p k q n k = p n (k) = n 12 = 1 = ,1208. q = 1 2 e si ha: p 12 (8) =

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4"

Transcript

1 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute, ad esempio successivi lanci di un dado, di una moneta, estrazioni di palline da un urna, di carte da un mazzo (in questi ultimi due casi reimmettendo la pallina o la carta nell urna o nel mazzo), estrazioni di numeri del lotto in settimane successive, e così via. Lo schema generale può essere descritto mediante la seguente definizione: Si dice esperimento di Bernoulli una sequenza di n prove con le seguenti caratteristiche: 1) il risultato di ogni prova può essere solo successo o fallimento ; ) il risultato di ciascuna prova è indipendente dai risultati delle prove precedenti; 3) la probabilità p di successo, e quindi la probabilità q = 1 p di fallimento, sono costanti in ciascuna prova. Ci proponiamo ora di determinare la probabilità che, in n prove di un esperimento di Bernoulli, si abbiano esattamente k successi. Indichiamo con S il successo e con F il fallimento. Una sequenza di n prove darà, per la 1), come esito una sequenza di n fra S e F. Ad esempio, una sequenza che contiene k successi è la seguente: k volte n k volte SS... S FF... F Se p è la probabilità di S e q la probabilità di F, la probabilità di ottenere proprio quella sequenza è, trattandosi di eventi indipendenti e applicando la regola della probabilità composta: 64 k 7 volte 48 6 n k 47 volte 48 p p... pq q... q = p k q n k È immediato convincersi che una qualsiasi altra sequenza contenente esattamente k successi avrà sempre come probabilità p k q n k (cambia l ordine dei fattori, ma non il prodotto). Per determinare in quanti modi si possono ottenere k successi in n prove, basta scegliere tra gli n numeri 1,,..., n i k che contrassegnano i posti occupati dai successi: ciò può essere eseguito in C n,k modi (non essendo rilevante l ordine in cui tali posti vengono scelti). In definitiva si hanno C n,k possibilità di ottenere k successi in n prove e ciascuna di esse ha, come si è detto, probabilità p k q n k. Dato che queste possibilità distinte corrispondono al realizzarsi di eventi incompatibili (evidentemente il realizzarsi di una certa sequenza di S e F è incompatibile con il verificarsi di un altra di tali sequenze), per la regola delle probabilità totali, la probabilità cercata, che indichiamo con p n (k), è: p n (k) =C n, k p k q n k (con q =1 p) o, usando la notazione dei coefficienti binomiali: p n (k) = n p k q n k = k n! k!(n k )! pk q n k Esempio 1. Determinare la probabilità che su 1 lanci di una moneta buona si ottengano esattamente 8 teste. Si tratta di un esperimento di Bernoulli in cui il successo coincide con esce T ; quindi p = q = 1 e si ha: p 1 (8) = = = 1 0, Esempio. Determinare la probabilità che estraendo per 5 volte una carta da un mazzo da 40 (inserendo ogni volta la carta estratta e rimescolando bene il mazzo) si ottengano: a) esattamente 3 figure b) almeno 3 figure c) almeno una figura 1

