Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione"

Transcript

1 Prestiti divisi 1 I prestiti obbligazionari 1.1 Introduzione Finora ci siamo occupati di prestiti indivisi (mutui in cui un unico soggetto (creditore o mutuante presta denaro ad un unico soggetto debitore (mutuatario. Nella pratica può accadere che per reperire liquidità, specie se di ingente dimensione, società ed enti pubblici ritengano opportuno ricorrere a prestiti obbligazionari, cioè prestiti il cui importo complessivo è frazionato (diviso in più parti (obbligazioni. Per l emittente, il prestito obbligazionario rappresenta un debito a medio-lungo termine nei confronti di più soggetti creditori (obbligazionisti. Le obbligazioni possono essere sottoscritte dai creditori, in sede di emissione del prestito, oppure possono essere acquistate sul mercato secondario. Gli obbligazionisti sono creditori di un unico soggetto debitore (l emittente, per importi rappresentati dalle obbligazioni in cui è stato frazionato il prestisto. L emittente ha l obbligo nei confronti di ogni creditore, di corrispondere un interesse (periodico o alla scadenza e di rimborsare il capitale di rimborso alla scadenza dell obbligazione o a scadenze periodiche prefissate nel piano di rimborso del prestito. L emissione del prestito prevede la formulazione di un programma nel quale devono essere indicati l ammontare del capitale sociale sottoscritto e versato dalla società che emette il prestito; l ammontare complessivo del prestito, la sua durata, la modalità di rimborso, il tasso di remunerazione (detto anche tasso di obbligazione, il numero e le caratteristiche tecniche delle obbligazioni emesse, specificando il valore nominale, il prezzo di emissione, il prezzo di rimborso e la modalità di pagamento delle cedole. Per maggiori dettagli si veda il par. 2: Valutazione dei titoli a reddito fisso in Mercato dei titoli a reddito fisso. Età dell obbligazione, vita residua, vita media residua Supponiamo che il piano di estrazione delle obbligazioni emesse sia prefissato in partenza, sia noto ed immutabile. Per ogni singola obbligazione vivente definiamo l età, la vita residua e la vita media residua. 1

2 L età di un obbligazione vivente è il tempo già trascorso dalla sua emissione. Per tale obbligazione la vita residua è la variabile casuale che misura il tempo durante il quale il titolo risulterà ancora in circolazione, prima della sua estrazione, cioè prima del suo rimborso. La vita media residua, che indichiamo con e k, è il valor medio della variabile casuale vita residua. Calcoliamo la vita media residua e k dell obbligazione di età k, trascorsi quindi k anni dall emissione del prestito. Supponiamo che siano state emesse N obbligazioni da rimborsare in n anni mediante estrazioni annuali a sorte di N 1, N 2,..., N n obbligazioni, rispettivamente agli anni 1, 2,..., n, rispettando il vincolo N = N 1 + N N n, cioè la somma delle obbligazioni estratte deve essere pari al numero delle obbligazioni emesse. Indichiamo con il numero delle obbligazioni viventi dopo la k-esima estrazione, avremo L 0 = N = N (N 1 + N N k, k (1, 2,..., n. Consideriamo una di tali obbligazioni e calcoliamo la probabilità t p k che essa sia ancora viva dopo l estrazione prevista t anni più tardi, cioè alla fine dell anno (k + t dall emissione. Dato che in ogni estrazione tutte le obbligazioni viventi hanno una comune probabilità di essere estratte (beninteso, a parità di taglio, risulta allora tp k = +t, mentre la probabilità t/1 q k che quell obbligazione sopravviva per t anni e venga estratta esattamente dopo un altro anno, cioè dopo (k + t + 1 anni dall emissione, vale t/1q k = N k+t+1. La vita media residua e k risulta allora e k = 1 Nk Nk (n k N n, k (0, 1,..., n. Facciamo un esempio. Acquisto oggi un obbligazione emessa 15 anni fa, al prezzo di 102. Il prestito è diviso in obbligazioni, ciascuna dal valore nominale di euro, cedole semestrali al 2% semestrale, valore di rimborso 104, estrazioni di 100 obbligazioni ogni anno. Calcola la vita media residua dell obbligazione acquistata. Oggi, delle obbligazioni emesse ne sono già state rimborsate = e ne restano da rimborsare 500, ogni anno 100 per i prossimi 5 anni. La probabilità che l obbligazione sia estratta tra 1, 2, 3, 4, 5 anni è pari ad 1 5 e quindi la vita media residua risulta essere = 3 anni. Tutti gli altri dati riportati nell esempio non servono. 2

3 2 Ammortamento di prestiti obbligazionari Mettiamoci nel caso più semplice in cui vengono emesse N obbligazioni, ognuna del valore nominale C e cedola annuale Ci. Il capitale da rimborsare a ciascuna delle N k obbligazioni da estrarre alla fine dell anno k, con k {1, 2,..., n}, è pari a c k, importo eventualmente variabile con k. Al termine dell anno k l emittente deve pagare: l importo C k = c k N k per rimborsare il capitale previsto a ciascuna delle N k obbligazioni estratte; l importo I k = (Ci 1 per pagare le cedole a ciascuna delle 1 obbligazioni ancora viventi alla precedente estrazione. La cedola Ci è l interesse semplice calcolato sul valore nominale C della singola obbligazione, dato il tasso d interesse i, conforme alla periodicità di pagamento. Al termine dell anno k l emittente paga l importo complessivo R k rata = C k + I k = c k N k + (Ci 1. quota capitale quota interessi La quota capitale C k misura l esborso necessario per ritirare dalla circolazione le N k obbligazioni il cui rimborso è programmato per la fine dell anno k, momento al quale il debito residuo si riduce in misura pari a CN k. La differenza (c k N k CN k deve essere quindi contabilizzata come minus- o plus-valenza patrimoniale. Brevemente illustriamo i metodi utilizzati per ammortizzare un prestito obbligazionario: il metodo italiano e il metodo francese con gestione dei residui. Metodo italiano Supponiamo che siano state emesse N obbligazioni, da rimborsare in n anni mediante estrazioni annuali. Calcoliamo la successione {N k } di interi positivi con somma N. Nota la successione {N k } delle obbligazioni estratte ogni anno e la successione {c k } dei capitali di rimborso, calcoliamo la successione delle quote capitali {C k } ; calcoliamo poi la successione delle obbligazioni viventi e a partire da quest ultima calcoliamo la successione delle quote interessi {I k } e poi quella delle rate {R k }. Metodo francese (con gestione dei residui L emittente rimborsa il prestito obbligazionario pagando la successione {R k } delle rate costanti con k. Mettiamoci nel caso più semplice: N obbligazioni emesse alla pari, tutte di un comune taglio, dal valore nominale C, tasso annuo d obbligazione i, cedole annuali, rimborso alla pari. Calcoliamo la rata annua costante necessaria per ammortizzare il prestito di importo NC. 3

