p k q n k = p n (k) = n 12 = 1 = ,1208. q = 1 2 e si ha: p 12 (8) =
|
|
- Alessia Caselli
- 2 anni fa
- Visualizzazioni
Transcript
1 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute, ad esempio successivi lanci di un dado, di una moneta, estrazioni di palline da un urna, di carte da un mazzo (in questi ultimi due casi reimmettendo la pallina o la carta nell urna o nel mazzo), estrazioni di numeri del lotto in settimane successive, e così via. Lo schema generale può essere descritto mediante la seguente definizione: Si dice esperimento di Bernoulli una sequenza di n prove con le seguenti caratteristiche: 1) il risultato di ogni prova può essere solo successo o fallimento ; ) il risultato di ciascuna prova è indipendente dai risultati delle prove precedenti; 3) la probabilità p di successo, e quindi la probabilità q = 1 p di fallimento, sono costanti in ciascuna prova. Ci proponiamo ora di determinare la probabilità che, in n prove di un esperimento di Bernoulli, si abbiano esattamente k successi. Indichiamo con S il successo e con F il fallimento. Una sequenza di n prove darà, per la 1), come esito una sequenza di n fra S e F. Ad esempio, una sequenza che contiene k successi è la seguente: k volte n k volte SS... S FF... F Se p è la probabilità di S e q la probabilità di F, la probabilità di ottenere proprio quella sequenza è, trattandosi di eventi indipendenti e applicando la regola della probabilità composta: 64 k 7 volte 48 6 n k 47 volte 48 p p... pq q... q = p k q n k È immediato convincersi che una qualsiasi altra sequenza contenente esattamente k successi avrà sempre come probabilità p k q n k (cambia l ordine dei fattori, ma non il prodotto). Per determinare in quanti modi si possono ottenere k successi in n prove, basta scegliere tra gli n numeri 1,,..., n i k che contrassegnano i posti occupati dai successi: ciò può essere eseguito in C n,k modi (non essendo rilevante l ordine in cui tali posti vengono scelti). In definitiva si hanno C n,k possibilità di ottenere k successi in n prove e ciascuna di esse ha, come si è detto, probabilità p k q n k. Dato che queste possibilità distinte corrispondono al realizzarsi di eventi incompatibili (evidentemente il realizzarsi di una certa sequenza di S e F è incompatibile con il verificarsi di un altra di tali sequenze), per la regola delle probabilità totali, la probabilità cercata, che indichiamo con p n (k), è: p n (k) =C n, k p k q n k (con q =1 p) o, usando la notazione dei coefficienti binomiali: p n (k) = n p k q n k = k n! k!(n k )! pk q n k Esempio 1. Determinare la probabilità che su 1 lanci di una moneta buona si ottengano esattamente 8 teste. Si tratta di un esperimento di Bernoulli in cui il successo coincide con esce T ; quindi p = q = 1 e si ha: p 1 (8) = = = 1 0, Esempio. Determinare la probabilità che estraendo per 5 volte una carta da un mazzo da 40 (inserendo ogni volta la carta estratta e rimescolando bene il mazzo) si ottengano: a) esattamente 3 figure b) almeno 3 figure c) almeno una figura 1
2 Si osservi che, se non si reintroducesse la carta nel mazzo, l esperimento non sarebbe di Bernoulli, in quanto la probabilità di estrarre una figura cambierebbe ad ogni successiva estrazione. In questo caso, invece, si tratta di un esperimento di Bernoulli in cui il successo è l estrazione di una figura, per cui p = 1 = 0,3 (e q = 1 0,3 = 0,7). 