ha che: 4,5 m dm 3 Eseguendo la moltiplicazione si ottiene il risultato della trasformazione: Ora sostituiamo al decimetro cubo l equivalente in centimetri cubi: 4500 dm cm 3 e otteniamo in forma esponenziale: Infine sostituiamo al centimetro cubo l equivalente in ml: 4, cm 3 1mL Il risultato finale è pertanto:

3 3) Per proporzione Questo metodo si incontra molto spesso in cucina quando, letti gli ingredienti di una ricetta, se ne vogliano o se ne debbano modificare le quantità. Leggiamo sul ricettario che, ad esempio, per fare una crostata servono 300 g di farina, 200 g di burro e 100 g di zucchero. Si tratta allora di passare dall unità di misura di una grandezza a quella di un altra completamente diversa. Supponiamo di avere a disposizione un bel pò di burro e di zucchero e di voler finire il pacco di farina che contiene 430 g. Quanto burro e quanto zucchero serviranno? Si imposta la proporzione: se 300 g di farina devono essere mescolati con 200 g di burro, a 430 g di farina corrispondono g : 200 g = 430 g : x Si risolve rispetto a x, ricordando che il prodotto dei medi è uguale al prodotto degli estremi, cioè: L incognita risulta pari a: di burro 4) Utilizzando il fattore di conversione: Il metodo si presta bene in tutti i casi esaminati e, se ben imparato si rivela il più rapido e sicuro. Anche in quest ultimo caso è necessario conoscere l equivalenza fondamentale che trasforma l unità della misura di partenza nell unità della misura di arrivo, oppure l equivalenza inversa. Supponiamo ad esempio di essere a New York e di voler comprare un orologio che costa 250 $, con cambio 1,3 (1 = 1,3 $ oppure 1 $ = 0,77 ). Qual è la spesa in euro? Partendo dal dato del problema si tratta di convertire i dollari, in cui il dato è espresso, in euro moltiplicando per un fattore di conversione che riporti al denominatore i dollari e al numeratore gli equivalenti euro. Allo stesso risultato si perviene utilizzando i due fattori di conversioni riportati come segue: $ = 192 1,3 $ 0, $ = $ E evidente che, dati i primi due termini dell equivalenza: È facile ricavare la seconda dividendo entrambi i termini per 1,3: Da cui: Il fattore di conversione si presta particolarmente a risolvere problemi più complessi. Proviamo ad esempio a calcolare quanti secondi si trascorrono a scuola in un anno scolastico, sapendo che ad un anno scolastico

4 corrispondono circa 200 giorni di scuola e che ogni giorno si sta a scuola circa 5 ore da 60 minuti. Trasformiamo innanzitutto il giorno di scuola in ore di scuola: 5ore 200giorni 1000ore 1giorno Trasformiamo ora le ore in minuti e direttamente in secondi: 60min 60s 1000ore s 1ora 1min Esercizi 1 Utilizzando il metodo che preferisci trasforma 5 dm in.. Riporta il risultato in notazione scientifica (la virgola deve essere posta tra la prima e la seconda cifra significativa). a) 5 dm =. m b) 5 dm =.. km c) 5 dm =. Mm d) 5 dm =.. cm e) 5 dm =.. μm f) 5 dm = nm 2 Utilizzando il metodo che preferisci esegui le seguenti equivalenze riportando il risultato in notazione scientifica. a) 537 mm = m b) 10 5 μs = s c) 0,0046 ml = L d) 0,5 km = cm e) 33 dl =.. ml f) 55 ng = g Per le conversioni di volume ricorda che: 1 dm 3 =1L e che 1 cm 3 =1mL Infatti, per le proprietà delle potenze, ma sappiamo anche che per cui, sostituendo, si ha che: che corrisponde esattamente a 10 3 cm 3. Ora, dato che 1L equivale a 1000 ml e che, per definizione: 1L = 1dm 3 si ricava anche che 1 L corrisponde esattamente a 1000 cm 3 e che quindi 1 cm 3 corrisponde a 1 ml: 1 cm 3 = 1 ml Facciamo un altro esempio: quanti litri di acqua ci sono in 1 m 3? Per le proprietà delle potenze si ha che: Ma poiché si ha anche che: Arrivati a questo punto bisogna ricordare un equivalenza utile per passare dai dm 3 ai L; supponiamo di sapere proprio ciò che abbiamo appena imparato e cioè che 1L = 1dm 3. Sostituendo si ottiene che: 3 Esegui le seguenti conversioni utilizzando il metodo che ritieni migliore.