4 Per la condizione di equità prospettiva sulle rate risulta R 1 vn i i = NC e quindi R = (NC 1 v n. Ci renderemo conto tra breve della pratica impossibilità che tutto quadri in modo che questa sia davvero la rata R = R 1 = R 2 = = R n da pagare ogni anno per ammortizzare il nostro debito. Dalla rata R 1 = R,che chiamiamo rata teorica del 1 anno, deduciamo l importo I 1 = (CiL 0 = (CiN destinato al pagamento delle prime cedole; resta così disponibile la quota capitale teorica C 1 = R I 1, con la quale rimborsiamo un numero N 1 di obbligazioni pari al massimo intero contenuto in C 1 /C, ( C1 N 1 =. C La rata pratica R 1 del 1 anno sarà pari alla somma tra la quota interessi I 1 e la quota capitale pratica C 1 = N 1 C. Rimane quindi un residuo pari a r 1 = R 1 R 1 = R R 1 = R I 1 C 1 = R (CiN N 1 C. Alla fine del 2 anno, aggiungiamo alla rata R il montante (1+ir 1 del residuo dell anno 1 ed otteniamo così la rata teorica calcoliamo poi l importo R 2 = R + (1 + ir 1 ; I 2 = (CiL 1 = (Ci(N N 1 e dedotto I 2 da R 2 ci resta disponibile C 2, la quota capitale teorica con la quale rimborsiamo N 2, il massimo numero intero di obbligazioni contenuto in ( C 2 /C. Calcoliamo ora la quota capitale pratica C 2 = N 2 C la cui somma con I 2 genera la rata pratica R 2 del 2 anno. Infine calcoliamo il residuo r 2 = R 2 R 2, differenza tra la rata teorica R 2 e la rata pratica R 2, il cui montante (1 + ir 2 si aggiunge ad R per ottenere la rata teorica R 3 del 3 anno. 4

5 Procediamo così di anno di anno fino all ultima scadenza. In questo modo, alla successione di n rate costanti di comune importo R sostituiamo la successione delle rate pratiche, calcolate con la procedura detta gestione dei residui. La rendita descritta dalle rate pratiche deve avere lo stesso valore attuale NC della rendita a rata R costante, garantendo così l equità dell operazione e il requisito di interezza richiesto sul numero N k di obbligazioni estratte. Facciamo un esempio. Un prestito suddiviso in obbligazioni, ciascuna dal valore nominale di 500 euro, è rimborsato in due anni con il metodo francese. Le obbligazioni prevedono cedole annue calcolate al 5, 5% annuo e sono rimborsate alla pari. Calcola le due rate pratiche. Il prestito ammonta a = euro. Calcoliamo le rate teoriche 0, 055 R = , , 07 euro. Al termine del primo anno occorre pagare le cedole a tutte le obbligazioni emesse. Ogni singola cedola ammonta a 500 0, 055 = 27, 50 euro, per cui la prima quota interessi I 1 = 27, = euro e quindi la prima quota capitale teorica è , = , 07 euro con la quale rimborsiamo , 07 = , obbligazioni. 500 La prima quota capitale pratica e la rispettiva rata pratica sono C 1 = = R 1 = = generando un residuo di , = 270, 07 euro. Al termine del secondo anno, aggiungo il montante del residuo alla rata teorica 270, 07 1, , e con questa somma posso pagare la seconda quota interessi I 2 = 27, 50 ( = 27, = che deduco dalla rata teorica ottenendo così la seconda quota capitale teorica = con la quale rimborso un numero di obbligazioni pari a = , 500 cioè tutte quelle in circolazione, per cui la seconda rata pratica è pari a R 2 = = euro. 5

6 3 Valore, nuda proprietà, usufrutto Valore, nuda proprietà, usufrutto del prestito Anche per i prestiti obbligazionari, come per quelli indivisi, si possono calcolare il valore W k (x del prestito all epoca k, la nuda proprietà T k (x e l usufrutto U k (x, grandezze calcolate al tasso di valutazione composto x. Definiamo ora il valore, la nuda proprietà e l usufrutto di una singola obbligazione. L usufrutto U k (x di un obbligazione di età k è il valore all anno k (cioè trascorsi k anni dall emissione dell obbligazione al tasso d interesse composto x, della rendita formata dalle future cedole che il possessore dell obbligazione incasserà fino all estrazione del titolo. In simboli U k (x = (Ci(1 v + 1 p k v p k v n k 1 p k v n k. Il possesore di un obbligazione vivente di età k è pure titolare di un altra rendita, anch essa aleatoria: quella descritta dai capitali di rimborso, nel senso che egli incasserà rispettivamente tra 1, 2,..., (n k anni i valori di rimborso c k+1, c k+2,..., c n, a seconda che il titolo sia estratto alla fine dell anno (k + 1, (k + 2,..., n, con le rispettive probabilità 0/1 q k, 1/1q k,..., n k 1/1q k. Ciò premesso, la nuda proprietà T k (x di un obbligazione di età k è il valore di tale rendita, sempre riferito all epoca k di valutazione, calcolato al tasso d interesse composto x: T k (x = = c k+1 v ( 0/1q k + ck+2 v 2 ( 1/1q k + + cn v n k ( n k 1/1q k = = c k+1 vn k+1 + c k+2 v 2 N k c n v n k N n. Infine, il valore dell obbligazione di età k è il valore W k (x della rendita aleatoria descritta da tutti i futuri capitali (cedole e capitali di rimborso che quel titolo consente di incassare prima del suo ritiro dalla circolazione. Ovviamente risulta W k (x = U k (x + T k (x. Facciamo un esempio: Un prestito obbligazionario prevede obbligazioni da rimborsare in 10 anni con il metodo italiano, ognuna dal valore nominale di euro, cedole annuali al tasso d interesse annuo del 4%, valore di rimborso euro. Calcola, al tasso d interesse annuo composto del 3%, la nuda proprietà, l usufrutto e il valore di un obbligazione vivente al termine del sesto anno. Ogni anno vengono rimborsate = obbligazioni e pagate le cedole a quelle circolanti fino a quel momento. L importo della cedola di ciascuna obbligazione è pari a , 04 = 80 euro. Al termine del sesto anno sono in circolazione = obbligazioni per cui la nuda proprietà calcolata al 3% annuo composto risulta 6