2 Si osservi che, se non si reintroducesse la carta nel mazzo, l esperimento non sarebbe di Bernoulli, in quanto la probabilità di estrarre una figura cambierebbe ad ogni successiva estrazione. In questo caso, invece, si tratta di un esperimento di Bernoulli in cui il successo è l estrazione di una figura, per cui p = 1 = 0,3 (e q = 1 0,3 = 0,7). 40 a) La probabilità di ottenere esattamente 3 figure è: p 5 (3) = 5 0,3 3 0,7 =10 0,3 3 0,7 = 0,133 3 b) La probabilità di ottenere almeno 3 figure è la somma delle probabilità di ottenere esattamente 3, 4 o 5 figure: p 5 (3) + p 5 (4)+ p 5 (5) = 0, , ,004 = 0,1631 c) Per rispondere a quest ultima domanda si può procedere come in b) calcolando: p 5 (1) + p 5 () + p 5 (3) + p 5 (4)+p 5 (5) È tuttavia molto più rapido considerare la probabilità dell evento contrario, ossia la probabilità di non ottenere alcuna figura: p 5 (0) = 5 0,3 0 0,7 5 =0,7 5 = 0,16807, per cui la 0 probabilità di ottenere almeno una figura è 1 0,16807 = 0, Esempio 3. Un tiratore colpisce un bersaglio con probabilità 0,. Qual è la probabilità che su 8 tiri colpisca volte il bersaglio? E che lo colpisca almeno due volte? Essendo p = 0, (e quindi q = 1 0, = 0,8) la probabilità di successo, si ha: p 8 () = 8 0, 0,8 6 = 8 7 0, 0,8 6 0,936 Per rispondere alla seconda domanda è più conveniente determinare le probabilità che il tiratore non colpisca il bersaglio o che lo colpisca esattamente una volta: p 8 (0) = 8 0, 0 0,8 8 0,1678; p 0 8 (1) = 8 0, 1 0,8 8 =8 0, 0,8 8 0, Per la regola della probabilità dell evento contrario, la probabilità che il tiratore colpisca almeno due volte il bersaglio è 1 (0, ,3355) = 0,4967. Dato un esperimento di Bernoulli, una volta fissato il numero delle prove e la probabilità p di successo, il numero k di sucecssi può essere visto come una variabile casuale avente come valori i numeri da 0 a n e le cui rispettive probabilità si determinano con la formula precedente. Tale distribuzione di probabilità prende il nome di distribuzione binomiale. Le variabili casuali degli Esempi 1 e 5 del capitolo precedente hanno una distribuzione binomiale p = q = 1. I valori delle probabilità delle distribuzioni binomiali relative ai valori di n fino a 1 e ad alcuni valori di p sono riportate nella Tavola in Appendice a questo capitolo. Se p = q = 1 l istogramma delle variabili casuali con distribuzione binomiale è simmetrico rispetto al valore medio. Questa circostanza non si verifica se p 1. Vediamo due esempi. Esempio 4. Un urna contiene 10 palline di cui 3 bianche. Si eseguono 4 successive estrazioni rimettendo ogni volta la pallina estratta nell urna. Determinare la distribuzione di probabilità della variabile casuale X = numero di palline bianche estratte e rappresentarla con un istogramma.

3 La probabilità di estrarre una pallina bianca è 0,3. La variabile casuale X ha come possibili valori 0, 1,, 3 e 4 e le rispettive probabilità sono p 4 (0), p 4 (1), p 4 (), p 4 (3), p 4 (4). Determiniamo tali valori ricorrendo alla Tavola: X ,401 0,4116 0,646 0,0756 0,0081 L istogramma risulta: Esempio 5. Rappresentare con un istogramma la distribuzione binomiale con n = 10 e p = 0,9. Per sfruttare la Tavola 1 anche in questo caso, occorre osservare che avere probabilità 0,9 di successo equivale ad avere probabilità 0,1 di insuccesso. Quindi, ottenere 3 successi in 10 prove equivale ad ottenere 7 insuccessi, per cui p 10 (3) con p = 0,9 si può leggere in corrispondenza di p 10 (7) con p = 0,1, e così via: X ,0000 0,0000 0,0000 0,0000 0,0001 0,0015 0,011 0,0574 0,1937 0,3874 0,3487 (dove compare 0,0000 non si intende evidentemente probabilità nulla, ma un valore molto basso, inferiore a 0,00005). L istogramma è il seguente: Per una variabile casuale con distribuzione binomiale si può dimostrare che: il valore medio è: E(X) = np la varianza vale: var(x) = npq e la deviazione standard risullta: npq. 3

4 TAVOLA 1 LA DISTRIBUZIONE BINOMIALE (valori di p n (k) per n da a 1 e p = 0,1; 0,; 0,3; 0,4; 0,5 4

5 5

STATISTICA ESERCITAZIONE 9

STATISTICA ESERCITAZIONE 9 STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione

Dettagli

CAPITOLO QUINTO DISTRIBUZIONE NORMALE

CAPITOLO QUINTO DISTRIBUZIONE NORMALE CAPITOLO QUINTO DISTRIBUZIONE NORMALE 1. Probabilità nel continuo Fino ad ora abbiamo considerato casi in cui l insieme degli eventi elementari è finito. Vediamo, mediante due semplici esempi, come si

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale; Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno

Dettagli

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente: CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o

Dettagli

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice. discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3

Dettagli

Statistica. Esercitazione 10. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice. V.C.