5 a) 10 kg =...g b) 30 ng =... g c) 600 µg =... mg d) 0,06 hg =... g e) 672 ore =... settimane f) 2708 cm =...m g) 400 cm 3 =...mm 3 h) 750 cm 3 =...dm 3 i) 8 dm 3 = L l) 8 dm 3 = ml m) 33 cl = L n) 35 m 3 = cm 3 o) 5,5 L =.. cm 3 p) 0,5 dl = cm 3

6 q) Se una pallina di gelato costa 0,90 euro, quanto costano 35 palline? r) Il 12 settembre 2000 un dollaro valeva 2249 lire. Un turista italiano in California comperò un paio di scarpe al prezzo di 89 dollari. Quanto costavano in lire quelle scarpe?. s) se per fare una crostata ci vogliono 3 uova e 500 g di farina, quante crostate si possono preparare con 300 uova? quante con 4 Kg di farina? quante con 300 uova e 10 Kg di farina? t) se una mole di acqua pesa 18 g quanti grammi di acqua corrispondono a 55,5 moli?.. u) una mole di carbonio 12 contiene 6, atomi e ha una massa di 12,00 g: 1) quanti atomi di carbonio 12 sono contenuti in 0,5 mol?. 2) qual è la massa di 0,5 mol di carbonio 12? v) una mole di acqua contiene 6, molecole, quante molecole sono contenute in 55,5 mol?.. z) 55,5 mol di acqua hanno la massa di 1000 g. Se 1 g di acqua occupa il volume di 1 ml, a quanti ml di acqua corrispondono 55,5 mol?

Strumenti Matematici per la Fisica.

Strumenti Matematici per la Fisica. Strumenti Matematici per la Fisica www.fisicaxscuola.altervista.org 2 Strumenti Matematici per la Fisica Potenze di Prefissi: Multipli e Sottomultipli Sistema Metrico Decimale Equivalenze Proporzioni e

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Sistema Metrico Decimale Equivalenze Potenze di Notazione scientifica (o esponenziale) Ordine di Grandezza Approssimazioni Proporzioni

Dettagli

COS E UN EQUIVALENZA. È un UGUAGLIANZA tra DUE ESPRESSIONI che usano UN UNITÀ DI MISURA per la quale si

COS E UN EQUIVALENZA. È un UGUAGLIANZA tra DUE ESPRESSIONI che usano UN UNITÀ DI MISURA per la quale si COS E UN EQUIVALENZA È un UGUAGLIANZA tra DUE ESPRESSIONI che usano UN UNITÀ DI MISURA per la quale si cercano i valori da attribuire affinché sia vera IN ALTRE PAROLE SIGNIFICA: Scrivere la stessa quantità

Dettagli

1 Misurare una grandezza

1 Misurare una grandezza 1 Misurare una grandezza DEFINIZIONE. Misurare una grandezza significa confrontarla con una grandezza dello stesso tipo, assunta come unità di misura, per stabilire quante volte quest ultima è contenuta

Dettagli

fenomeni na- turali grandezze fisiche principi leggi metodo scientifico modello

fenomeni na- turali grandezze fisiche principi leggi metodo scientifico modello La fisica è la scienza che studia i fenomeni naturali (ossia tutti gli eventi che possono essere descritti, o quantificati, attraverso grandezze fisiche opportune) al fine di stabilire principi e leggi

Dettagli

EQUIVALENZE. Eseguire equivalenze significa trasformare una misura in un altra equivalente Come effettuare i cambi tra misure: km hm dam m dm cm mm

EQUIVALENZE. Eseguire equivalenze significa trasformare una misura in un altra equivalente Come effettuare i cambi tra misure: km hm dam m dm cm mm EQUIVALENZE Eseguire equivalenze significa trasformare una misura in un altra equivalente Come effettuare i cambi tra misure: X 10 X 10 X 10 X 10 X 10 X 10 km hm dam m dm cm mm : 10 : 10 : 10 : 10 : 10

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA Revisione del 20/7/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon LA NOTAZIONE SCIENTIFICA Richiami di teoria La notazione scientifica è uno strumento utile per

Dettagli

Costruiamo la STRISCIA DELLE MISURE. decametro metro decimetro. Tm Gm Mm km hm dam m dm cm mm µm nm pm

Costruiamo la STRISCIA DELLE MISURE. decametro metro decimetro. Tm Gm Mm km hm dam m dm cm mm µm nm pm Terametro Gigametro Megametro chilometro ettometro decametro metro decimetro micrometro millimetro milcrometro nanometro picometro Costruiamo la STRISCIA DELLE MISURE. Tm Gm Mm km hm dam m dm cm mm µm

Dettagli

La mole e la massa molare

La mole e la massa molare La mole e la massa molare Un concetto strettamente correlato al peso relativo e fondamentale in chimica per i calcoli quantitativi è quello di mole. La mole è l unità di misura di una delle sette grandezze

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa Esempi di operazioni con monomi

