Progressioni aritmetiche e geometriche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Progressioni aritmetiche e geometriche"

Transcript

1 Progressioi ritmetiche e geometriche 7. Progressioi ritmetiche. Defiizioe. Si dt l successioe umeric:,, 3,, 5,...,,.... Ess rppreset u progressioe ritmetic se l differez fr qulsisi termie dell successioe ed il suo precedete è costte, cioè: = d (7.) d viee chimt rgioe dell progressioe. Quidi si vrà: = + d = + d = + d 3 = + d = + 3d... 3 (7.) I geerle, per il termie -esimo vremo: = + ( ) d (7.3) che rppreset l relzioe fodmetle fr il termie -esimo dell progressioe ritmetic, il termie e l rgioe costte d. Se volessimo ricvre il termie s- esimo (per es. il 7 ) cooscedo l r-esimo (per es. il 6 ) e l rgioe d o dovremmo fre ltro che usre l formul (7.3) mettedo l posto di -> s e di ->r, ossi: = + ( s r) d (7.) s r Dll (7.3) o (7.) si possoo ovvimete ricvre le relzioi iverse che permettoo di determire u icogit picere cooscedo le ltre due. Iserimeto di m medi ritmetici fr due estremi. U problem iteresste cosiste ell iserire m medi fr due estremi che chimimo e b. Per risolverlo dobbimo solo trovre l rgioe d dell progressioe ritmetic. Dll (7.3) si ottiee: b d = = (7.5) m + dove =m+. U esempio istruttivo cosiste ell iserire medio fr due estremi. Dll (7.5) si ottiee llor (m=):

2 b b d = = (7.6) m + b + b e quidi il medio m è ell posizioe: m = + = cioè m è proprio l medi ritmetic dei due umeri e b. Somm di termii cosecutivi di u progressioe ritmetic. Si rccot che il mestro delle elemetri di quello che srà chimto il re dei mtemtici, F. Guss (uo dei tre mtemtici più grdi di tutt l stori um ssieme d Archimede e Newto), propose questo problem sperdo di impegre i suoi studeti per lmeo or: Sommre i primi 00 umeri turli. Quello che chiedev il mestro er determire il risultto di: 00 = S00 = = Guss risolse il problem i molto meo di or, sez sbgli e scopredo u modo per eseguire l somm o solo dei primi 00 umeri turli, m che dei primi 000 o 0000 i poco tempo. Ecco come fece. Dispose i umeri d 00 i ordie crescete e poi li riscrisse llieti i colo ordidoli i modo decrescete. Ifie eseguì l somm i colo scopredo che otteev 0 ogi volt, ossi 00 volte (7.7).,, 3,..., 98, 99,00 00,99,98,..., 3,, (7.7) 0,0,0,...,0,0,0 00 Il risultto dell somm dei primi 00 umeri risultv essere quidi: + 00 S00 = 00 = 5050 (7.8) E fcile or estedere il rgiometo di Guss d u successioe quluque di cui si vogli determire l somm di termii cosecutivi di cui si oto il primo e l ultimo, otteedo l formul geerle: + S = (7.9) Quest formul richim d vicio l re di u trpezio: Somm delle bsi ( + ) per ltezz () diviso. I effetti possimo ttribuire ll (7.9) u sigificto geometrico cosiderdo l figur sottostte:

3 L somm S o è ltro quidi che il umero di pllii eri coteuti el trpezio rettgolo di bsi e e di ltezz. 7. Progressioi geometriche. Defiizioe. Si dt l successioe umeric:,, 3,, 5,...,,.... Ess rppreset u progressioe geometric se il rpporto fr qulsisi termie dell successioe ed il suo precedete è costte, cioè: = q (7.0) q viee chimt rgioe dell progressioe geometric. Quidi si vrà: = q = q = q 3 3 = q 3 = q... (7.) I geerle, per il termie -esimo vremo: q = (7.) che rppreset l relzioe fodmetle fr il termie -esimo dell progressioe geometric, il termie e l rgioe costte q. Se volessimo ricvre il termie s- esimo (per es. il 7 ) cooscedo l r-esimo (per es. il 6 ) e l rgioe q o dovremmo fre ltro che usre l formul (7.) mettedo l posto di -> s e di ->r, ossi: s r = q (7.3) s Dll (7.) o (7.3) si possoo ovvimete ricvre le relzioi iverse che permettoo di determire u icogit picere cooscedo le ltre due. r 3