40 a) La probabilità di ottenere esattamente 3 figure è: p 5 (3) = 5 0,3 3 0,7 =10 0,3 3 0,7 = 0,133 3 b) La probabilità di ottenere almeno 3 figure è la somma delle probabilità di ottenere esattamente 3, 4 o 5 figure: p 5 (3) + p 5 (4)+ p 5 (5) = 0, , ,004 = 0,1631 c) Per rispondere a quest ultima domanda si può procedere come in b) calcolando: p 5 (1) + p 5 () + p 5 (3) + p 5 (4)+p 5 (5) È tuttavia molto più rapido considerare la probabilità dell evento contrario, ossia la probabilità di non ottenere alcuna figura: p 5 (0) = 5 0,3 0 0,7 5 =0,7 5 = 0,16807, per cui la 0 probabilità di ottenere almeno una figura è 1 0,16807 = 0, Esempio 3. Un tiratore colpisce un bersaglio con probabilità 0,. Qual è la probabilità che su 8 tiri colpisca volte il bersaglio? E che lo colpisca almeno due volte? Essendo p = 0, (e quindi q = 1 0, = 0,8) la probabilità di successo, si ha: p 8 () = 8 0, 0,8 6 = 8 7 0, 0,8 6 0,936 Per rispondere alla seconda domanda è più conveniente determinare le probabilità che il tiratore non colpisca il bersaglio o che lo colpisca esattamente una volta: p 8 (0) = 8 0, 0 0,8 8 0,1678; p 0 8 (1) = 8 0, 1 0,8 8 =8 0, 0,8 8 0, Per la regola della probabilità dell evento contrario, la probabilità che il tiratore colpisca almeno due volte il bersaglio è 1 (0, ,3355) = 0,4967. Dato un esperimento di Bernoulli, una volta fissato il numero delle prove e la probabilità p di successo, il numero k di sucecssi può essere visto come una variabile casuale avente come valori i numeri da 0 a n e le cui rispettive probabilità si determinano con la formula precedente. Tale distribuzione di probabilità prende il nome di distribuzione binomiale. Le variabili casuali degli Esempi 1 e 5 del capitolo precedente hanno una distribuzione binomiale p = q = 1. I valori delle probabilità delle distribuzioni binomiali relative ai valori di n fino a 1 e ad alcuni valori di p sono riportate nella Tavola in Appendice a questo capitolo. Se p = q = 1 l istogramma delle variabili casuali con distribuzione binomiale è simmetrico rispetto al valore medio. Questa circostanza non si verifica se p 1. Vediamo due esempi. Esempio 4. Un urna contiene 10 palline di cui 3 bianche. Si eseguono 4 successive estrazioni rimettendo ogni volta la pallina estratta nell urna. Determinare la distribuzione di probabilità della variabile casuale X = numero di palline bianche estratte e rappresentarla con un istogramma.
3 La probabilità di estrarre una pallina bianca è 0,3. La variabile casuale X ha come possibili valori 0, 1,, 3 e 4 e le rispettive probabilità sono p 4 (0), p 4 (1), p 4 (), p 4 (3), p 4 (4). Determiniamo tali valori ricorrendo alla Tavola: X ,401 0,4116 0,646 0,0756 0,0081 L istogramma risulta: Esempio 5. Rappresentare con un istogramma la distribuzione binomiale con n = 10 e p = 0,9. Per sfruttare la Tavola 1 anche in questo caso, occorre osservare che avere probabilità 0,9 di successo equivale ad avere probabilità 0,1 di insuccesso. Quindi, ottenere 3 successi in 10 prove equivale ad ottenere 7 insuccessi, per cui p 10 (3) con p = 0,9 si può leggere in corrispondenza di p 10 (7) con p = 0,1, e così via: X ,0000 0,0000 0,0000 0,0000 0,0001 0,0015 0,011 0,0574 0,1937 0,3874 0,3487 (dove compare 0,0000 non si intende evidentemente probabilità nulla, ma un valore molto basso, inferiore a 0,00005). L istogramma è il seguente: Per una variabile casuale con distribuzione binomiale si può dimostrare che: il valore medio è: E(X) = np la varianza vale: var(x) = npq e la deviazione standard risullta: npq. 3
4 TAVOLA 1 LA DISTRIBUZIONE BINOMIALE (valori di p n (k) per n da a 1 e p = 0,1; 0,; 0,3; 0,4; 0,5 4
5 5
STATISTICA ESERCITAZIONE 9
STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione
CAPITOLO QUINTO DISTRIBUZIONE NORMALE
CAPITOLO QUINTO DISTRIBUZIONE NORMALE 1. Probabilità nel continuo Fino ad ora abbiamo considerato casi in cui l insieme degli eventi elementari è finito. Vediamo, mediante due semplici esempi, come si
Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia
Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile
esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;
Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno
1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:
CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o
Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.
discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3
Statistica. Esercitazione 10. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice. V.C.
uniforme Bernoulli binomiale di Esercitazione 10 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 55 Outline uniforme Bernoulli binomiale di 1 uniforme 2 Bernoulli 3 4
Abbiamo visto come si possa determinare il numero di possibili anagrammi di una parola, con lettere tutte distinte o con alcune lettere ripetute.
MODELLI (Approfondimenti) Approfondiamo i 3 modelli più frequentemente utilizzati nell'analisi Combinatoria e nel Calcolo delle Probabilità, precisamente il modello ANAGRAMMA, il modello ESTRAZIONE e il
VARIABILI CASUALI CONTINUE
p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale continua può assumere tutti gli infiniti valori appartenenti ad un intervallo di numeri reali. p. 1/1 VARIABILI CASUALI CONTINUE Una variabile casuale
3.1 La probabilità: eventi e variabili casuali
Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio
Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di
ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE
ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 30 Aprile 2013 Esercizio
PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare
PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità
Esercitazione 1 del corso di Statistica (parte 2)
Esercitazione del corso di Statistica (parte Dott.ssa Paola Costantini 8 Gennaio 0 Esercizio n Compro due cassette contenenti 0 piante di rosa che ancora devono sbocciare. Nella prima cassetta ci sono
Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a
Corso di Statistica Distribuzioni di probabilità per variabili casuali discrete Prof.ssa T. Laureti a.a. 2013-2014 1 Variabili casuale di Bernoulli La v.c. di Bernoulli trae origine da una prova nella
Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6
EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano
Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:
Lezione 1 La Probabilità Scopo del Corso: Introduzione alla probabilità e alle procedure di inferenza statistica Introduzione ad alcune importanti tecniche di analisi multivariata dei dati Organizzazione
Domande di teoria. Esercizi
1 Domande di teoria 1. Vedi pp. 131-132 2. Vedi pp. 132-134 3. Vedi p. 134 4. Vedi p. 135 5. Vedi pp. 136-142 6. Vedi pp. 138-139 7. Vedi pp. 141-142 8. Vedi pp. 143-146 9. Vedi pp. 146-148 Esercizi Esercizio
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2
CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Il modello binomiale Da studi interni è noto che il 35% dei clienti del Supermercato GD paga
Matematica con elementi di statistica ESERCIZI: probabilità
Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.
Soluzione esercizi (quarta settimana)
Soluzione esercizi (quarta settimana) Marco Riani Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? 1 Esempio Gioco la schedina mettendo a caso i segni (1 X
STATISTICA A K (63 ore) Marco Riani
STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo
Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE
Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA
DOMANDA 1: mettere una croce sulla affermazione esatta (90 89)
PROVA D ESAME - 0 marzo 00 nome: cognome: SSIS-INDIRIZZO MATEMATICA E MATEMATICA APPLICATA (primo anno MATEMATICA APPLICATA B: CALCOLO DELLE PROBABILITÀ Per le domande a risposta aperta il punteggio varia
Statistica ARGOMENTI. Calcolo combinatorio
Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità
STATISTICA: esercizi svolti sulle VARIABILI CASUALI
STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri
Statistica descrittiva I. La frequenza
Statistica descrittiva I. La frequenza Supponiamo di ripetere n volte un esperimento che può dare esito 0 o 1, il numero di uni su n ripetizioni è detto frequenza di 1: f 1,n = #{esperimenti con esito
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con
Alcune v.a. discrete notevoli
Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina
Calcolo della probabilità
Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.