Potenziamento formativo, Infermieristica, M. Ruspa Esempi di operazioni con monomi Esempi di operazioni con monomi Esempi di operazioni con polinomi POTENZE DI 10 Che cosa vuol dire 10 n? Che cosa vuol dire 10 -n? POTENZE DI 10 Che cosa vuol dire 10 n? 10000..00000 n zeri Che cosa vuol

Dettagli

Tabella 1: Denominazioni dei principali multipli e sottomultipli decimali delle grandezze fisiche

Tabella 1: Denominazioni dei principali multipli e sottomultipli decimali delle grandezze fisiche Unità di misura e fattori di conversione; potenze del 10; notazione scientica La misura di una grandezza va sempre riferita ad una data unità di misura: il metro(m), il grammo (g), e il secondo (s). A

Dettagli

APPENDICE PRINCIPALI GRANDEZZE DEL SISTEMA INTERNAZIONALE (SI)

APPENDICE PRINCIPALI GRANDEZZE DEL SISTEMA INTERNAZIONALE (SI) APPENDICE PRINCIPALI GRANDEZZE DEL SISTEMA INTERNAZIONALE (SI) Grandezze fondamentali Unità di misura Simbolo Lunghezza, distanza metro m Massa kilogrammo kg Volume metro cubo m 3 Energia, calore e lavoro

Dettagli

APPUNTI delle lezioni prof. Celino PARTE 1

APPUNTI delle lezioni prof. Celino PARTE 1 APPUNTI delle lezioni prof. Celino PARTE 1 PREREQUISITI MATEMATICI per lo studio della fisica e della chimica... 2 NOTAZIONE SCIENTIFICA... 2 APPROSSIMAZIONE DEI NUMERI DECIMALI... 2 MULTIPLI e SOTTOMULTIPLI...

Dettagli

GRANDEZZE FISICHE STRUMENTI DI MISURA UNITA DI MISURA

GRANDEZZE FISICHE STRUMENTI DI MISURA UNITA DI MISURA GRANDEZZE FISICHE STRUMENTI DI MISURA UNITA DI MISURA GRANDEZZE FISICHE Grandezze fisiche Proprietà di un sistema che possono essere misurate Dirette Derivate Grandezze fisiche Proprietà di un sistema

Dettagli

Misure e Unità di Misura

Misure e Unità di Misura 2. La Mole Misure e Unità di Misura L Incertezza delle Misure - come utilizzare le cifre significative nel calcolo Le Quantità Chimiche - la MOLE - la MASSA MOLARE - la misura dei composti La Determinazione

Dettagli

CAP. 1: LA MISURA DELLE GRANDEZZE

CAP. 1: LA MISURA DELLE GRANDEZZE GEOMETRIA 1 - AREA 1 CAP. 1: LA MISURA DELLE GRANDEZZE MISURARE UNA GRANDEZZA n Il sistema metrico decimale eá il sistema di misurazione delle grandezze in cui i multipli sono 10, 100, 1000... volte piuá

Dettagli

UNITA DI MISURA BASE

UNITA DI MISURA BASE Revisione del 2/9/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon UNITA DI MISURA BASE Richiami di teoria Il Sistema Internazionale (S.I.) di unità di misura è composto

Dettagli

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO ANNO SCOLASTICO 2014/2015 MATERIA FISICA CLASSE 1 C/SA DOCENTE MILIZIA ROBERTO VERIFICA SCRITTA

Dettagli

Laboratorio di Fisica-Chimica

Laboratorio di Fisica-Chimica Laboratorio di Fisica-Chimica Lezione n.1. Che cos'è la Fisica? La Fisica è una scienza che si occupa dello studio dei fenomeni che avvengono in natura. Questo studio viene compiuto tramite la definizione

Dettagli

Le quattro operazioni

Le quattro operazioni Le quattro operazioni L addizione Esegui le seguenti addizioni disponendo i numeri in colonna.. 25 þ 20 þ 543 ¼ 25þ 20þ 543¼ 869 307 þ 50 þ 22 ¼ 74 þ 209 þ 843 ¼ 2. 72 þ 8 þ 409 ¼ 79 þ 743 þ 394 ¼ 43 þ

Dettagli

Alcune informazioni utili

Alcune informazioni utili Alcune informazioni utili DATE 12 incontri 10-17-24 ottobre 2016 7-14-21-28 novembre 2016 5-12-19 dicembre 2016 9-16 gennaio 2017 ogni lunedì ORARIO dalle 8.30 alle 10.30 Aula VM1 Dove trovarmi E-mail:

Dettagli

MATEMATICA BASE. Riferimento: un qualsiasi testo delle scuole superiori

MATEMATICA BASE. Riferimento: un qualsiasi testo delle scuole superiori MATEMATICA BASE Ovvero: le cose essenziali che non puoi non sapere! Equazioni Proporzioni Potenze Notazione scientifica Superfici e volumi Percentuale Funzioni Sistemi di riferimento Proporzionalità diretta

Dettagli

Esercizi di matematica scuola media inferiore Livello 1

Esercizi di matematica scuola media inferiore Livello 1 Esercizi di matematica scuola media inferiore Livello Indice degli argomenti ARITMETICA NUMERI NATURALI E NUMERI DECIMALI LE OPERAZIONI FONDAMENTALI ADDIZIONE SOTTRAZIONE ESPRESSIONI ARITMETICHE CON ADDIZIONI

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali NUMERI Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali N NUMERI Per contare i soldi del proprio conto in banca! 0,+1, 1,+2, 2,+3, 3,... Numeri interi Z NUMERI Per tagliare le torte! 0,1,-1,1/2,-1/2,2,-2,1/3,-1/3,2/3.-2/3,...

Dettagli

Richiami di matematica per lo studio delle discipline scientifiche

Richiami di matematica per lo studio delle discipline scientifiche Richiami di matematica per lo studio delle discipline scientifiche La misura in chimica : Misurare significa confrontare una grandezza in rapporto con un altra ad essa omogenea, scelta come campione.i

Dettagli

della classe; le ragazze sono della classe. della tavoletta Frazione Intero Frazione complementare

della classe; le ragazze sono della classe. della tavoletta Frazione Intero Frazione complementare Le frazioni 1) La frazione come parte. della classe; le ragazze sono della classe. della tavoletta Frazione Intero Frazione complementare Es. Durante la verifica di matematica 12 allevi su 18 erano sufficienti,

Dettagli

CONSEGUENZA PROPORZIONI

CONSEGUENZA PROPORZIONI Corso di laurea: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA CONSEGUENZA PROPORZIONI PROBLEMI DEL TRE SEMPLICE Le conoscenze acquisite sui rapporti e sulle proporzioni possono essere applicate

Dettagli

ESERCIZI DI MATEMATICA PER LE FUTURE PRIME DEL LICEO SCIENTIFICO E DEL LICEO SCIENTIFICO CON OPZIONE SCIENZE APPLICATE

ESERCIZI DI MATEMATICA PER LE FUTURE PRIME DEL LICEO SCIENTIFICO E DEL LICEO SCIENTIFICO CON OPZIONE SCIENZE APPLICATE ESERCIZI DI MATEMATICA PER LE FUTURE PRIME DEL LICEO SCIENTIFICO E DEL LICEO SCIENTIFICO CON OPZIONE SCIENZE APPLICATE Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente

Dettagli

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni MATEMATICA LIGHT Ovvero: le cose essenziali che Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni in Infermieristica sede di Lodi Proporzioni Potenze Notazione

Dettagli

1 - GRANDEZZE E MISURE

1 - GRANDEZZE E MISURE 1 - GRANDEZZE E MISURE INDICE Grandezze fisiche e loro misure: 2 Notazione: 3 Prefissi: 4 Grandezze fondamentali e unità di misura: 5 Grandezze derivate: 9 Valori ed errori, incertezza di misura: 12 Come

Dettagli

La frazione. BM2 teoria pag es. pag ) La frazione come parte. della classe; le ragazze sono. della classe. 13. della tavoletta 28

La frazione. BM2 teoria pag es. pag ) La frazione come parte. della classe; le ragazze sono. della classe. 13. della tavoletta 28 La frazione. BM2 teoria pag. 41 es. pag. 10 111. 1) La frazione come parte. 4 della classe; le ragazze sono.. della classe. 1 della tavoletta 2 Frazione 1 2 Intero 2 2 Frazione complementare 1 2 Es...

Dettagli

Strumenti e tecniche di calcolo

Strumenti e tecniche di calcolo Strumenti e tecniche di calcolo di Lidia Sorrentino Esercitazione di economia aziendale per gli alunni delle classi 1ª ITE e 1ª dei nuovi IPSC 1. Segna con una crocetta la risposta esatta (alcuni quesiti

Dettagli

misurare di misura (SI) stabilito nel 1960 dalla maggior parte

misurare di misura (SI) stabilito nel 1960 dalla maggior parte misurare Negli anni scorsi abbiamo imparato a usare unità di misura utilizzate quasi dappertutto nel mondo e con le quali abbiamo a che fare quando, per esempio, comperiamo un litro di latte, un chilo

Dettagli

NUMERI. q Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

NUMERI. q Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali Contare, misurare. q Quanti denti ha un cane? Da adulto 42, se cucciolo 28 q Quanto è lunga la coda di una marmotta? Circa 20 cm q Quanto liquido contiene un cucchiaio da minestra? Circa 15 ml q Quanto