4 Iserimeto di m medi geometrici fr due estremi. U problem iteresste cosiste ell iserire m medi geometrici fr due estremi che chimimo e b. Per risolverlo dobbimo solo trovre l rgioe q dell progressioe geometric. Dll (7.) si ottiee: b q = m+ (7.) dove =m+. U esempio istruttivo cosiste ell iserire medio geometrico fr due estremi. Dll (7.) si ottiee llor (m=): b q = (7.5) b e quidi il medio m è ell posizioe: m = = b cioè m è proprio l medi geometric dei due umeri e b. Il medio geometrico fr due estremi corrispode l medio proporziole di u proporzioe cotiu del tipo: : x = x : b x = b (7.6) E fcile dimostrre che l medi ritmetic è mggiore dell medi geometric. Scrivimo iftti: + b > b + b > b ( + b) > b + b b > 0 (7.7) ( b) > 0, b b Si ottiee l ugugliz delle due medie solo el cso ble i cui i vlori estremi e b sio uguli. Agli studeti quidi, coviee sempre frsi mettere el registro l medi ritmetic dei voti piuttosto che quell geometric. Qulche esempio.. Si dt l successioe: 3,,,. Dire se rppreset u progressioe geometric e clcolre l rgioe. Per essere u progressioe geometric è ecessrio e sufficiete che il rpporto fr due termii cosecutivi quluque si costte e vlg q, l rgioe. Si vede fcilmete che ciò è vero per l successioe riportt i quto il rpporto fr due termii cosecutivi è sempre q = 3.. Iserire medi geometrici fr e 86. Dll (7.) otteimo: = = = per cui l progressioe divet:, 6, 8, 5, 6, q + 3 3

5 3. Determire il termie di u progressioe geometric cooscedo = e 5 5 = 00. Questo esercizio si risolve determido prim l rgioe dell progressioe, e poi il termie. Si ottiee: 5 q = = = = = ± 5 00 : Nell ultimo pssggio bbimo ggiuto il sego ± dvti l 5 perché l idice dell rdice,, è pri e quidi si q=+5 che q= 5 possoo essere cosiderte rgioi ccettbili. Le due progressioi soo quidi: q=+5:,,, 0, q=-5:,,, 0, e quidi esistoo termii ccettbili: -0 e 0.. Determire l prte x di u segmeto lugo l che si medio proporziole fr il tutto e l prte rimete. Ossi x è l medi geometric fr il tutto e l prte rimete del segmeto. Questo problem clssico, permette di trovre l cosiddett sezioe ure di u segmeto. Di dti del problem si h: l : x = x : ( l x) (7.8) che risolt forisce: x 5 = 0.68 (7.9) l Questo umero è di strordiri importz soprttutto ell rte (rchitettur, scultur, pittur, music) perché esprime i sé u proporzioe rmoic fr le prti. Esso er già be oto i popoli tichi dgli egizii i greci fio tutto il medioevo e l riscimeto. Per ulteriori pprofodimeti leggere l dispes NUMERI. I quest sede voglimo otre come l sezioe ure di u segmeto poss essere determit clcoldo il limite: lim dell successioe di Fibocci: + = + (7.0) = e = I primi termii di quest successioe soo:,, 3, 5, 8, 3,, 3, 55, 89, Fermdoci solo questi, si otterrebbe per l sezioe ure u vlore pprossimto: 5