7 ( , , , = , , , 03 l usufrutto é pari a ( , , , e il valore è dato dalla somma di nuda proprietà e usufrutto 1 905, , 60 = 2 093, 61. 1, , , 60 7

Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione. 1.2 Grandezze fondamentali

Prestiti divisi. 1 I prestiti obbligazionari. 1.1 Introduzione. 1.2 Grandezze fondamentali Prestiti divisi 1 I prestiti obbligazionari 1.1 Introduzione Nell ammortamento di prestiti indivisi (mutui), un unico soggetto (creditore o mutuante) presta denaro ad un unico soggetto debitore (mutuatario).

Dettagli

RIMBORSO DI UN PRESTITO

RIMBORSO DI UN PRESTITO RIMBORSO DI UN PRESTITO Conoscenze Conoscere le principali forme di rimborso di un prestito Saper individuare gli elementi caratterizzanti un rimborso di un prestito Abilità Saper determinare le principali

Dettagli

Corso teorico - pratico di contabilità generale e bilancio

Corso teorico - pratico di contabilità generale e bilancio Corso teorico - pratico di contabilità generale e bilancio a cura di: Enrico Larocca Dottore Commercialista e Revisore Contabile in Matera L ammortamento del disaggio su prestiti, il rimborso dei prestiti

Dettagli

Note didattiche I Prestiti Obbligazionari

Note didattiche I Prestiti Obbligazionari Note didattiche I Prestiti Obbligazionari 18 marzo 2008 1 Il prestito obbligazionario: definizione Mediante il prestito obbligazionario le società per azioni e in accomandita per azioni ottengono finanziamenti

Dettagli

I prestiti obbligazionari. 23 marzo 2011

I prestiti obbligazionari. 23 marzo 2011 I prestiti obbligazionari 23 marzo 2011 1 Il prestito obbligazionario definizione Mediante il prestito obbligazionario le società per azioni e in accomandita per azioni ottengono finanziamenti a medio

Dettagli

Capitolo undicesimo I PRESTITI OBBLIGAZIONARI

Capitolo undicesimo I PRESTITI OBBLIGAZIONARI Capitolo undicesimo I PRESTITI OBBLIGAZIONARI 11.1. Il prestito obbligazionario: aspetti giuridici ed economicoaziendali Il prestito obbligazionario rappresenta una modalità di finanziamento a medio-lungo

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

Tassi a pronti ed a termine (bozza)

Tassi a pronti ed a termine (bozza) Tassi a pronti ed a termine (bozza) Mario A. Maggi a.a. 2006/2007 Indice 1 Introduzione 1 2 Valutazione dei titoli a reddito fisso 2 2.1 Titoli di puro sconto (zero coupon)................ 3 2.2 Obbligazioni

Dettagli

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria

Capitolo 1. Leggi di capitalizzazione. 1.1 Introduzione. 1.2 Richiami di teoria Indice 1 Leggi di capitalizzazione 5 1.1 Introduzione............................ 5 1.2 Richiami di teoria......................... 5 1.2.1 Regimi notevoli...................... 6 1.2.2 Tassi equivalenti.....................

Dettagli

ISTITUZIONI DI ECONOMIA AZIENDALE

ISTITUZIONI DI ECONOMIA AZIENDALE ISTITUZIONI DI ECONOMIA AZIENDALE LE OPERAZIONI DI FINANZIAMENTO CON CAPITALE DI TERZI 1 LE OPERAZIONI DI FINANZIAMENTO CON CAPITALE DI TERZI OPERAZIONI A BREVE TERMINE - rapporto di conto corrente - operazioni

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

Rilevazione delle operazioni tipiche di una s.p.a.

Rilevazione delle operazioni tipiche di una s.p.a. Esercitazioni svolte 2008 Scuola Duemila 91 Esercitazione n. 17 Rilevazione delle operazioni tipiche di una s.p.a. Obiettivi Saper fare: effettuare le procedure di calcolo relative alle operazioni tipiche

Dettagli

STRUMENTO DESCRIZIONE ASPETTI BANCARI ASPETTI FISCALI

STRUMENTO DESCRIZIONE ASPETTI BANCARI ASPETTI FISCALI Mutuo ( a medio/lungo termine, utilizzato per gli investimenti di immobilizzazioni) È un per immobilizzazioni, come l acquisto, la costruzione o la ristrutturazione di immobili, impianti e macchinari.