Dettagli

Lezione 2 - Grandezze e Unità di misura -

Lezione 2 - Grandezze e Unità di misura - Insegnamento di OPERAZIONI UNITARIE DELLA TECNOLOGIA ALIMENTARE Corso di Laurea in Scienze e Tecnologie Alimentari Prof. Marco Poiana Lezione 2 - Grandezze e Unità di misura - Grandezza fisica: Entità

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

LA MISURA DELLE GRANDEZZE

LA MISURA DELLE GRANDEZZE GEOMETRIA PREREQUISITI l l l conoscere le caratteristiche del sistema decimale e operare con esso conoscere le proprietaá delle quattro operazioni svolgere calcoli a mente ed in colonna con le quattro

Dettagli

INFERMIERISTICA E LA MATEMATICA

INFERMIERISTICA E LA MATEMATICA INFERMIERISTICA E LA MATEMATICA Torino, 6 marzo 2017 Dalla prescrizione farmacologica alla valutazione dell assistito: la responsabilità dell infermiere/infermiere pediatrico LA LETTERATURA ZONA GRIGIA

Dettagli

B) calcola la massa in grammi dei seguenti numeri di particelle, ovviamente a partire dalla massa in grammi di ogni singola particella.

B) calcola la massa in grammi dei seguenti numeri di particelle, ovviamente a partire dalla massa in grammi di ogni singola particella. Esercizi Vengono di seguito proposti esercizi per un rapido passaggio dalle masse al numero di particelle e viceversa; le masse possono essere espresse in grammi o in uma; le particelle in mol o in atomi

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Quali sono le grandezze fisiche? La fisica si occupa solo delle grandezze misurabili. Misurare una grandezza significa trovare un numero che esprime quante

Dettagli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli Equivalenze 12dm 2...mm 2 ; 14037cm 2...m 2 ; 12kg...cg; 12hm 2...m 2 ; 3km/h...m/s; 12,8m/s...km/h; 5,5km/min...m/s; 6700m/h...m/s; 34m/s...m/h; 3,75m/s...km/min; 350kg/m 3...g/cm 3 ; 14,4g/cm 3...kg/m

Dettagli

Come risolvere i quesiti dell INVALSI - terzo

Come risolvere i quesiti dell INVALSI - terzo Come risolvere i quesiti dell INVALSI - terzo Soluzione: Dobbiamo ricordare le precedenze. Prima le potenze, poi le parentesi tonde, quadre e graffe, seguono moltiplicazioni e divisioni nell ordine di

Dettagli

Rapporto tra soluto e solvente o soluzione

Rapporto tra soluto e solvente o soluzione Programma Misure ed Unità di misura. Incertezza della misura. Cifre significative. Notazione scientifica. Atomo e peso atomico. Composti, molecole e ioni. Formula molecolare e peso molecolare. Mole e massa

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

Lezione del 14/11/11 1C

Lezione del 14/11/11 1C Lezione del 14/11/11 1C Le percentuali Per trasformare una frazione in percentuale, basta scrivere la frazione ad essa equivalente con denominatore 100. Es. 271 pag. 119 Scrivi sotto forma di percentuali

Dettagli

Come possiamo conoscere il numero di atomi o molecole presenti in una definita quantità di sostanza?

Come possiamo conoscere il numero di atomi o molecole presenti in una definita quantità di sostanza? Come possiamo conoscere il numero di atomi o molecole presenti in una definita quantità di sostanza? Fisicamente è impossibile contare gli atomi contenuti in una data quantita di sostanza. E impossibile

Dettagli

PESO MOLECOLARE. Il peso molecolare di una sostanza è la somma dei pesi atomici di tutti gli atomi nella molecola della sostanza.

PESO MOLECOLARE. Il peso molecolare di una sostanza è la somma dei pesi atomici di tutti gli atomi nella molecola della sostanza. PESO MOLECOLARE Il peso molecolare di una sostanza è la somma dei pesi atomici di tutti gli atomi nella molecola della sostanza. H 2 O PA(H)=1,0 u.m.a. PA(O)=16,0 u.m.a. PM(H 2 O)=2 x 1,0 + 16,0 =18,0

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza

I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza LA RADICE QUADRATA I termini dell operazione sono: la base, l esponente e il valore della potenza: DOVE 4 è la base 3 è l esponente 64 è il valore della potenza L estrazione di radice, l operazione che

Dettagli

La quantità chimica LA MOLE

La quantità chimica LA MOLE La quantità chimica LA MOLE 1 QUANTO PESA UN ATOMO? Se lo misurassimo in grammi, l atomo di H, il più piccolo, avrebbe una massa di 1,6 x10-24 g. Per convenzione, si assegna un valore arbitrario (12) alla

Dettagli

FORMULE INVERSE. Nello studio della fisica si incontrano molte formule matematiche e spesso è necessario utilizarle in modo inverso.