6 x l = vicio l vlore estto dto dll (7.9) meo di u prte su ! Somm dei termii di u progressioe geometric. Procedimo similmete quto bbimo già ftto per le progressioi ritmetiche clcoldo l somm S dei primi termii di u progressioe geometric. Scrivimo: S = qs = Fcedo l differez fr l prim e l secod ottegmo: + q S qs = + S = = q q ossi: q S = q (7.) L formul (7.) si può estedere quluque umero si vogli di termii. Risult subito chiro che se q> l somm di u umero eorme di termii di u progressioe geometric o h lcu seso perché il sigolo elemeto dell progressioe tede divetre sempre più grde e quidi tutt l somm diverge, ossi tede ll ifiito. I sitesi si può scrivere che: lim S = (q>). Il discorso è ivece completmete diverso se 0<q< perché i questo cso i termii tedoo divetre sempre più piccoli e l limite tedoo zero, ossi: lim = 0. Cos succede llor ll S? Coverge o diverge? Ad u primo rgiometo superficile verrebbe d dire che, sommdo ifiiti termii tutti di vlore fiito, l somm dovrebbe essere ifiit e quidi lim S = che per 0<q<. Ivece, come si dicev, le cose sto i modo completmete diverso; dll (7.) si vede che q 0 e quidi otteimo: S = (7.) q L somm di u ifiito umero di termii positivi tutti fiiti coverge verso u umero preciso! Adesso che lo bbimo dimostrto rigorosmete cpimo che ciò è rgioevole. Pesimo iftti di sommre le frzioi: = 0. otteedo pputo 0. Quest è che

7 l somm di u serie geometric di vlore iizile /0 e rgioe /0 che per l (7.) forisce come risultto: 0 0. = = = =. Così fcedo, simo riusciti determire l frzioe geertrice di u umero decimle periodico. Vedimo di ricvrci l regol che bbimo imprto memori ei primi i di scuol: L frzioe geertrice di u umero decimle periodico si ottiee mettedo l umertore il umero privto dell virgol meo il umero formto dll prte iter e dll tiperiodo (se c è) e l deomitore tti 9 qute soo le cifre del periodo e tti zeri qute soo le cifre dell tiperiodo. Esempi.. Frzioe geertrice di u umero periodico semplice. Determire l frzioe geertrice del umero:,53 ossi:, Scrivimo,53 =+ 0,53= L espressioe tr pretesi è u serie geometric di termie iizile /00 e di rgioe /00 per cui 00 per l (7.) si h: = = per cui otteimo: ,53 = + = = che è proprio l regol eucit Frzioe geertrice di u umero periodico composto. Determire l frzioe geertrice del umero:,76 ossi:, Scrivimo il umero come,7+ 0, 6 = L espressioe tr pretesi è u serie geometric di termie iizile /00 e di rgioe /0 per cui 0 per l (7.) si h: = = per cui otteimo: ( ) 76 7, 76 = = = = che è proprio l regol eucit. Il prdosso dell dicotomi e di Achille e l trtrug. Si rccot che el V secolo.c. il filosofo greco Zeoe di Ele ivetò lcui prdossi che poi divetroo fmosi. Fr questi sicurmete primeggio il prdosso dell dicotomi e di Achille e l trtrug. I u gr cmpestre, Achille deve percorrere l distz di Km. Zeoe, ttrverso u rgiometo sottile, coclude che Achille o rggiugerà mi l fie dell cors. Vedimo come 7