Dettagli

I titoli obbligazionari

I titoli obbligazionari I titoli obbligazionari 1 Tipologie di titoli La relazione di equivalenza consente di attribuire un valore oggi ad importi monetari disponibili ad una data futura. In particolare permettono di determinare

Dettagli

Ammortamento disaggio di emissione Analisi di caso

Ammortamento disaggio di emissione Analisi di caso Albez edutainment production Ammortamento disaggio di emissione Analisi di caso Classe IV ITC Il caso Il 5/03/n il consiglio di amministrazione della Thea spa, con azioni quotate in mercati regolamentati,

Dettagli

L EMISSIONE DI OBBLIGAZIONI CONVERTIBILI

L EMISSIONE DI OBBLIGAZIONI CONVERTIBILI L EMISSIONE DI OBBLIGAZIONI CONVERTIBILI di Emanuele Rossi e Andrea Sergiacomo 1. Premessa Sia le S.P.A. che le S.A.P.A. ed in particolari casi anche le cooperative 1, hanno la facoltà di emettere prestiti

Dettagli

Esercitazione 24 marzo

Esercitazione 24 marzo Esercitazione 24 marzo Esercizio 1 Una persona contrae un prestito di 25000 e, che estinguerà pagando le seguenti quote capitale: 3000 e fra 6 mesi, 5000 e fra un anno, 8000 e fra 18 mesi, 4000 e fra 2

Dettagli

LA GESTIONE FINANZIARIA:REPERIMENTO DI RISORSE E INVESTIMENTI IN TITOLI

LA GESTIONE FINANZIARIA:REPERIMENTO DI RISORSE E INVESTIMENTI IN TITOLI Esercizio 3 In data 1/6 la società Delta S.p.A. ottiene un anticipazione bancaria con scadenza al 1/8 per l importo di 10.000. Gli interessi sono liquidati in via posticipata ed ammontano a 500. In data

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Facoltà di Economia Corso di Ragioneria Generale ed Applicata IL PRESTITO OBBLIGAZIONARIO Dott.ssa Irene Gnani NOZIONE: - È UNA FORMA DI FINANZIAMENTO A MEDIO-LUNGO TERMINE

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

I Prestiti Obbligazionari

I Prestiti Obbligazionari I Prestiti Obbligazionari I PRESTITI OBBLIGAZIONARI I prestiti obbligazionari sono debiti di finanziamento tipici della s.p.a. che, con essi, si procura mezzi finanziari per sviluppare la propria attività

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 8 Ammortamenti a tasso costante Classificazione Ammortamento

Dettagli

Esercizi svolti di Matematica Finanziaria

Esercizi svolti di Matematica Finanziaria Esercizi svolti di Matematica Finanziaria Anno Accademico 2007/2008 Rossana Riccardi Dipartimento di Statistica e Matematica Applicata all Economia Facoltà di Economia, Università di Pisa, Via Cosimo Ridolfi

Dettagli

Principi contabili IAS/IFRS : IL BILANCIO DELLE BANCHE ESERCITAZIONE del 21/02/2011

Principi contabili IAS/IFRS : IL BILANCIO DELLE BANCHE ESERCITAZIONE del 21/02/2011 Principi contabili IAS/IFRS : IL BILANCIO DELLE BANCHE ESERCITAZIONE del 21/02/2011 Dott. PAOLO VITALI Università degli Studi di Bergamo Anno accademico 2010/2011 Bergamo, 21 febbraio 2011 Indice degli

Dettagli

CASSA RURALE ED ARTIGIANA DI CANTÙ Banca di Credito Cooperativo Società Cooperativa CONDIZIONI DEFINITIVE

CASSA RURALE ED ARTIGIANA DI CANTÙ Banca di Credito Cooperativo Società Cooperativa CONDIZIONI DEFINITIVE in qualità di Emittente Sede legale in Cantù, Corso Unità d Italia 11 Iscritta all Albo delle Banche al n. 719 (Cod. ABI 08430), all Albo delle Cooperative al n. A165516, al Registro delle Imprese di Como

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

Prestiti obbligazionari

Prestiti obbligazionari Prestiti obbligazionari Agenda Introduzione Aspetti economico aziendali Aspetti giuridici Aspetti contabili Applicazioni Aspetti economico - aziendali La copertura di fabbisogni finanziari di medio-lungo

Dettagli

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA

ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA ITG A. POZZO CORSO DI ESTIMO CLASSE 4^LB NOZIONI DI MATEMATICA FINANZIARIA Anno scolastico 2008/09 Prof. Romano Oss Matematica finanziaria è uno strumento di calcolo basato sulla teoria dell interesse,

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

Titoli Obbligazionari, Duration e Immunizzazione. Laura Gardini

Titoli Obbligazionari, Duration e Immunizzazione. Laura Gardini Titoli Obbligazionari, Duration e Immunizzazione Laura Gardini Indice 1 Indici Temporali 3 1.0.1 Scadenza Media Aritmetica (Average Term to Maturity) 4 1.0.2 Scadenza Media Finanziaria (o Scadenza Media)....

Dettagli

Tema n. 1 1 quesito: Prospetto 1

Tema n. 1 1 quesito: Prospetto 1 Tema n. 1 In data 31/12/02 si decide lo scorporo di un ramo d azienda dalla società Gamma S.p.A. - che ha i- niziato la propria attività in data 1/1/1995 - ed il suo successivo conferimento nella società

Dettagli

Operazioni di Finanziamento da Fonte Interna ed Esterna

Operazioni di Finanziamento da Fonte Interna ed Esterna Operazioni di Finanziamento da Fonte Interna ed Esterna Rilevazioni contabili in Partita Doppia relative ad operazioni di finanziamento Fonte interna Fonte esterna (mutui e prestiti obbligazionari) Lezione

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di Capitalizzazione e attualizzazione finanziaria Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di interesse rappresenta quella quota di una certa somma presa

Dettagli

Moneta, titoli e tasso di interesse. Antonella Stirati

Moneta, titoli e tasso di interesse. Antonella Stirati Moneta, titoli e tasso di interesse Antonella Stirati Principali attività finanziarie Esistono diversi tipi di attività finanziarie che possono essere acquistate e detenute da famiglie, banche e imprese

Dettagli

II) SCRITTURE DI GESTIONE F) OTTENIMENTO CAPITALE DI TERZI G) OPERAZIONI STRAORDINARIE

II) SCRITTURE DI GESTIONE F) OTTENIMENTO CAPITALE DI TERZI G) OPERAZIONI STRAORDINARIE CONTABILITA GENERALE 20 II) SCRITTURE DI GESTIONE F) OTTENIMENTO CAPITALE DI TERZI G) OPERAZIONI STRAORDINARIE 1 dicembre 2005 Ragioneria Generale e Applicata - Parte seconda - La contabilità generale

Dettagli

3 Le operazioni finanziarie 21 3.1 Criteri di scelta in condizioni di certezza... 22 3.1.1 Il criterio del VAN... 22 3.1.2 Il criterio del TIR...

3 Le operazioni finanziarie 21 3.1 Criteri di scelta in condizioni di certezza... 22 3.1.1 Il criterio del VAN... 22 3.1.2 Il criterio del TIR... Indice 1 I tassi di interesse 1 1.1 Tasso di interesse Semplice.................... 2 1.2 Tasso di interesse Composto................... 3 1.3 Esempi tasso semplice...................... 4 1.4 Esempi tasso

Dettagli

Informazioni di base...3. Principali tipologie di mutuo...5 MUTUO A TASSO FISSO...5 MUTUO A TASSO VARIABILE...6 MUTUO A TASSO MISTO...

Informazioni di base...3. Principali tipologie di mutuo...5 MUTUO A TASSO FISSO...5 MUTUO A TASSO VARIABILE...6 MUTUO A TASSO MISTO... GUIDA SUI MUTUI Sommario Informazioni di base...3 Principali tipologie di mutuo...5 MUTUO A TASSO FISSO...5 MUTUO A TASSO VARIABILE...6 MUTUO A TASSO MISTO...7 MUTUO A DUE TIPI DI TASSO...8 MUTUO A TASSO

Dettagli

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005 Matematica finanziaria: svolgimento prova di esame del 5 luglio 5. [5 punti cleai, 5 punti altri] Prestiamo e a un amico. Ci si accorda per un tasso di remunerazione del 6% annuale (posticipato), per un

Dettagli

CONTABILITA GENERALE

CONTABILITA GENERALE CONTABILITA GENERALE 7 II) SCRITTURE DI GESTIONE F) OTTENIMENTO CAPITALE DI TERZI G) OPERAZIONI STRAORDINARIE 6 dicembre 2007 Ragioneria Generale e Applicata - Parte seconda - La contabilità generale 1

Dettagli

ESERCITAZIONE N. 4 - SPA

ESERCITAZIONE N. 4 - SPA ESERCITAZIONE N. 4 VARIAZIONI CAPITALE SOCIALE Pagina 1 di 11 TIPOLOGIE DI AUMENTI DEL CAPITALE SOCIALE L aumento del Capitale Sociale può essere: - SENZA VARIAZIONE del P.N. (Virtuale o Gratuito) - CON

Dettagli

Italo Degregori. Quaderni di Finanza ( 1 ) Le Obbligazioni. Edizioni R.E.I.

Italo Degregori. Quaderni di Finanza ( 1 ) Le Obbligazioni. Edizioni R.E.I. Italo Degregori Quaderni di Finanza ( 1 ) Le Obbligazioni Edizioni R.E.I. 2 Edizioni R.E.I. 3 Italo Degregori Quaderni di Finanza ( 1 ) Le Obbligazioni ISBN 978-88-97362-46-3 Copyright 2011 - Edizioni

Dettagli

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo)

(Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere arrotondato al centesimo più prossimo) MATEMATICA FINANZIARIA ISTITUZIONI L - Z) Pavia 11/ 11/004 COGNOME e NOME:... n.dimatricola:... CODICE ESAME:... Come noto, il risultato finale dell importo dei capitali, espresso in euro, deve essere

Dettagli

Maria Elena De Giuli Cesare Zuccotti E S E R C I Z I R I S O L T I d i M A T E M A T I C A F I N A N Z I A R I A

Maria Elena De Giuli Cesare Zuccotti E S E R C I Z I R I S O L T I d i M A T E M A T I C A F I N A N Z I A R I A Maria Elena De Giuli Cesare Zuccotti ESERCIZI RISOLTI di MATEMATICA FINANZIARIA INDICE PARTE I TESTO DEGLI ESERCIZI pag. 1 LE LEGGI DI CAPITALIZZAZIONE 1 2 LA CAPITALIZZAZIONE SEMPLICE 4 3 LA CAPITALIZZAZIONE

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali AREA FINANZA DISPENSE FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto PRODOTTI FINANZIARI A MEDIO-LUNGO TERMINE BTP: Buoni del Tesoro Poliennali ORGANISMO BILATERALE PER LA FORMAZIONE

Dettagli

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1 ISSIS DON MILANI LICEO Corso di DIRITTO ed ECONOMIA POLITICA 1 NEL MERCATO FINANZIARIO SI NEGOZIANO TITOLI CON SCADENZA SUPERIORE A 18 MESI AZIONI OBBLIGAZIONI TITOLI DI STATO 2 VALORE DEI TITOLI VALORE

Dettagli

Notazione. S : som m a finanziata i : tasso d 'in teresse D : debito residuo E : d eb ito estin to I : q u o ta in teressi C : q u o t a capita l e R

Notazione. S : som m a finanziata i : tasso d 'in teresse D : debito residuo E : d eb ito estin to I : q u o ta in teressi C : q u o t a capita l e R Ammortamento t finanziarioi i Piani di rimborso prestiti MQ 186PP Notazione S : som m a finanziata i : tasso d 'in teresse D : debito residuo E : d eb ito estin to I : q u o ta in teressi C : q u o t a

Dettagli

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

ELEMENTI DI MATEMATICA FINANZIARIA E ATTUARIALE

ELEMENTI DI MATEMATICA FINANZIARIA E ATTUARIALE ELEMENTI DI MATEMATICA FINANZIARIA E ATTUARIALE SOMMARIO Premessa PARTE I I) Il calcolo dell interesse I. 1. Regime finanziario dell interesse semplice. 2 I. 2. Regime finanziario dello sconto commerciale..