FORMULE INVERSE. Nello studio della fisica si incontrano molte formule matematiche e spesso è necessario utilizarle in modo inverso. FORMULE INVERSE FORMULE INVERSE Nello studio della fisica si incontrano molte formule matematiche e spesso è necessario utilizarle in modo inverso. FORMULE INVERSE Nello studio della fisica si incontrano

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

Le disequazioni di primo grado

Le disequazioni di primo grado Le disequazioni di primo grado Cos è una disequazione? Una disequazione è una disuguaglianza tra due espressioni algebriche (una delle quali deve contenere un incognita) che può essere vera o falsa a seconda

Dettagli

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point)

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point) Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme

Dettagli

Le equazioni e i sistemi di primo grado

Le equazioni e i sistemi di primo grado Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle

Dettagli

CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE

CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE La misura delle grandezze fisiche

Dettagli

RAPPORTI E PROPORZIONI

RAPPORTI E PROPORZIONI MATEMATICA RAPPORTI E PROPORZIONI Prof.ssa M. Rosa Casparriello Scuola media di Fontanarosa PREREQUISITI Conoscere e saper applicare la proprietà invariantiva della divisione e la proprietà fondamentale

Dettagli

Le Grandezze e il Sistema Internazionale di misura

Le Grandezze e il Sistema Internazionale di misura Le Grandezze e il Sistema Internazionale di misura Si dice GRANDEZZA tutto ciò ce si può misurare. Esempio L altezza di una torre, il volume di una stanza, la superficie di un muro, l ampiezza di un angolo,

Dettagli

Le equazioni di I grado

Le equazioni di I grado Le equazioni di I grado ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Le equazioni abbiamo una uguaglianza tra due quantità (espressioni algebriche, perché nei due termini ci possono essere

Dettagli

1) Il grafico rappresenta la quantità di acqua contenuta in una vasca da bagno al passare del tempo.

1) Il grafico rappresenta la quantità di acqua contenuta in una vasca da bagno al passare del tempo. ESERCIZI DI SCIENZE 1) Il grafico rappresenta la quantità di acqua contenuta in una vasca da bagno al passare del tempo. A quale delle seguenti situazioni corrisponde il grafico? A. Il rubinetto è aperto

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Come risolvere i quesiti dell INVALSI - primo

Come risolvere i quesiti dell INVALSI - primo Come risolvere i quesiti dell INVALSI - primo Soluzione: Se mancano di 90 significa mancano a 90. Saranno presenti 90 9 = 81 litri. Soluzione: Se il trapezio è isoscele allora l angolo, inoltre l angolo

Dettagli

SISTEMA INTERNAZIONALE (S.I.) Le grandezze che si possono misurare sono dette grandezze fisiche.

SISTEMA INTERNAZIONALE (S.I.) Le grandezze che si possono misurare sono dette grandezze fisiche. 1. GRANDEZZE FONDAMENTALI SISTEMA INTERNAZIONALE (S.I.) Le grandezze che si possono misurare sono dette grandezze fisiche. Secondo il Sistema Internazionale (SI) ci sono sette grandezze fondamentali. 2.

Dettagli

La Misura Esercizi guida con soluzioni

La Misura Esercizi guida con soluzioni La misura Esercizi guida (UbiMath) - 1 La Misura Esercizi guida con soluzioni Grandezze e sistema metrico decimale Scrivi in forma di numerica e come potenza di dieci i seguenti prefissi SI. 1. mega- =

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Le equazioni di primo grado Definiamo prima di tutto cosa è una identità. Definizione : un identità è un uguaglianza, dove compaiono espressioni letterali, verificata per qualunque valore attribuito alle

Dettagli

matematica è il numero che indica in quante parti è stato diviso l intero è il numero che indica quante sono le parti da considerare

matematica è il numero che indica in quante parti è stato diviso l intero è il numero che indica quante sono le parti da considerare LE FRAZIONI Segna con X la defnizione giusta di frazione. X una frazione indica che ci sono diversi interi da dividere una frazione indica che un intero è stato diviso in parti uguali una frazione indica

Dettagli

GRANDEZZE FISICHE (lunghezza, area, volume)

GRANDEZZE FISICHE (lunghezza, area, volume) DISPENSE DI FISICA LA MISURA GRANDEZZE FISICHE (lunghezza, area, volume) Misurare significa: confrontare l'unità di misura scelta con la grandezza da misurare e contare quante volte è contenuta nella grandezza.

Dettagli

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO:

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO: RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 I NUMERI LA CUI RADICE QUADRATA E UN NUMERO NATURALE SI DICONO QUADRATI PERFETTI ESEMPIO 36 E UN QUADRATO PERFETTO:

Dettagli

Esperimenti. Emanuele Trulli I G

Esperimenti. Emanuele Trulli I G Esperimenti Emanuele Trulli I G Emanuele Trulli I G Teoria Emanuele Trulli I G IL CALIBRO DECIMALE Il calibro è uno strumento che serve a migliorare la sensibilità della riga millimetrata passando cioè

Dettagli

2. E L E M E N T I S T R U T T U R A L I E T E R R I T O R I A L I D I U N A Z I E N D A A G R A R I A

2. E L E M E N T I S T R U T T U R A L I E T E R R I T O R I A L I D I U N A Z I E N D A A G R A R I A 2. E L E M E N T I S T R U T T U R A L I E T E R R I T O R I A L I D I U N A Z I E N D A A G R A R I A Capitolo 2 - Elementi strutturali e territoriali di un azienda agraria 2. 1. G r a n d e z z e e u

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

EQUIVALENZE, PROPORZIONI, CALCOLI PERCENTUALI E RIPARTI

EQUIVALENZE, PROPORZIONI, CALCOLI PERCENTUALI E RIPARTI ATTIVITÀ DIDATTICHE 1 EQUIVALENZE, PROPORZIONI, CALCOLI PERCENTUALI E RIPARTI di Elena LAMBERTI Materie: DIRITTO E TECNICHE AMMINISTRATIVE DELLA STRUTTURA RICETTIVA (Classe 3 a IP Indirizzo Alberghiero)

Dettagli

REGOLE FACILI ITALIANO e MATEMATICA

REGOLE FACILI ITALIANO e MATEMATICA REGOLE FACILI ITALIANO e MATEMATICA -classi 3, 4, 5 scuola primaria- A cura di www.imparaconpietro.altervista.org INDICE SCHEDE REGOLE DI ITALIANO: Monosillabi 1 Articoli partitivi 2 Preposizioni 3 Aggettivi

Dettagli

0. ALGEBRA DI BOOLE E SISTEMI DI NUMERAZIONE

0. ALGEBRA DI BOOLE E SISTEMI DI NUMERAZIONE 0. ALGEBRA DI BOOLE E SISTEMI DI NUMERAZIONE ALGEBRA DI BOOLE Nel lavoro di programmazione capita spesso di dovere ricorrere ai principi della logica degli enunciati ed occorre conoscere almeno alcuni

Dettagli

Kangourou della Matematica 2016 Coppa a squadre Kangourou Ecolier Cervia, 6 maggio 2016

Kangourou della Matematica 2016 Coppa a squadre Kangourou Ecolier Cervia, 6 maggio 2016 Kangourou della Matematica 2016 Coppa a squadre Kangourou Ecolier Cervia, 6 maggio 2016 Quesiti 1. Chi sono? Sono uguale al triplo del mio doppio. Che numero sono? 2. La numerazione Al numero 7 sommiamo

Dettagli

1. LE GRANDEZZE FISICHE

1. LE GRANDEZZE FISICHE 1. LE GRANDEZZE FISICHE La fisica (dal greco physis, natura ) è una scienza che ha come scopo guardare, descrivere e tentare di comprendere il mondo che ci circonda. La fisica si propone di descrivere

Dettagli

4) 8 g di idrogeno reagiscono esattamente con 64 g di ossigeno secondo la seguente reazione:

4) 8 g di idrogeno reagiscono esattamente con 64 g di ossigeno secondo la seguente reazione: Esercizi Gli esercizi sulla legge di Lavoisier che seguono si risolvono ricordando che la massa iniziale, prima della reazione, deve equivalere a quella finale, dopo la reazione. L uguaglianza vale anche

Dettagli

MISURE DI MASSA E VOLUME

MISURE DI MASSA E VOLUME MISURE DI MASSA E VOLUME QUALI STRUMENTI SI UTILIZZANO PER MISURARE MASSA E VOLUME? STRUMENTO DI MISURA: Bilancia digitale Grandezza da misurare MASSA Unità di misura della massa grammi Caratteristiche

Dettagli

Disequazioni di 1 grado

Disequazioni di 1 grado Disequazioni di grado Disuguaglianze numeriche Esempio: < è una disuguaglianza numerica e si legge minore di Nota: posso anche scrivere ( maggiore di ) Esempio: (oppure < ) Proprietà delle disuguaglianze

Dettagli

Liceo Scientifico Marconi Delpino. Classi 1^ Materia: Fisica

Liceo Scientifico Marconi Delpino. Classi 1^ Materia: Fisica Liceo Scientifico Marconi Delpino Classi 1^ Materia: Fisica Compiti per le vacanze estive Gli alunni promossi devono svolgere soltanto gli esercizi del libro di testo, gli alunni con sospensione del giudizio

Dettagli

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre www.matematicamente.it Frazioni Frazioni Nome: Classe: Data:. Nella frazione A. è il denominatore, è il numeratore B. è il numeratore, è il denominatore C. Sia, sia sono detti numeratori D. Sia, sia sono

Dettagli

1) Il grafico rappresenta la quantità di acqua contenuta in una vasca da bagno al passare del tempo.