Esercizi di Calcolo delle Probabilità
Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato
La probabilità composta
La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il
ESERCIZI DI PROBABILITA
ESERCIZI DI PROBABILITA Quest'opera è stata rilasciata sotto la licenza Creative Commons Attribuzione-Non commerciale-condividi allo stesso modo 2.5 Italia. Per leggere una copia della licenza visita il
Esercizi su variabili aleatorie discrete
Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare
VARIABILI ALEATORIE Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al 6 lancio:
VARIABILI ALEATORIE. Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al lancio: a) si abbia testa per la prima volta? b) Si sia avuto testa almeno una volta? c) Si sia avuta
Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali
Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si
FRAME 0.3. E possibile partecipare a tre appelli su 5 (esclusi i compitini). Farà fede l iscrizione alle liste elettroniche.
FRAME 0.1. S.M. Ross, Calcolo delle Probabilità, Apogeo 2004. C. Mariconda, A. Tonolo, Matematica Discreta, a.a. 2005-2006, Libreria Progetto, 2005 (costo 6 euro. Compitini FRAME 0.2. 13 maggio, ore 9.30
È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.
A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
Esercizi su variabili discrete: binomiali e ipergeometriche
CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su variabili discrete: binomiali e ipergeometriche Es1 Due squadre di rugby si sfidano giocando fra loro varie partite La squadra che vince 4 partite
Statistica Inferenziale
Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione
1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.
Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di
La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.
La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA
La probabilità matematica
1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi
CP110 Probabilità: Esonero 1. Testo e soluzione
Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 1 aprile, 2010 CP110 Probabilità: Esonero 1 Testo e soluzione 1. (7 pt Una scatola contiene 15 palle numerate da 1 a 15. Le palle
PRINCIPALI DISTRIBUZIONI DI PROBABILITA. Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek
PRINCIPALI DISTRIBUZIONI DI PROBABILITA Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 000/001 dott. Corrado Caudek 1 DISTRIBUZIONE BINOMIALE Possiamo definire un processo bernoulliano come una
Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità
Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare
Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini e Leonardo Bertini. Lezione 1: Probabilità: fondamenti
Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini e Leonardo Bertini Lezione 1: Probabilità: fondamenti Progettazione probabilistica: Considerazione delle incertezze
Lezione 3 Calcolo delle probabilità
Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.
Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità A. A. /5 prova scritta (//5(docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento dei punti non facoltativi
MATEMATICA. a.a. 2014/15
MATEMATICA a.a. 2014/15 5. Introduzione alla probabilità: Definizioni di probabilità. Evento, prova, esperimento. Eventi indipendenti e incompatibili. Probabilità condizionata. Teorema di Bayes CONCETTI
Calcolo Combinatorio e Probabilità
Calcolo Combinatorio e Probabilità Andrea Galasso 1 Calcolo Combinatorio Definizione 1 Fissati n, k N, con k n, indicheremo con D n,k := n! (n k)! le disposizioni di n oggetti in k posti e con DR n,k :=
Esercizi svolti di statistica. Gianpaolo Gabutti
Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione
Distribuzione di Probabilità
Distribuzione di Probabilità Sia X variabile con valori discreti X 1, X 2,..., X N aventi probabilità p 1, p 2,..., p N ( i p i = 1) (X variabile discreta aleatoria, o stocastica, o casuale, random) Funzione
Verifica delle ipotesi: Binomiale