8 lo rgio. Achille, prim di percorrere il chilometro che lo sepr dl trgurdo deve percorrere mezzo chilometro. Dopo che h percorso il mezzo chilometro, prim di rrivre i fodo, deve percorrere ¼ di Km. ecc. Siccome per ogi trtto che percorre ci mette u tempo fiito (perché ciscu trtto per quto piccolo è sempre fiito) e dto che i trtti soo i umero ifiito il tempo totle è ifiito ed Achille o rggiugerà mi l fie. Il prdosso st el ftto che, ovvimete, Achille tglierà il trgurdo i u tempo dto d s/v dove s=km e v l su velocità (costte) lugo l gr; m llor dove st l errore? All luce di quto detto è fcile dre l rispost. Achille, del chilometro che lo sepr dll met, percorre i trtti:,,,,,... che soo u serie geometric di termie iizile ½ e di rgioe ½. Se, per semplicità, mmettimo che l su velocità si di Km/miuto, Achille impieg proprio ½ miuto per il primo trtto, ¼ di miuto per il secodo ecc. L somm di quest serie o è ifiit come sosteev Zeoe, pur essedo costituit d u somm ifiit di termii tutti fiiti. Iftti per l solit formul (7.) ess forisce come risultto (miuto)! Quidi si h: = = 8 6 = (7.3) E quest l grde scopert dei greci: scrivere come l somm ifiit di poteze di ½. Il secodo e più oto prdosso di tutt l tichità è u vrite del primo. Achille sfid u trtrug i u gr di velocità lugo u percorso di km. L trtrug prte co 00 m. di vtggio rispetto d Achille che come è oto er il più veloce di tutti gli Achei. Nell reltà Achille rggiuge e super co fcilità l let trtrug, m Zeoe, co u rgiometo simile quello precedete, dimostr che ciò o può ccdere. Iftti qudo Achille rggiuge il puto s 0 d cui è prtit l trtrug, ess si srà spostt el puto s ; qudo Achille vrà llor rggiuto il puto s, l trtrug si srà spostt el puto s ecc. I questo modo, che se Achille si vvicierà sempre più ll trtrug, o l rggiugerà mi! Acor u volt simo cduti el trello delle somme ifiite che ituitivmete ci fo pesre d u risultto ifiito. Suppoimo, cor per semplicità, che Achille viggi d u velocità di m/s e che si 0 volte mggiore di quell dell trtrug. Dopo 00 secodi Achille srà ell posizioe s 0 metre l trtrug si srà spostt ell posizioe s =0 m. Dopo ltri 0 s, Achille vrà rggiuto l posizioe s m l trtrug si srà spostt ell posizioe s = m. I solo secodo Achille colmerà questo metro m l trtrug si srà spostt di ltri /0 di m. E chiro che l serie dei tempi di percorrez di Achille co cui bbimo che fre è: /0+/00+. che rppreset u serie geometric di termie iizile 00 e rgioe /0. L somm di quest serie (sempre per l (7.)) è, s 8

9 cioè dopo +/9 s dll prtez Achille vrà rggiuto l trtrug e ll istte successivo l vrà supert. 9

10 Nome file: Progressioi Directory: C:\Roberto\WEB_scuol\Dispese Modello: C:\WINDOWS\Applictio Dt\Microsoft\Modelli\Norml.dot Titolo: Dispese di mtemtic Oggetto: Autore: Roberto Ftii Prole chive: Commeti: Dt crezioe: //00.07 Numero revisioe: 6 Dt ultimo slvtggio: //00.56 Autore ultimo slvtggio: Roberto Ftii Tempo totle modific5 miuti Dt ultim stmp: //00.57 Come d ultim stmp complet Numero pgie: 9 Numero prole:.987 (circ) Numero crtteri: 7.07 (circ)

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3

Dettagli

IL PROBLEMA DEI QUADRATI

IL PROBLEMA DEI QUADRATI IL PROBLEMA DEI QUADRATI MICHELE ROVIGATTI MARGHERITA MORETTI SIMONE MORETTI CATERINA COSTANZO GABRIELE ARGIRÒ 0. INTRODUZIONE. Il problem sce d u quesito di combitoric iserito el testo di u gr di mtemtic

Dettagli

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010

Matematica e-learning - Corso Zero di Matematica. I Radicali. Prof. Erasmo Modica A.A. 2009/2010 Mtemtic e-lerig - Corso Zero di Mtemtic I Rdicli Prof. Ersmo Modic ersmo@glois.it A.A. 2009/200 I umeri turli 2 Le rdici Abbimo visto che l isieme dei umeri reli è costituito d tutti e soli i umeri che

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

Appunti di Matematica per le Scienze Sociali

Appunti di Matematica per le Scienze Sociali 2014 Apputi di Mtemtic per le Scieze Socili Quello che vete imprto scuol (o lmeo u prte) m che o vi ricordte. [Digitre qui il suto del documeto. Di orm è u breve sitesi del coteuto del documeto. [Digitre

Dettagli

I numeri reali come sezione nel campo dei numeri razionali

I numeri reali come sezione nel campo dei numeri razionali I umeri reli come sezioe el cmpo dei umeri rzioli Come sppimo, el cmpo dei umeri rzioli, le quttro operzioi fodmetli soo sempre possibili, el seso che, effettudo sopr u quluque isieme fiito u sequel fiit

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

Appunti sui RADICALI

Appunti sui RADICALI Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studete di Mtemtic Spiez - Uiversità di Rom Diprtimeto di Mtemtic Guido Csteluovo we-site: www.selli87.ltervist.org APPUNTI SUI RADICALI DEFINIZIONE DI RADICALE INDICE PARI : Si chim rdice