Dettagli

www.net4students.org Pag. 1

www.net4students.org Pag. 1 TOMO 1-5. SOCIETÀ DI CAPITALI: FINANZIAMENTI A TITOLO DI CAPITALE DI DEBITO 5.2 confronto tra prestito obbligazionario e mutuo passivo Piano di ammortamento finanziario del prestito obbligazionario Anni

Dettagli

CONDIZIONI DEFINITIVE della NOTA INFORMATIVA BANCA DI CESENA OBBLIGAZIONI A TASSO FISSO. Isin IT0004233943

CONDIZIONI DEFINITIVE della NOTA INFORMATIVA BANCA DI CESENA OBBLIGAZIONI A TASSO FISSO. Isin IT0004233943 BANCA DI CESENA CREDITO COOPERATIVO DI CESENA E RONTA SOCIETA COOPERATIVA CONDIZIONI DEFINITIVE della NOTA INFORMATIVA BANCA DI CESENA OBBLIGAZIONI A TASSO FISSO BANCA DI CESENA 01/06/07-01/06/10 - TF

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente

Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente Matrice Excel Calcolo rata con IMPORTO DEL FINANZIAMENTO determinato dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro

Dettagli

BREA ESAME DI STATO DI ISTITUTO TECNICO COMMERCIALE. Indirizzo: Economia aziendale Progetto Brocca Corso sperimentale

BREA ESAME DI STATO DI ISTITUTO TECNICO COMMERCIALE. Indirizzo: Economia aziendale Progetto Brocca Corso sperimentale BREA ESAME DI STATO DI ISTITUTO TECNICO COMMERCIALE Indirizzo: Economia aziendale Progetto Brocca Corso sperimentale Tema di: Economia aziendale L impresa Pomodori S.p.A. di Napoli, azienda leader del

Dettagli

CONTABILITA GENERALE

CONTABILITA GENERALE CONTABILITA GENERALE 7 II) SCRITTURE DI GESTIONE F) OTTENIMENTO CAPITALE DI TERZI 20 novembre 2010 Ragioneria Generale e Applicata - Parte seconda - La contabilità generale 1 F. Scritture relative all

Dettagli

BENI STRUMENTALI GESTIONE DEL PERSONALE

BENI STRUMENTALI GESTIONE DEL PERSONALE BENI STRUMENTALI 1) In data 02/05/n l industriale Federico Pizzetto stipula un contratto di acquisto di un macchinario con la Vortici srl alle seguenti condizioni: costo complessivo 60.000 euro + iva ordinaria

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

I titoli obbligazionari. Giuseppe G. Santorsola EIF 1

I titoli obbligazionari. Giuseppe G. Santorsola EIF 1 I titoli obbligazionari Giuseppe G. Santorsola EIF 1 Titoli a reddito fisso Tutte le caratteristiche relative al profilo di rischio e rendimento (durata, diritto alla remunerazione e al rimborso del capitale)

Dettagli

Calcolo economico e finanziario: Esercizi da svolgere. A) Capitalizzazione semplice

Calcolo economico e finanziario: Esercizi da svolgere. A) Capitalizzazione semplice Calcolo economico e finanziario: Esercizi da svolgere A) Capitalizzazione semplice A.1) Il capitale di 3.000 viene impiegato al tasso i=0,07 per 4 anni. Calcolare il montante. A.2) Il capitale di 3.500

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Prodotti finanziari a breve termine BOT: Buoni Ordinari del tesoro

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Prodotti finanziari a breve termine BOT: Buoni Ordinari del tesoro AREA FINANZA DISPENSE FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Prodotti finanziari a breve termine BOT: Buoni Ordinari del tesoro ORGANISMO BILATERALE PER LA FORMAZIONE

Dettagli

DOMANDE PER LA PREPARAZIONE DELL ESAME DI STRUMENTI FINANZIARI

DOMANDE PER LA PREPARAZIONE DELL ESAME DI STRUMENTI FINANZIARI DOMANDE PER LA PREPARAZIONE DELL ESAME DI STRUMENTI FINANZIARI Cap. 1. La moneta e i bisogni di pagamento 1) Si illustrino i problemi che incontrano gli scambisti nel regolamento di uno scambio monetario.

Dettagli

IL FINANZIAMENTO DEGLI ENTI PUBBLICI

IL FINANZIAMENTO DEGLI ENTI PUBBLICI IL FINANZIAMENTO DEGLI ENTI PUBBLICI A cura di Gian Nereo Mazzocco Verona, 11 febbraio 2006 Le anticipazioni di tesoreria (art. 222 Tuel) Controparte: istituto tesoriere Limiti: 3/12 delle entrate correnti

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli

ACQUISIZIONE DI BENI STRUMENTALI, FINANZIAMENTI, FULL COSTING

ACQUISIZIONE DI BENI STRUMENTALI, FINANZIAMENTI, FULL COSTING Temi in preparazione alla maturità ACQUISIZIONE DI BENI STRUMENTALI, FINANZIAMENTI, FULL COSTING di Lucia BARALE ATTIVITÀ DIDATTICHE 1 Materie: Economia aziendale (Classe 5 a Istituto Tecnico e Istituto

Dettagli

Albez edutainment production. Analisi caso. Classe IV ITC

Albez edutainment production. Analisi caso. Classe IV ITC Albez edutainment production Analisi caso Classe IV ITC Il caso In data 10/01/n0, con atto costitutivo del notaio Guastavino, è stata costituita la Matrix spa con capitale sociale formato da 25.000 azioni

Dettagli

Società per azioni: le operazioni caratteristiche

Società per azioni: le operazioni caratteristiche I S T I T U T O D I S T R U Z I O N E S U P E R I O R E G. F O R T U N A T O Società per azioni: le operazioni caratteristiche Classe IV In questo modulo: La costituzione della società per azioni Il riparto

Dettagli

CONDIZIONI DEFINITIVE

CONDIZIONI DEFINITIVE BANCA ALPI MARITTIME CREDITO COOPERATIVO CARRU S.C.P.A. in qualità di Emittente CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA SUL PRESTITO OBBLIGAZIONARIO Banca Alpi Marittime Credito Cooperativo Carrù S.c.p.a.