1) Il grafico rappresenta la quantità di acqua contenuta in una vasca da bagno al passare del tempo. ESERCIZI DI SCIENZE 1) Il grafico rappresenta la quantità di acqua contenuta in una vasca da bagno al passare del tempo. A quale delle seguenti situazioni corrisponde il grafico? A. Il rubinetto è aperto

Dettagli

Massa assoluta e relativa e mole

Massa assoluta e relativa e mole Massa assoluta e relativa e mole Massa atomica assoluta.. Massa di un atomo di un dato elemento. In questo caso si parla spesso di peso atomico assoluto, che viene espresso in grammi: l'ordine dei valori

Dettagli

Il passaggio al mondo macroscopico

Il passaggio al mondo macroscopico Il passaggio al mondo macroscopico Possiamo pesare un atomo? L atomo più piccolo (idrogeno, H) pesa 1.67 10 24 g!!! LA MOLE La mole La MOLE è la quantità di sostanza che contiene lo stesso numero di specie

Dettagli

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE 1 LA FISICA COME SCIENZA SPERIMENTALE OSSERVAZIONI SPERIMENTALI Studio di un fenomeno MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE Relazioni

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

per un altro; le più importanti sono quelle di seguito elencate.

per un altro; le più importanti sono quelle di seguito elencate. 2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,

Dettagli

II.d. Approssimazioni decimali

II.d. Approssimazioni decimali Approssimazioni decimali II.d L uso dei decimali nella vita quotidiana è collegato alle necessità di approssimazione. Il grado di approssimazione che si sceglie comporta la capacità di valutare quale precisione

Dettagli

2. Scrivi i numeri seguenti: 8h 2da 3u =... 12uk 1da 3c =... 3dak 34da 11m =... 22h 61u18d =...

2. Scrivi i numeri seguenti: 8h 2da 3u =... 12uk 1da 3c =... 3dak 34da 11m =... 22h 61u18d =... Compiti di matematica e scienze a. s. 2014 2015 classe 1 - COMPITO B Da eseguire su un quadernone. ARITMETICA Insiemi: ripassa a pag. 2, 4, 6, 8, 10 del libro. Es: 1. Dati gli insiemi A = {3; 4; 5; 6;

Dettagli

Le unità fondamentali SI. Corrente elettrica

Le unità fondamentali SI. Corrente elettrica ESERITAZIONE 1 1 Le unità fondamentali SI Grandezza fisica Massa Lunghezza Tempo Temperatura orrente elettrica Quantità di sostanza Intensità luminosa Nome dell unità chilogrammo metro secondo Kelvin ampere

Dettagli

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu Valitutti, Falasca, Tifi, Gentile Chimica concetti e modelli.blu 2 Capitolo 1 Misure e grandezze 3 Sommario 1. Le origini della chimica 2. Il metodo scientifico 3. Il Sistema Internazionale di unità di

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

a b a : b Il concetto di rapporto

a b a : b Il concetto di rapporto 1 Il concetto di rapporto DEFINIZIONE. Il rapporto fra due valori numerici a e b è costituito dal loro quoziente; a e b sono i termini del rapporto, il primo termine si chiama antecedente, il secondo si

Dettagli

Attività di precorso iniziale

Attività di precorso iniziale Attività di precorso iniziale Insegnamento di Fisica, Dipartimento di Scienze Agrarie Alimentari ed Ambientali Elisa Manoni Dipartimento di Fisica e Geologia, UniPG Lezione 2, 22/09/2015 Ordini di grandezza

Dettagli

Nel Sistema Internazionale l unità di misura dell angolo è il radiante

Nel Sistema Internazionale l unità di misura dell angolo è il radiante Scienze Motorie Grandezze fisiche Il Sistema Internazionale di Unità di Misura 1) Nel Sistema Internazionale il prefisso Giga equivale a a) 10 15 b) 10 12 c) 10 9 d) 10 6 e) 10 3 Nel Sistema Internazionale

Dettagli

Cifre significative delle misure di grandezze fisiche

Cifre significative delle misure di grandezze fisiche Cifre significative delle misure di grandezze fisiche Si definiscono grandezze fisiche tutte quelle entità con cui vengono descritti i fenomeni fisici e che sono suscettibili di una definizione quantitativa,

Dettagli