Dettagli

LA PROPAGAZIONE DEGLI ERRORI:

LA PROPAGAZIONE DEGLI ERRORI: LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d

Dettagli

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche Liceo Scietifico di Treiscce Clsse Secod - MATEMATICA Esercizi per le vcze estive Prof. Mimmo Corrdo. Esegui le segueti scomposizioi i fttori Scomposizioi z z m m m c m m m m. Clcol M.C.D. e m.c.m. dei

Dettagli

Claudio Estatico

Claudio Estatico Cludio Esttico (esttico@dim.uige.it) Sistemi lieri: Algoritmo di Guss (Elimizioe Gussi) Lezioe bst su pputi del prof. Mrco Gvio Elimizioe Gussi ) Sistemi lieri. ) Mtrice ivers. Sistemi lieri ) Sistemi

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Compendio di Calcolo Combinatorio in preparazione all esame di stato

Compendio di Calcolo Combinatorio in preparazione all esame di stato Compedio di Clcolo Combitorio i preprzioe ll esme di stto Simoe Zuccher prile Idice Permutzioi semplici Permutzioi co ripetizioe Disposizioi semplici Disposizioi co ripetizioe 5 Combizioi semplici 6 Combizioi

Dettagli

E il più grande tra tutti i numeri interi positivi che dividono i numeri dati.

E il più grande tra tutti i numeri interi positivi che dividono i numeri dati. M.C.D. E il più grde tr tutti i ueri iteri positivi che dividoo i ueri dti. 4 = 144 = 4 M.C.D.= = 1 60 = 5 Si predoo cioè tutti i fttori coui co l espoete iore. Il M.C.D. tr due o più ooi è u ooio co coefficiete

Dettagli

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri 6 - Alisi umeric 6 Alisi umeric. Richimi di teori Zeri di u fuzioe, soluzioe pprossimt di u equzioe Se o è possibile determire lgebricmete gli zeri dell fuzioe f(), rdici dell equzioe f() =, si possoo

Dettagli

Trasmissione del calore con applicazioni

Trasmissione del calore con applicazioni Corsi di Lure i Igegeri Meccic Trsmissioe del clore co ppliczioi umeriche: iformtic pplict.. 4/5 Teori Prte II Ig. Nicol Forgioe Diprtimeto di Igegeri Civile E-mil: icol.forgioe@ig.uipi.it; tel. 5857 Sistemi

Dettagli

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a

identificando (a, 0) con a, (b, 0) con b e posto i =(0, 1) possiamo esprimere un numero complesso nella forma 2 = a + ib. 2 ) a Numeri Complessi E be oto che o esiste lcu umero rele x tle che x = o, equivletemete, che l equzioe x + = 0 o h soluzioi reli. Cosí come è possibile estedere i umeri rzioli, itroducedo i umeri reli, i

Dettagli

ANALISI MATEMATICA STUDIO DI FUNZIONI

ANALISI MATEMATICA STUDIO DI FUNZIONI ANALISI MATEMATICA STUDIO DI FUNZIONI. RELAZIONI Le fuzioi soo prticolri relzioi; le relzioi (birie) soo sottoisiemi del prodotto crtesio tr due isiemi. L trttzioe prte quidi dl cocetto di prodotto crtesio.

Dettagli

Argomento 9 Integrali definiti

Argomento 9 Integrali definiti Argometo 9 Itegrli defiiti Premess. Si f u fuzioe cotiu ell itervllo [, b]. L regioe di pio compres tr l sse x, le due rette verticli di equzioe x = e x = b, ed il grfico di f è dett trpezoide reltivo

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario

UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario UNIVERSITA DEGLI STUDI DI FERRARA Scuol Di Specilizzzioe Per L isegmeto Secodrio CLASSE DI SPECIALIZZAZIONE A049-A059 Tem: Progressioi Aritmetiche e Geometriche. Successioi. Limite di u Successioe. Fuzioi

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Calcolo delle Radici Veriano Veracini Veriano.Veracini@inwind.it

Calcolo delle Radici Veriano Veracini Veriano.Veracini@inwind.it Verio Vercii Clcolo delle rdici Clcolo delle Rdici Verio Vercii Verio.Vercii@iwid.it Premess Lo scopo di queste pgie è quello di descrivere lcui metodi prtici per il clcolo delle rdici, compresi lcui metodi

Dettagli

RADICALI RADICALI INDICE

RADICALI RADICALI INDICE RADICALI INDICE Rdici qudrte P. Rdici cubiche P. Rdici -esime P. Codizioi di esistez P. Proprietà ivritiv e semplificzioe delle rdici P. Poteze d espoete rziole P. 7 Moltipliczioe e divisioe di rdici P.