Statistica. Esercitazione 10. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice. V.C. uniforme Bernoulli binomiale di Esercitazione 10 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 55 Outline uniforme Bernoulli binomiale di 1 uniforme 2 Bernoulli 3 4

Dettagli

Abbiamo visto come si possa determinare il numero di possibili anagrammi di una parola, con lettere tutte distinte o con alcune lettere ripetute.

Abbiamo visto come si possa determinare il numero di possibili anagrammi di una parola, con lettere tutte distinte o con alcune lettere ripetute. MODELLI (Approfondimenti) Approfondiamo i 3 modelli più frequentemente utilizzati nell'analisi Combinatoria e nel Calcolo delle Probabilità, precisamente il modello ANAGRAMMA, il modello ESTRAZIONE e il

Dettagli

VARIABILI CASUALI CONTINUE

VARIABILI CASUALI CONTINUE p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale continua può assumere tutti gli infiniti valori appartenenti ad un intervallo di numeri reali. p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di

Dettagli

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 30 Aprile 2013 Esercizio

Dettagli

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,

Dettagli

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità

Dettagli

Esercitazione 1 del corso di Statistica (parte 2)

Esercitazione 1 del corso di Statistica (parte 2) Esercitazione del corso di Statistica (parte Dott.ssa Paola Costantini 8 Gennaio 0 Esercizio n Compro due cassette contenenti 0 piante di rosa che ancora devono sbocciare. Nella prima cassetta ci sono

Dettagli

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a Corso di Statistica Distribuzioni di probabilità per variabili casuali discrete Prof.ssa T. Laureti a.a. 2013-2014 1 Variabili casuale di Bernoulli La v.c. di Bernoulli trae origine da una prova nella

Dettagli

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6

Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6 EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano

Dettagli

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti: Lezione 1 La Probabilità Scopo del Corso: Introduzione alla probabilità e alle procedure di inferenza statistica Introduzione ad alcune importanti tecniche di analisi multivariata dei dati Organizzazione

Dettagli

Domande di teoria. Esercizi

Domande di teoria. Esercizi 1 Domande di teoria 1. Vedi pp. 131-132 2. Vedi pp. 132-134 3. Vedi p. 134 4. Vedi p. 135 5. Vedi pp. 136-142 6. Vedi pp. 138-139 7. Vedi pp. 141-142 8. Vedi pp. 143-146 9. Vedi pp. 146-148 Esercizi Esercizio

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Il modello binomiale Da studi interni è noto che il 35% dei clienti del Supermercato GD paga

Dettagli

Matematica con elementi di statistica ESERCIZI: probabilità

Matematica con elementi di statistica ESERCIZI: probabilità Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.

Dettagli

Soluzione esercizi (quarta settimana)

Soluzione esercizi (quarta settimana) Soluzione esercizi (quarta settimana) Marco Riani Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? 1 Esempio Gioco la schedina mettendo a caso i segni (1 X

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo

Dettagli

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA

Dettagli

DOMANDA 1: mettere una croce sulla affermazione esatta (90 89)

DOMANDA 1: mettere una croce sulla affermazione esatta (90 89) PROVA D ESAME - 0 marzo 00 nome: cognome: SSIS-INDIRIZZO MATEMATICA E MATEMATICA APPLICATA (primo anno MATEMATICA APPLICATA B: CALCOLO DELLE PROBABILITÀ Per le domande a risposta aperta il punteggio varia

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

Statistica descrittiva I. La frequenza

Statistica descrittiva I. La frequenza Statistica descrittiva I. La frequenza Supponiamo di ripetere n volte un esperimento che può dare esito 0 o 1, il numero di uni su n ripetizioni è detto frequenza di 1: f 1,n = #{esperimenti con esito

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

La probabilità composta

La probabilità composta La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il