Verifica delle ipotesi: Binomiale Esercizio Nel collegio elettorale di una città, alle ultime elezioni il candidato A ha ottenuto il 4% delle preferenze mentre il candidato B il 6%. Nella nuova tornata
TEST n La funzione di ripartizione di una variabile aleatoria:
TEST n. 1 1. Un esperimento consiste nell estrarre successivamente, con reimmissione nel mazzo, due carte da un mazzo di 52 carte. Individuare la probabilità di estrarre due assi. A 0.0059 B 0.0044 C 0.0045
IL CALCOLO DELLE PROBABILITA
IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,
Esercitazione 7 del corso di Statistica (parte 1)
Esercitazione 7 del corso di Statistica (parte 1) Dott.ssa Paola Costantini 5 Marzo 011 Esercizio 1 Sullo spazio campionario: = 1,,,, 5,, 7,,, considerando l esperimento casuale estrazione di un numero,
e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1
1) Studiare la seguente serie di funzioni en ( 1) n n x n 2) Studiare la seguente serie di funzioni ( 1) n n + 1 2e n xn 3) Studiare la seguente serie di funzioni 3n [ln x]n 1 2n 4) Studiare la seguente
Esercitazione 1 del corso di Statistica 2
Esercitazione 1 del corso di Statistica 2 Prof. Domenico Vistocco Dott.ssa Paola Costantini Esercizio n. 1 Estraendo due carte da un mazzo di carte napoletane con la reimmissione della carta nel mazzo
Statistica Applicata all edilizia: alcune distribuzioni di probabilità
Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete
Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)
Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le
CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica
) Un urna contiene 0 palline numerate da a 0. Si calcoli la probabilità che: a) estraendo successivamente palline, rimettendo ogni volta la pallina estratta nell urna, si abbiano due numeri primi; b) estraendo
Facoltà di ECONOMIA Università di Pavia 20 Aprile 2004 Prova scritta di Analisi dei dati MODALITÀ A
MODALITÀ A Riportare sul foglio nome, cognome, numero di matricola e modalità del testo d esame. Problema 1 (8 PUNTI) Su un collettivo di 10 clienti iscritti al programma frequent flyer di una nota compagnia
Esercizio 1. Svolgimento
Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento
Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3
Indice Nozioni preliminari... 1 Notazioni... 1 Alcunirichiamidianalisimatematica... 3 Sommeinfinite... 3 1 Spazi di probabilità discreti: teoria... 7 1.1 Modelli probabilistici discreti..... 7 1.1.1 Considerazioni
Elementi di Analisi Combinatoria
Elementi di Analisi Combinatoria Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy angelica.malaspina@unibas.it Lo studio dei vari raggruppamenti
Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità
Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 88 La variabile aleatoria Nello
Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.
CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente
p. 1/2 INFORMAZIONI Prossime lezioni Giorno Ora Dove 27/01 14:30 P50 29/01 14:30 Laboratorio (via Loredan) 03/02 14:30 P50 05/02 14:30 P50
p. 1/2 INFORMAZIONI Prossime lezioni Giorno Ora Dove 27/01 14:30 P50 29/01 14:30 Laboratorio (via Loredan) 03/02 14:30 P50 05/02 14:30 P50 p. 1/2 INFORMAZIONI Prossime lezioni Giorno Ora Dove 27/01 14:30
Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1
Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni
Olimpiadi di Statistica Classe V - Fase Eliminatoria
Olimpiadi di Statistica 2016 - Classe V - Fase Eliminatoria Domanda 1 Alla fine del torneo di calcetto organizzato dalla scuola, è stata analizzata la classifica dei marcatori dalla quale risulta la seguente
Distribuzioni di probabilità
Distribuzioni di probabilità Si sono diverse distribuzioni di probabilità: quelle di cui parleremo sono la distribuzione binomiale, quella di Poisson, quella uniforme, quella normale, quella del χ² e la
Modelli matematici di fenomeni aleatori Variabilità e casualità
Modelli matematici di fenomeni aleatori Variabilità e casualità La casualità è alla base della scelta degli individui che compongono un campione ai fini di un indagine statistica. La casualità è alla base
Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.
Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi
Corso di Fondamenti di TLC Esercizi di Probabilitá
Corso di Fondamenti di TLC Esercizi di Probabilitá Exercise 0.1 Unurna contiene 2 biglie bianche e 5 nere. Estraiamo una prima biglia: se nera la rimettiamo dentro con altre due dello stesso colore, se
STATISTICA (2) ESERCITAZIONE 1. Dott.ssa Antonella Costanzo
STATISTICA (2) ESERCITAZIONE 1 29.01.2014 Dott.ssa Antonella Costanzo Esercizio 1. Modelli discreti di probabilità: le v.c. binomiale e geometrica (come caso particolare della v.c. binomiale negativa)
CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari;
ARITMETICA ELEMENTIDICALCOLO DELLE PROBABILITAÁ PREREQUISITI l l l conoscere e costruire tabelle a doppia entrata conoscere il significato di frequenza statistica calcolare rapporti e percentuali CONOSCENZE.
LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria
ALGEBRA IL CALCOLO DELLE PROBABILITAÁ richiami della teoria n un evento E si dice casuale o aleatorio, quando il suo verificarsi dipende unicamente dal caso; n un evento si dice certo quando eá possibile
PROBABILITÀ. a) 0,04 b) 0,8 c) 0,25 d) 0,64 e) 0,96
QUESITI 1 PROBABILITÀ 1. (Da Medicina e Odontoiatria 2015) La probabilità con cui un paziente deve attendere meno di dieci minuti il proprio turno in un ambulatorio medico è 0,8. Qual è la probabilità
Introduzione alla binomiale
Introduzione alla binomiale Supponiamo che tre persone (Francesca, Luigi e Tiziano) escono ciascuno dalla loro casa per andare a prendere il medesimo autobus e che ciascuno di essi abbia probabilità pari
L indagine campionaria Lezione 3
Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato
Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi
Lezioni da Matematica I Calcolo differenziale, Algebra lineare, Probabilità e statistica G. Aletti & G. Naldi & L. Pareschi http://www.ateneonline.it/naldi matematica McGraw-Hill Capitolo 12, Modelli Probabilistici
Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi
Lezione 2 La probabilità oggettiva : definizione classica e frequentistica e loro problemi La definizione classica Definizione classica: La probabilità di un evento E è il rapporto tra il numero dei casi
Le variabili casuali o aleatorie
Le variabili casuali o aleatorie Intuitivamente un numero casuale o aleatorio è un numero sul cui valore non siamo certi per carenza di informazioni - ad esempio la durata di un macchinario, il valore
CP110 Probabilità: Esonero 1
Dipartimento di Matematica, Roma Tre Pietro Caputo 2016-17, II semestre 11 aprile, 2017 CP110 Probabilità: Esonero 1 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante l esame
Tutorato 1 (20/12/2012) - Soluzioni
Tutorato 1 (20/12/2012) - Soluzioni Esercizio 1 (v.c. fantasia) Si trovi il valore del parametro θ per cui la tabella seguente definisce la funzione di probabilità di una v.c. unidimensionale X. X 0 1
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;
Probabilità II Variabili casuali discrete
Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una
STATISTICA 1 ESERCITAZIONE 8
STATISTICA 1 ESERCITAZIONE 8 Dott. Giuseppe Pandolfo 18 Novembre 2013 CALCOLO DELLE PROBABILITA Elementi del calcolo delle probabilità: 1) Esperimento: fenomeno caratterizzato da incertezza 2) Evento:
P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =
1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda
Vedi: Probabilità e cenni di statistica
Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità
Laboratorio di Calcolo B 68
Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però
PROBLEMI DI PROBABILITÀ
PROBLEMI DI PROBABILITÀ 1. Si dispongono a caso su uno scaffale sette libri, dei quali tre trattano di matematica. Qual è la probabilità che i tre libri di matematica si vengano a trovare l uno accanto
PROBABILITA. Distribuzione di probabilità
DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove
Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A)
Prova scritta di STATISTICA CDL Biotecnologie (Programma di Massimo Cristallo - A) 1. Un associazione di consumatori, allo scopo di esaminare la qualità di tre diverse marche di batterie per automobili,