Dettagli

Introduzione al calcolo letterale: Monomi e polinomi

Introduzione al calcolo letterale: Monomi e polinomi http://www.tuttoportle.it/ A SCUOLA DÌ MATEMATICA Lezioi di mtemtic cur dì Eugeio Amitro Argometo. Itroduzioe l clcolo letterle: Moomi e poliomi U pgi del liro Al-Kitā l-mukhtṣr fī hīsā l-ğr w l-muqāl

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

IL PROBLEMA DELLE AREE

IL PROBLEMA DELLE AREE IL PROBLEMA DELLE AREE Il prolem delle ree è uo dei più tichi prolemi dell mtemtic e certmete che uo dei più importti, se si tiee coto che esso è ll se del clcolo itegrle. Nei tempi più remoti dell stori

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA GOMENTI INTODUTTIVI I COSI DI MTEMTIC DELL FCOLT DI INGEGNEI SEDE DI MODEN Espoimo i modo molto suito le deiizioi e le proprietà he verro riteute ote e utilizzte ei Corsi di Mtemti he seguiro Per u trttzioe

Dettagli

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI fior 5 esercizi sviluppti + molti limiti otevoli dimostrti di Leordo Clcoi Arevizioi: N = Numertore, D = Deomitore, sg = sego di L clssificzioe che segue è

Dettagli

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10

Materiale didattico relativo al corso di Matematica generale Prof. G. Rotundo a.a.2009/10 Materiale didattico relativo al corso di Matematica geerale Prof. G. Rotudo a.a.2009/10 ATTENZIONE: questo materiale cotiee i lucidi utilizzati per le lezioi. NON sostituisce il libro, che deve essere

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1.

n 1 = n b) {( 1) n } = c) {n!} In questo caso la successione è definita per ricorrenza: a 0 = 1, a n = n a n 1 per ogni n 1. Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 0: Riferimeti: R.Adams, Calcolo Differeziale - Si cosiglia vivamete di fare gli esercizi del testo. Successioi umeriche:

Dettagli

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare

Soluzione di sistemi lineari. Esistenza delle soluzioni. Quante soluzioni? 1 se singolare 0 o infinite se non singolare L (sistei) L (sistei) Soluzioe di sistei lieri Esistez delle soluzioi etodi per l soluzioe di sistei di equzioi lieri: Eliizioe di vriili etodo di Crer trice ivers Tipi di sistei: Sistei deteriti Sistei

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI CONCETTI INTRODUTTIVI FUNZIONI ESPONENZIALI POTENZE AD ESPONENTE RAZIONALE L teori delle poteze può essere estes che lle poteze che ho per espoete u NUMERO RAZIONALE INSIEME Q. Ho seso solo le poteze che

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Successioni di funzioni

Successioni di funzioni Successioi di fuzioi Defiizioe. U successioe di fuzioi f : A R, N coverge putulmete d u fuzioe f : A R se f (x) = f(x) per ogi x A. L successioe coverge uiformemete d f se ccde che per ogi > 0 esiste N

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Analisi Matematica I

Analisi Matematica I Uiversità di Pisa - orso di Laurea i Igegeria Edile-rchitettura alisi Matematica I Pisa, febbraio Domada La derivata della fuzioe f) log ) si è ) log )si B) log )cos ) log ) si cos loglog ) + si ) log

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

DAI RAZIONALI AI REALI

DAI RAZIONALI AI REALI DAI RAZIONALI AI REALI. L isieme dei umeri rzioli. Le operzioi fr umeri rzioli: ddizioe, moltipliczioe, sottrzioe e divisioe.. L elevmeto potez. L ordimeto.. Proprietà delle disuguglize (?disuguglize e

Dettagli

1. Introduzione. disegnando le rette verticali x =1/4 ; x =1/2; e x =3/4 come in Figura ; S 3 ; S 2. ; ed S 4

1. Introduzione. disegnando le rette verticali x =1/4 ; x =1/2; e x =3/4 come in Figura ; S 3 ; S 2. ; ed S 4 Gli itegrli Gli itegrli. Itroduzioe Gli itegrli Le ppliczioi del clcolo itegrle soo svrite: esistoo, iftti, molti cmpi, dll fisic ll igegeri, dll iologi ll ecoomi, i cui tli ozioi trovo o poche ppliczioi.