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

2 RIS - REGIME DELL INTERESSE SEMPLICE 13 3 RIA - REGIME DELL INTERESSE ANTICIPATO 24 4 RIC - REGIME AD INTERESSE COMPOSTO 28

2 RIS - REGIME DELL INTERESSE SEMPLICE 13 3 RIA - REGIME DELL INTERESSE ANTICIPATO 24 4 RIC - REGIME AD INTERESSE COMPOSTO 28 Indice 1 OPERAZIONI FINANZIARIE 2 2 RIS - REGIME DELL INTERESSE SEMPLICE 13 3 RIA - REGIME DELL INTERESSE ANTICIPATO 24 4 RIC - REGIME AD INTERESSE COMPOSTO 28 5 INTENSITA ISTANTANEA DI INTERESSE ( NEI

Dettagli

MUTUO CHIROGRAFARIO A IMPRESE

MUTUO CHIROGRAFARIO A IMPRESE INFORMAZIONI SULLA BANCA FOGLIO INFORMATIVO relativo al MUTUO CHIROGRAFARIO A IMPRESE BANCA DI CREDITO COOPERATIVO DI TARSIA (CS) SOC. COOP. Sede legale e amministrativa: Tarsia (CS) - Via Olivella, 25/27

Dettagli

PRESTITO OBBLIGAZIONARIO

PRESTITO OBBLIGAZIONARIO PRESTITO OBBLIGAZIONARIO DEFINIZIONE E CARATTERISTICHE L'emissione di prestiti obbligazionari è un'operazione con la quale una società contrae un debito a lunga scadenza con una pluralità di soggetti.

Dettagli

Le Operazioni di Impiego: I FINANZIAMENTI BANCARI A MEDIO-LUNGO TERMINE. Università degli Studi di Teramo - Prof. Paolo Di Antonio

Le Operazioni di Impiego: I FINANZIAMENTI BANCARI A MEDIO-LUNGO TERMINE. Università degli Studi di Teramo - Prof. Paolo Di Antonio I FINANZIAMENTI BANCARI A MEDIO-LUNGO TERMINE 1 Finanziamenti Bancari Finanziamenti a breve termine Finanziamenti a medio- lungo termine Operazioni di prestito bancario Operazioni di smobilizzo 2 Definizione

Dettagli

MUTUO CHIROGRAFARIO PER IL CREDITO AL CONSUMO

MUTUO CHIROGRAFARIO PER IL CREDITO AL CONSUMO FOGLIO INFORMATIVO relativo a: MUTUO CHIROGRAFARIO PER IL CREDITO AL CONSUMO INFORMAZIONI SULLA BANCA BANCA DI CREDITO COOPERATIVO DI BARBARANO ROMANO VIA 4 NOVEMBRE, 3/5/7-01010 - BARBARANO ROMANO n.

Dettagli

CALCOLO PIANO DI AMMORTAMENTO TASSO FISSO RATA COSTANTE

CALCOLO PIANO DI AMMORTAMENTO TASSO FISSO RATA COSTANTE CALCOLO PIANO DI AMMORTAMENTO TASSO FISSO RATA COSTANTE L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro sufficiente a soddisfare

Dettagli

OIC 19: Debiti. Novara, 27 gennaio 2015. Lorenzo Gelmini

OIC 19: Debiti. Novara, 27 gennaio 2015. Lorenzo Gelmini OIC 19: Debiti Novara, 27 gennaio 2015 Lorenzo Gelmini Introduzione: gli obiettivi e l ambito del nuovo principio contabile o Riordino generale della tematica o Miglior coordinamento con gli altri principi

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

APPLICAZIONI DELLA MATEMATICA ALL ECONOMIA LEZIONE GLI AMMORTAMENTI. Autore. Francesca Miglietta

APPLICAZIONI DELLA MATEMATICA ALL ECONOMIA LEZIONE GLI AMMORTAMENTI. Autore. Francesca Miglietta APPLICAZIONI DELLA MATEMATICA ALL ECONOMIA LEZIONE GLI AMMORTAMENTI Autore Francesca Miglietta 1 Che cosa si intende per ammortamento? L ammortamento non è altro che il rimborso di un prestito. Il rimborso

Dettagli

Tipo Scadenza Periodicità cedola Rimborso BOT (Buoni Ordinari del Tesoro)

Tipo Scadenza Periodicità cedola Rimborso BOT (Buoni Ordinari del Tesoro) TABELLA 10.1 Titoli di Stato: le caratteristiche principali Tipo Scadenza Periodicità cedola Rimborso BOT (Buoni Ordinari del Tesoro) CTZ (Certificati del Tesoro Zerocoupon) CCT (Certificati di Credito

Dettagli

REGOLAMENTO DEL PRESTITO OBBLIGAZIONARIO "IBL ISTITUTO BANCARIO DEL LAVORO SPA 18/06/2013 18/06/2018 T.F. SUBORDINATE LOWER TIER II"

REGOLAMENTO DEL PRESTITO OBBLIGAZIONARIO IBL ISTITUTO BANCARIO DEL LAVORO SPA 18/06/2013 18/06/2018 T.F. SUBORDINATE LOWER TIER II REGOLAMENTO DEL PRESTITO OBBLIGAZIONARIO "IBL ISTITUTO BANCARIO DEL LAVORO SPA 18/06/2013 18/06/2018 T.F. SUBORDINATE LOWER TIER II" Istituto Bancario del Lavoro S.p.A. Sede Sociale e Direzione Generale:

Dettagli

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente

Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente Matrice Excel Calcolo rata con TASSO DI INTERESSE determinato dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro sufficiente

Dettagli

AMMORTAMENTO. Generalità e Funzionamento dell applicativo

AMMORTAMENTO. Generalità e Funzionamento dell applicativo AMMORTAMENTO Generalità e Funzionamento dell applicativo Per ammortamento di un prestito (mutuo) indiviso si intende quel procedimento in base al quale un soggetto (unico) cede ad un tempo iniziale (es.

Dettagli

BANCA DI CREDITO COOPERATIVO SAN MICHELE DI CALTANISSETTA E PIETRAPERZIA

BANCA DI CREDITO COOPERATIVO SAN MICHELE DI CALTANISSETTA E PIETRAPERZIA BANCA DI CREDITO COOPERATIVO SAN MICHELE DI CALTANISSETTA E PIETRAPERZIA FOGLIO INFORMATIVO relativo al Mutuo Chirografario Energie Rinnovabili non destinato ai clienti consumatori INFORMAZIONI SULLA BANCA

Dettagli

1 DESCRIZIONE SINTETICA DELLE CARATTERISTICHE DEGLI STRUMENTI FINANZIARI

1 DESCRIZIONE SINTETICA DELLE CARATTERISTICHE DEGLI STRUMENTI FINANZIARI SCHEDA PRODOTTO RELATIVA AL PRESTITO OBBLIGAZIONARIO DENOMINATO Bcc San Marzano di San Giuseppe Subordinato 67^ emissione Tasso Fisso 3,75% 28/10/2010-28/04/2016 Codice ISIN IT0004647373 1 DESCRIZIONE

Dettagli

LA CASSETTA DEGLI ATTREZZI

LA CASSETTA DEGLI ATTREZZI LA CASSETTA DEGLI ATTREZZI I TASSI DI INTERESSE TASSO DI RENDIMENTO EFFETTIVO ALLA SCADENZA (TRES) O YIELD-TO- MATURITY (YTM) Lezione 3 1 I PUNTI PRINCIPALI DELLA LEZIONE o o Misurazione dei tassi di interesse

Dettagli

2. Scomporre la seconda rata in quota di capitale e quota d interesse.

2. Scomporre la seconda rata in quota di capitale e quota d interesse. Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..

Dettagli

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente

Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente Matrice Excel Calcolo rata con DURATA DEL FINANZIAMENTO determinata dall'utente L'acquisto di un immobile comporta un impegno finanziario notevole e non sempre è possibile disporre della somma di denaro

Dettagli

CONDIZIONI DEFINITIVE. Banca di Forlì Credito Cooperativo Obbligazioni a Tasso Step-Up

CONDIZIONI DEFINITIVE. Banca di Forlì Credito Cooperativo Obbligazioni a Tasso Step-Up CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA relativa al programma di emissioni denominato Banca di Forlì Credito Cooperativo Obbligazioni a Tasso Step-Up Banca di Forlì Credito Cooperativo 12/2007 12/2010

Dettagli

CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA SUL PROGRAMMA BANCA DI CREDITO COOPERATIVO DI MASIANO TASSO VARIABILE

CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA SUL PROGRAMMA BANCA DI CREDITO COOPERATIVO DI MASIANO TASSO VARIABILE 9. MODELLO DELLE CONDIZIONI DEFINITIVE Banca di Credito Cooperativo di Masiano (Pistoia) in qualità di Emittente CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA SUL PROGRAMMA BANCA DI CREDITO COOPERATIVO DI

Dettagli

SCHEDA PRODOTTO RELATIVA AL PROSPETTO OBBLIGAZIONARIO DENOMINATO DESCRIZIONE SINTETICA DELLE CARATTERISTICHE DEGLI STRUMENTI FINANZIARI OFFERTI

SCHEDA PRODOTTO RELATIVA AL PROSPETTO OBBLIGAZIONARIO DENOMINATO DESCRIZIONE SINTETICA DELLE CARATTERISTICHE DEGLI STRUMENTI FINANZIARI OFFERTI SCHEDA PRODOTTO RELATIVA AL PROSPETTO OBBLIGAZIONARIO DENOMINATO BANCA POPOLARE DI VICENZA 16.A EMISSIONE EUR 250 MILIONI SUBORDINATO LOWER TIER II A TASSO FISSO CON AMMORTAMENTO 2010-2017 CODICE ISIN:

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

ESERCIZI RELATIVI AL CAPITOLO 8 - LE OPERAZIONI DI INVESTIMENTO E DI DISINVESTIMENTO IN TITOLI E PARTECIPAZIONI di Alfredo Viganò

ESERCIZI RELATIVI AL CAPITOLO 8 - LE OPERAZIONI DI INVESTIMENTO E DI DISINVESTIMENTO IN TITOLI E PARTECIPAZIONI di Alfredo Viganò 1 ESERCIZI RELATIVI AL CAPITOLO 8 - LE OPERAZIONI DI INVESTIMENTO E DI DISINVESTIMENTO IN TITOLI E PARTECIPAZIONI di Alfredo Viganò Esercizio n.1 In data 14.7.X, l impresa DELTA acquista titoli azionari

Dettagli

LIBERA UNIVERSITA' INTERNAZIONALE DEGLI STUDI SOCIALI. Guido Carli. Dipartimento di Scienze economiche e aziendali

LIBERA UNIVERSITA' INTERNAZIONALE DEGLI STUDI SOCIALI. Guido Carli. Dipartimento di Scienze economiche e aziendali LIBERA UNIVERSITA' INTERNAZIONALE DEGLI STUDI SOCIALI Guido Carli Dipartimento di Scienze economiche e aziendali Impostazione matematico-finanziaria del metodo del Costo Ammortizzato, richiamato dallo

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

BANCA PRIVATA INDIPENDENTE FONDATA NEL 1888 GENOVA. In qualità di Emittente, Offerente e Responsabile del collocamento

BANCA PRIVATA INDIPENDENTE FONDATA NEL 1888 GENOVA. In qualità di Emittente, Offerente e Responsabile del collocamento APPENDICE B - MODELLO DELLE CONDIZIONI DEFINITIVE BANCA PRIVATA INDIPENDENTE FONDATA NEL 1888 GENOVA In qualità di Emittente, Offerente e Responsabile del collocamento Sede sociale: Via Ettore Vernazza

Dettagli