Dettagli

ESERCIZI DI PROBABILITA

ESERCIZI DI PROBABILITA ESERCIZI DI PROBABILITA Quest'opera è stata rilasciata sotto la licenza Creative Commons Attribuzione-Non commerciale-condividi allo stesso modo 2.5 Italia. Per leggere una copia della licenza visita il

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

VARIABILI ALEATORIE Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al 6 lancio:

VARIABILI ALEATORIE Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al 6 lancio: VARIABILI ALEATORIE. Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al lancio: a) si abbia testa per la prima volta? b) Si sia avuto testa almeno una volta? c) Si sia avuta

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

FRAME 0.3. E possibile partecipare a tre appelli su 5 (esclusi i compitini). Farà fede l iscrizione alle liste elettroniche.

FRAME 0.3. E possibile partecipare a tre appelli su 5 (esclusi i compitini). Farà fede l iscrizione alle liste elettroniche. FRAME 0.1. S.M. Ross, Calcolo delle Probabilità, Apogeo 2004. C. Mariconda, A. Tonolo, Matematica Discreta, a.a. 2005-2006, Libreria Progetto, 2005 (costo 6 euro. Compitini FRAME 0.2. 13 maggio, ore 9.30

Dettagli

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo. A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Esercizi su variabili discrete: binomiali e ipergeometriche

Esercizi su variabili discrete: binomiali e ipergeometriche CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su variabili discrete: binomiali e ipergeometriche Es1 Due squadre di rugby si sfidano giocando fra loro varie partite La squadra che vince 4 partite

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di

Dettagli

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi. La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA

Dettagli

La probabilità matematica

La probabilità matematica 1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi

Dettagli

CP110 Probabilità: Esonero 1. Testo e soluzione

CP110 Probabilità: Esonero 1. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 1 aprile, 2010 CP110 Probabilità: Esonero 1 Testo e soluzione 1. (7 pt Una scatola contiene 15 palle numerate da 1 a 15. Le palle

Dettagli

PRINCIPALI DISTRIBUZIONI DI PROBABILITA. Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

PRINCIPALI DISTRIBUZIONI DI PROBABILITA. Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek PRINCIPALI DISTRIBUZIONI DI PROBABILITA Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 000/001 dott. Corrado Caudek 1 DISTRIBUZIONE BINOMIALE Possiamo definire un processo bernoulliano come una

Dettagli

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 1: Probabilità: fondamenti

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 1: Probabilità: fondamenti Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini e Leonardo Bertini Lezione 1: Probabilità: fondamenti Progettazione probabilistica: Considerazione delle incertezze

Dettagli

Lezione 3 Calcolo delle probabilità

Lezione 3 Calcolo delle probabilità Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità A. A. /5 prova scritta (//5(docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento dei punti non facoltativi

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 5. Introduzione alla probabilità: Definizioni di probabilità. Evento, prova, esperimento. Eventi indipendenti e incompatibili. Probabilità condizionata. Teorema di Bayes CONCETTI

Dettagli

Calcolo Combinatorio e Probabilità

Calcolo Combinatorio e Probabilità Calcolo Combinatorio e Probabilità Andrea Galasso 1 Calcolo Combinatorio Definizione 1 Fissati n, k N, con k n, indicheremo con D n,k := n! (n k)! le disposizioni di n oggetti in k posti e con DR n,k :=

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

Distribuzione di Probabilità

Distribuzione di Probabilità Distribuzione di Probabilità Sia X variabile con valori discreti X 1, X 2,..., X N aventi probabilità p 1, p 2,..., p N ( i p i = 1) (X variabile discreta aleatoria, o stocastica, o casuale, random) Funzione

Dettagli

Verifica delle ipotesi: Binomiale

Verifica delle ipotesi: Binomiale Verifica delle ipotesi: Binomiale Esercizio Nel collegio elettorale di una città, alle ultime elezioni il candidato A ha ottenuto il 4% delle preferenze mentre il candidato B il 6%. Nella nuova tornata

Dettagli

TEST n La funzione di ripartizione di una variabile aleatoria:

TEST n La funzione di ripartizione di una variabile aleatoria: TEST n. 1 1. Un esperimento consiste nell estrarre successivamente, con reimmissione nel mazzo, due carte da un mazzo di 52 carte. Individuare la probabilità di estrarre due assi. A 0.0059 B 0.0044 C 0.0045

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,

Dettagli

Esercitazione 7 del corso di Statistica (parte 1)

Esercitazione 7 del corso di Statistica (parte 1) Esercitazione 7 del corso di Statistica (parte 1) Dott.ssa Paola Costantini 5 Marzo 011 Esercizio 1 Sullo spazio campionario: = 1,,,, 5,, 7,,, considerando l esperimento casuale estrazione di un numero,

Dettagli

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1 1) Studiare la seguente serie di funzioni en ( 1) n n x n 2) Studiare la seguente serie di funzioni ( 1) n n + 1 2e n xn 3) Studiare la seguente serie di funzioni 3n [ln x]n 1 2n 4) Studiare la seguente

Dettagli

Esercitazione 1 del corso di Statistica 2

Esercitazione 1 del corso di Statistica 2 Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Dott.ssa Paola Costantini Esercizio n. 1 Estraendo due carte da un mazzo di carte napoletane con la reimmissione della carta nel mazzo

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica ) Un urna contiene 0 palline numerate da a 0. Si calcoli la probabilità che: a) estraendo successivamente palline, rimettendo ogni volta la pallina estratta nell urna, si abbiano due numeri primi; b) estraendo

Dettagli

Facoltà di ECONOMIA Università di Pavia 20 Aprile 2004 Prova scritta di Analisi dei dati MODALITÀ A

Facoltà di ECONOMIA Università di Pavia 20 Aprile 2004 Prova scritta di Analisi dei dati MODALITÀ A MODALITÀ A Riportare sul foglio nome, cognome, numero di matricola e modalità del testo d esame. Problema 1 (8 PUNTI) Su un collettivo di 10 clienti iscritti al programma frequent flyer di una nota compagnia

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3

Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 Indice Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 1 Spazi di probabilità discreti: teoria... 7 1.1 Modelli probabilistici discreti..... 7 1.1.1 Considerazioni

Dettagli

Elementi di Analisi Combinatoria

Elementi di Analisi Combinatoria Elementi di Analisi Combinatoria Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy angelica.malaspina@unibas.it Lo studio dei vari raggruppamenti

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 88 La variabile aleatoria Nello

Dettagli

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4. CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente

Dettagli

p. 1/2 INFORMAZIONI Prossime lezioni Giorno Ora Dove 27/01 14:30 P50 29/01 14:30 Laboratorio (via Loredan) 03/02 14:30 P50 05/02 14:30 P50

p. 1/2 INFORMAZIONI Prossime lezioni Giorno Ora Dove 27/01 14:30 P50 29/01 14:30 Laboratorio (via Loredan) 03/02 14:30 P50 05/02 14:30 P50 p. 1/2 INFORMAZIONI Prossime lezioni Giorno Ora Dove 27/01 14:30 P50 29/01 14:30 Laboratorio (via Loredan) 03/02 14:30 P50 05/02 14:30 P50 p. 1/2 INFORMAZIONI Prossime lezioni Giorno Ora Dove 27/01 14:30

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

Olimpiadi di Statistica Classe V - Fase Eliminatoria

Olimpiadi di Statistica Classe V - Fase Eliminatoria Olimpiadi di Statistica 2016 - Classe V - Fase Eliminatoria Domanda 1 Alla fine del torneo di calcetto organizzato dalla scuola, è stata analizzata la classifica dei marcatori dalla quale risulta la seguente

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Si sono diverse distribuzioni di probabilità: quelle di cui parleremo sono la distribuzione binomiale, quella di Poisson, quella uniforme, quella normale, quella del χ² e la

Dettagli

Modelli matematici di fenomeni aleatori Variabilità e casualità

Modelli matematici di fenomeni aleatori Variabilità e casualità Modelli matematici di fenomeni aleatori Variabilità e casualità La casualità è alla base della scelta degli individui che compongono un campione ai fini di un indagine statistica. La casualità è alla base

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

Corso di Fondamenti di TLC Esercizi di Probabilitá

Corso di Fondamenti di TLC Esercizi di Probabilitá Corso di Fondamenti di TLC Esercizi di Probabilitá Exercise 0.1 Unurna contiene 2 biglie bianche e 5 nere. Estraiamo una prima biglia: se nera la rimettiamo dentro con altre due dello stesso colore, se

Dettagli

STATISTICA (2) ESERCITAZIONE 1. Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE 1. Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 1 29.01.2014 Dott.ssa Antonella Costanzo Esercizio 1. Modelli discreti di probabilità: le v.c. binomiale e geometrica (come caso particolare della v.c. binomiale negativa)

Dettagli

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari;

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari; ARITMETICA ELEMENTIDICALCOLO DELLE PROBABILITAÁ PREREQUISITI l l l conoscere e costruire tabelle a doppia entrata conoscere il significato di frequenza statistica calcolare rapporti e percentuali CONOSCENZE.

Dettagli

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria ALGEBRA IL CALCOLO DELLE PROBABILITAÁ richiami della teoria n un evento E si dice casuale o aleatorio, quando il suo verificarsi dipende unicamente dal caso; n un evento si dice certo quando eá possibile

Dettagli

PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96

PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96 QUESITI 1 PROBABILITÀ 1. (Da Medicina e Odontoiatria 2015) La probabilità con cui un paziente deve attendere meno di dieci minuti il proprio turno in un ambulatorio medico è 0,8. Qual è la probabilità

Dettagli

Introduzione alla binomiale

Introduzione alla binomiale Introduzione alla binomiale Supponiamo che tre persone (Francesca, Luigi e Tiziano) escono ciascuno dalla loro casa per andare a prendere il medesimo autobus e che ciascuno di essi abbia probabilità pari

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi

Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi http://www.ateneonline.it/naldi matematica McGraw-Hill Capitolo 12, Modelli Probabilistici

Dettagli

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi Lezione 2 La probabilità oggettiva : definizione classica e frequentistica e loro problemi La definizione classica Definizione classica: La probabilità di un evento E è il rapporto tra il numero dei casi

Dettagli

Le variabili casuali o aleatorie

Le variabili casuali o aleatorie Le variabili casuali o aleatorie Intuitivamente un numero casuale o aleatorio è un numero sul cui valore non siamo certi per carenza di informazioni - ad esempio la durata di un macchinario, il valore

Dettagli

CP110 Probabilità: Esonero 1

CP110 Probabilità: Esonero 1 Dipartimento di Matematica, Roma Tre Pietro Caputo 2016-17, II semestre 11 aprile, 2017 CP110 Probabilità: Esonero 1 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante l esame

Dettagli

Tutorato 1 (20/12/2012) - Soluzioni

Tutorato 1 (20/12/2012) - Soluzioni Tutorato 1 (20/12/2012) - Soluzioni Esercizio 1 (v.c. fantasia) Si trovi il valore del parametro θ per cui la tabella seguente definisce la funzione di probabilità di una v.c. unidimensionale X. X 0 1

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

Probabilità II Variabili casuali discrete

Probabilità II Variabili casuali discrete Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una

Dettagli

STATISTICA 1 ESERCITAZIONE 8

STATISTICA 1 ESERCITAZIONE 8 STATISTICA 1 ESERCITAZIONE 8 Dott. Giuseppe Pandolfo 18 Novembre 2013 CALCOLO DELLE PROBABILITA Elementi del calcolo delle probabilità: 1) Esperimento: fenomeno caratterizzato da incertezza 2) Evento:

Dettagli

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

Laboratorio di Calcolo B 68

Laboratorio di Calcolo B 68 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

PROBLEMI DI PROBABILITÀ

PROBLEMI DI PROBABILITÀ PROBLEMI DI PROBABILITÀ 1. Si dispongono a caso su uno scaffale sette libri, dei quali tre trattano di matematica. Qual è la probabilità che i tre libri di matematica si vengano a trovare l uno accanto

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A)

Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A) Prova scritta di STATISTICA CDL Biotecnologie (Programma di Massimo Cristallo - A) 1. Un associazione di consumatori, allo scopo di esaminare la qualità di tre diverse marche di batterie per automobili,

Dettagli