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Calcolo combinatorio. Definizione

Calcolo combinatorio. Definizione Clcolo comitorio Lortorio di Bioiformtic Corso A 5-6 Defiizioe Il Clcolo Comitorio è l isieme delle teciche che permettoo di cotre efficietemete il umero di possiili scelte, comizioi, lliemeti etc. di

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet:

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet: - - Fuzioi Defiizioi fodmetli. Dti due isiemi o vuoti X e Y si chim ppliczioe o fuzioe d X Y u relzioe tr i due isiemi che d ogi X f corrispodere uo ed u solo y Y. Se y è l immgie di trmite f, si scrive

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI FATTI NUMERICI & PROPRIETÀ dell SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE lle SUPERIORI QUADRATI & RADICI NOTEVOLI ² = = ² = 4 4 = ² = 9 9 = 4² = 6 6 = 4 5² = 5 5 = 5 6² = 6 6

Dettagli

10. FUNZIONI CONTINUE

10. FUNZIONI CONTINUE . FUNZIONI CONTINUE DEFINIZIONE DI CONTINUITÀ DI UNA FUNZIONE IN UN PUNTO 46 oppure: def. f cotiu i lim f ( ) = f ( ) def. f cotiu i lim f ( + h ) = f ( ) h Il cocetto è vermete fodmetle e quidi dimo d

Dettagli

15 - Successioni Numeriche e di Funzioni

15 - Successioni Numeriche e di Funzioni Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 15 - Successioi Numeriche e di Fuzioi Ao Accademico 2013/2014 M Tummiello, V Lacagia,

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Programma (orientativo) secondo semestre 32 ore - 16 lezioni

Programma (orientativo) secondo semestre 32 ore - 16 lezioni Programma (orietativo) secodo semestre 32 ore - 6 lezioi 3 lezioi: successioi e serie 4 lezioi: itegrali 2-3 lezioi: equazioi differeziali 4 lezioi: sistemi di equazioi e calcolo vettoriale e matriciale

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

ARITMETICA E ALGEBRA

ARITMETICA E ALGEBRA ARITMETICA E ALGEBRA SEZIONE A INIZIAMO CON UN PROBLEMA Fttorizzzioe e zeri di poliomi CAPITOLO CAPITOLO Il prolem del cotre Elemeti di se del clcolo comitorio Il cmpo ordito dei umeri reli MATEMATICA

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

La base naturale dell esponenziale

La base naturale dell esponenziale La base aturale dell espoeziale Beiamio Bortelli 7 aprile 007 Il problema I matematica, ci è stato detto, la base aturale della fuzioe espoeziale è il umero irrazioale: e =, 7888... Restao, però, da chiarire

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso itegrato di Matematica per le scieze aturali ed applicate Materiale itegrativo Paolo Baiti Lorezo Freddi Dipartimeto di Matematica e Iformatica, Uiversità di Udie, via delle Scieze 206, 3300 Udie,

Dettagli

Analisi Matematica I. Università di Padova, Corsi di Laurea in Ingegneria. Paolo Guiotto

Analisi Matematica I. Università di Padova, Corsi di Laurea in Ingegneria. Paolo Guiotto Alisi Mtemtic I Uiversità di Pdov, Corsi di Lure i Igegeri Polo Guiotto ii Premess Questo mterile copre u primo corso di Alisi Mtemtic per corsi di Lure di idirizzo scietifico. L cceto è posto sullo sviluppo

Dettagli

Richiami sulle potenze

Richiami sulle potenze Richiami sulle poteze Dopo le rette, le fuzioi più semplici soo le poteze: Distiguiamo tra: - poteze co espoete itero - poteze co espoete frazioario (razioale) - poteze co espoete reale = Domiio delle

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli