PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE"

Transcript

1 PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito. 1. Formulre ipotesi, sperimentre e/o interpretre leggi fisiche, proporre e utilizzre modelli e nlogie. 2. Anlizzre fenomeni fisici e ppliczioni tecnologiche, riuscendo individure le grndezze fisiche crtterizznti e proporre relzioni quntittive tr esse. 3. Spiegre le più comuni ppliczioni dell fisic nel cmpo tecnologico, con l conspevolezz dell reciproc influenz tr evoluzione tecnologic e ricerc scientific. 4. Risolvere problemi utilizzndo il linguggio lgebrico e grfico, nonché il Sistem Internzionle delle unità di misur. 5. Collocre le principli scoperte scientifiche e invenzioni tecniche nel loro contesto storico e socile

2 didttic di bse L velocità P P P P Il punto mterile in movimento e l triettori. I sistemi di riferimento. Il moto rettilineo. L velocità medi. I grfici spzio-tempo. Crtteristiche del moto rettilineo uniforme. Anlisi di un moto ttrverso grfici spzio-tempo e velocità-tempo. Il significto dell pendenz nei grfici spzio-tempo. Utilizzre il sistem di riferimento nello studio di un moto. Clcolre l velocità medi, lo spzio percorso e l intervllo di tempo di un moto. Interpretre il significto del coefficiente ngolre di un grfico spzio-tempo. Conoscere le crtteristiche del moto rettilineo uniforme. Interpretre correttmente i grfici spzio-tempo e velocità-tempo reltivi un moto. L ccelerzion e P P P P I concetti di velocità istntne, ccelerzione medi e ccelerzione istntne. Le crtteristiche del moto uniformemente ccelerto, con prtenz d fermo. Il moto uniformemente ccelerto con velocità inizile. Le leggi dello spzio e dell velocità in funzione del tempo. Clcolre i vlori dell velocità istntne e dell ccelerzione medi di un corpo in moto. Interpretre i grfici spzio-tempo e velocità-tempo nel moto uniformemente ccelerto. Clcolre lo spzio percorso d un corpo utilizzndo il grfico spziotempo. Clcolre l ccelerzione di un corpo utilizzndo un grfico velocità-tempo. I moti nel pino I principi dell dinmic P P P I vettori posizione, spostmento e velocità. Il moto circolre uniforme. Periodo, frequenz e velocità istntne nel moto circolre uniforme. L ccelerzione centripet. Il moto rmonico. L composizione di moti. L velocità dell luce. P P P P P I principi dell dinmic. L enuncito del primo principio dell dinmic. I sistemi di riferimento inerzili. Il principio di reltività glilein. Il secondo principio dell dinmic. Unità di misur delle forze nel SI. Il concetto di mss inerzile. Il terzo principio dell dinmic. Applicre le conoscenze sulle grndezze vettorili i moti nel pino. Operre con le grndezze fisiche sclri e vettorili. Clcolre le grndezze crtteristiche del moto circolre uniforme e del moto rmonico. Comporre spostmenti e velocità di due moti rettilinei. Anlizzre il moto dei corpi qundo l forz risultnte pplict è null. Riconoscere i sistemi di riferimento inerzili. Studire il moto di un corpo sotto l zione di un forz costnte. Applicre il terzo principio dell dinmic. Proporre esempi di ppliczione dell legge di Newton.

3 didttic di bse Le forze e il movime nto P P P P P Il moto di cdut liber dei corpi. L differenz tr i concetti di peso e di mss. Il moto lungo un pino inclinto. Le crtteristiche del moto dei proiettili. Il moto dei stelliti. L forz centripet. L grvitzione universle. L velocità e il periodo dei stelliti. Il moto rmonico e il pendolo. Anlizzre il moto di cdut dei corpi. Distinguere tr peso e mss di un corpo. Studire il moto dei corpi lungo un pino inclinto. Anlizzre il moto dei proiettili con velocità inizili diverse. Interpretre il moto dei stelliti. Esprimere e comprendere il significto dell legge di grvitzione universle. Comprendere le crtteristiche del moto rmonico e del moto del pendolo. L energ i e l quntità di moto P P P P P L definizione di lvoro. L potenz. Il concetto di energi. L energi cinetic e l relzione tr lvoro ed energi cinetic. L energi potenzile grvitzionle e l energi elstic. Il principio di conservzione dell energi meccnic. L conservzione dell energi totle. L quntità di moto di un corpo. L legge di conservzione dell quntità di moto per un sistem isolto. Urti elstici e nelstici. L impulso di un forz e il teorem dell impulso. Clcolre il lvoro compiuto d un forz. Clcolre l potenz. Ricvre l energi cinetic di un corpo, nche in relzione l lvoro svolto. Clcolre l energi potenzile grvitzionle di un corpo e l energi potenzile elstic di un sistem oscillnte. Applicre il principio di conservzione dell energi meccnic. Clcolre l quntità di moto di un corpo e l impulso di un forz. Riconoscere e spiegre le leggi di conservzione dell energi e dell quntità di moto in vrie situzioni dell vit quotidin. Applicre il teorem dell impulso. L temper tur P P P P P Termoscopi e termometri. L definizione opertiv di tempertur. Le scle di tempertur Celsius e ssolut. L diltzione linere dei solidi. L diltzione volumic dei solidi e dei liquidi. Le trsformzioni di un gs. L legge di Boyle e le due leggi di Gy-Lussc. Il modello del gs perfetto e l su equzione di stto. Comprendere l differenz tr termoscopio e termometro. Clcolre l vrizione di corpi solidi e liquidi sottoposti riscldmento. Riconoscere i diversi tipi di trsformzione di un gs. Applicre le leggi di Boyle e Gy- Lussc lle trsformzioni di un gs. Riconoscere le crtteristiche di un gs perfetto e sperne utilizzre l equzione di stto.

4 didttic di bse Il clore P P P P Clore e lvoro come forme di energi in trnsito. Unità di misur per il clore. Cpcità termic e clore specifico. Quntità di energi e vrizione di tempertur. Il clorimetro e l misur del clore specifico. L tempertur di equilibrio. L trsmissione del clore per conduzione e convezione. L irrggimento. L legge di Stefn-Boltzmnn. I cmbimenti di stto: fusione e solidificzione, vporizzzione e condenszione, sublimzione. Comprendere come riscldre un corpo con il clore o con il lvoro. Distinguere fr cpcità termic dei corpi e clore specifico delle sostnze. Clcolre il clore specifico di un sostnz con l utilizzo del clorimetro e l tempertur di equilibrio. Descrivere le modlità di trsmissione dell energi termic e clcolre l quntità di clore trsmess d un corpo. Applicre l legge di Stefn- Boltzmnn. Descrivere i pssggi tr i vri stti di ggregzione molecolre. Clcolre l energi impiegt nei cmbimenti di stto. Interpretre il concetto di clore ltente. L luce e l ottic geometr ic P P P P P L luce: sorgenti, propgzione rettiline, velocità. L riflessione e lo specchio pino Gli specchi curvi Le leggi dell rifrzione. L riflessione totle L indice di rifrzione. Lenti convergenti e divergenti. Individure le crtteristiche delle immgini e distinguere quelle reli e quelle virtuli. Riconoscere i vri tipi di specchi Determinre, medinte un procedimento grfico, l immgine prodott d uno specchio. Determinre, medinte un procedimento grfico, l immgine prodott d un lente. Appliczioni: mcchin fotogrfic e cinem. L occhio e l visione. Il microscopio e il cnnocchile. Si prevede di svolgere le prime 4 unità didttiche nel trimestre e le rimnenti nel pentmestre. L progrmmzione potrebbe subire modifiche in bse l grdo di pprendimento dll clsse o d imprevisti. MODALITÀ DI VERIFICA Le verifiche srnno effettute medinte colloqui orli, relzioni delle esperienze di lbortorio ed esercitzioni scritte. Queste ultime potrnno essere strutturte come esercizi, problemi o quesiti d risolvere, test rispost breve e/o scelt multipl. Nelle interrogzioni si drà molto peso ll esposizione degli rgomenti che dovrà essere scorrevole ed

5 orgnic. NUMERO MINIMO DI VERIFICHE Nel trimestre: lmeno 2 prove (di cui 1 orle) Nel pentmestre: lmeno 3 prove (di cui 1 orle) CRITERI DI VALUTAZIONE L vlutzione complessiv terrà conto, oltre che dei risultti rggiunti dgli lunni, nche dell ttenzione e interesse durnte le lezioni, dell impegno, dell ssiduità, e del progresso sviluppto nel tempo. CRITERI DI SUFFICIENZA (Stndrd minimo) Possedere le essenzili conoscenze di bse, sperle utilizzre ed esporre in mnier corrett.

UDA N 2 Scienze e Tecnologie Applicate: Indirizzo INFORMATICA

UDA N 2 Scienze e Tecnologie Applicate: Indirizzo INFORMATICA Sch ed di pro gettzion e d elle Un ità d i App rend imento nu mero 1 UDA N 1 Scienze e Tecnologie Applicte: Indirizzo INFORMATICA UdA N 1 Disciplin Riferimento Titolo The incredibile mchine! informtic

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

PROGRAMMA SVOLTO A. S. 2014/ 2015

PROGRAMMA SVOLTO A. S. 2014/ 2015 A. S. 4/ Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G mnutenzione e ssistenz tecnic ore complessive di insegnmento settimne X 4 ore = ore Nome Ins. Tecn.

Dettagli

Esercizi sugli urti tra punti materiali e corpi rigidi

Esercizi sugli urti tra punti materiali e corpi rigidi Esercizi sugli urti tr punti mterili e corpi rigidi Un st omogene di mss 0.9 kg e di lunghezz 0. m è incerniert nel suo punto di mezzo in un pino orizzontle ed è inizilmente erm. Un proiettile di mss m100g

Dettagli

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010 IIS MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO AS 2009-2010 Modulo A Grandezze fisiche e misure Le basi dell algebra e dei numeri relativi Proporzionalità tra grandezze Calcolo di equivalenze tra

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA Corso di lure in Ingegneri Meccnic Tesin del corso di TRASMISSIONE DEL CALORE Docente Prof. Ing. Gennro Cuccurullo Tesin n.7a Effetti termici del

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITA DI APPRENDIMENTO Denominzione Compito-prodotto Competenze mirte Comuni/cittdinnz IL TEMPO PASSA IL MONDO GIRA REALIZZAZIONE DI

Dettagli

ISIS LE FILANDIERE, A.S. 2015/2016 PIANO DI LAVORO DELLA CLASSE: II B (LS) DISCIPLINA: FISICA Docente: Costantini Gianni

ISIS LE FILANDIERE, A.S. 2015/2016 PIANO DI LAVORO DELLA CLASSE: II B (LS) DISCIPLINA: FISICA Docente: Costantini Gianni ISIS LE FILANDIERE, A.S. 2015/2016 PIANO DI LAVORO DELLA CLASSE: II B (LS) Programmazione per competenze: DISCIPLINA: FISICA Docente: Costantini Gianni Le competenze specifiche che l insegnamento di questa

Dettagli

Gioco Interno Tipologie e Norme

Gioco Interno Tipologie e Norme Gioco Interno Tipologie e Norme Per gioco interno si intende l misur complessiv di cui un nello si può spostre rispetto ll ltro in direzione oppost. E necessrio distinguere fr gioco rdile e gioco ssile.

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

IIS D ORIA - UFC. Laboratorio Relazioni di laboratorio Verifiche scritte di laboratorio (elaborazione dati, domande aperte, test a risposta multipla)

IIS D ORIA - UFC. Laboratorio Relazioni di laboratorio Verifiche scritte di laboratorio (elaborazione dati, domande aperte, test a risposta multipla) INDICE DELLE UFC 0 OBIETTIVI MINIMI CLASSE PRIMA (v. programmazione anno precedente) 1 LA TEMPERATURA 2 IL CALORE 3 L EQUILIBRIO DEI SOLIDI 4 IL MOVIMENTO: LA VELOCITÀ 5 IL MOVIMENTO: L ACCELERAZIONE 6

Dettagli

PIANO di LAVORO A. S. 2013/ 2014

PIANO di LAVORO A. S. 2013/ 2014 Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G IPSIA ore complessive di insegnmento 33 settimne X 3 ore = 99 ore Nome Ins. Tecn. Prtico Testo in dozione

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico Noe Cognoe. Clsse D 9 Novebre 00 erific di Fisic forul Noe grfico Proporzionlità qudrtic invers = ) icordndo i possibili legi tr due grndezze,, coplet l seguente tbell ) Specific il significto dei prefissi

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

LICEO SCIENTIFICO FORESI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE

LICEO SCIENTIFICO FORESI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE Istituto Statale d'istruzione Superiore R.FORESI LICEO CLASSICO LICEO SCIENTIFICO LICEO DELLE SCIENZE APPLICATE FORESI LICEO SCIENZE UMANE FORESI ISTITUTO PROFESSIONALE PER L INDUSTRIA E L ARTIGIANATO

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

PROGRAMMAZIONE CLASSE QUINTA - MATEMATICA NUMERO

PROGRAMMAZIONE CLASSE QUINTA - MATEMATICA NUMERO PROGRMMZIONE CLSSE QUINT - MTEMTIC NUMERO.1. Leggere e scrivere numeri consolidando la consapevolezza del valore posizionale delle cifre. MPLIRE LE CONOSCENZE RELTIVE I NUMERI NTURLI E DECIMLI Leggere,

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado U.D.1:ripetizione U.D.1: pino rtesino U.D.2 :L rett U. D.3 : I sistemi U.D.1: Le equzioni frtte U.D.1:Disequzioni di primo grdo Istituzione Solsti MARGHERITA DI SAVOIA Anno Solstio 2014/15 CLASSE II B

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Indice. Le grandezze e le leggi fisiche Verifica dei prerequisiti 2. Per cominciare. modulob Le forze e l equilibrio Verifica dei prerequisiti 42

Indice. Le grandezze e le leggi fisiche Verifica dei prerequisiti 2. Per cominciare. modulob Le forze e l equilibrio Verifica dei prerequisiti 42 Indice Le prti riportte negli incorniciti con questo fondino zzurro sono disponibili nel libro digitle proposto, unitmente molti ltri contenuti, nel DVD llegto. Per comincire Come è ftto il tuo libro Come

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2015/2016 CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2015/2016 CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA ALGEBRA RICHIAMI SU EQUAZIONI DI II GRADO (COMPLETE ED INCOMPLETE) E SULLE PRINCIPALI OPERAZIONI CON I RADICALI RICHIAMI SU DISEQUAZIONI

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

Appunti di Elettrotecnica

Appunti di Elettrotecnica Appunti di Elettrotecnic Premess Il presente opuscolo non può e non vuole essere considerto sostitutivo del libro di testo, vuole semplicemente essere un supporto, per rmmentre gli studenti lcuni degli

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico LE GRANDEZZE FISICHE estensive dipendono dll quntità di mteri mss, volume, lunghezz Grndezze intensive non dipendono dll quntità di mteri tempertur, peso specifico LA MISURA DI UNA GRANDEZZA FISICA Per

Dettagli

Controlli automatici

Controlli automatici Controlli utomtici Elementi di robotic industrile Prof. Polo Rocco (polo.rocco@polimi.it) Politecnico di Milno Diprtimento di Elettronic, Informzione e Bioingegneri Che cos è un robot? Il robot è un mnipoltore

Dettagli

Corso di Laurea in Chimica Regolamento Didattico

Corso di Laurea in Chimica Regolamento Didattico Corso di Lure in Chimic Regolmento Didttico Art.. Il Corso di Lure in Chimic h come finlità l formzione di lureti con competenze nei diversi settori dell chimic per qunto rigurd si gli spetti teorici che

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

ELEMENTI DI DINAMICA DEI FLUIDI

ELEMENTI DI DINAMICA DEI FLUIDI Corso di Fisic tecnic e mbientle.. 011/01 - Docente: Prof. Crlo Isetti ELEMENTI DI DINAMICA DEI FLUIDI 6.1 GENERALITÀ Il moto più semplice cui si f riferimento è in genere il moto stzionrio, che è crtterizzto

Dettagli

per i licei scientifici.blu

per i licei scientifici.blu 1 2 3 Idee per il tuo futuro Ugo Amldi L Amldi per i licei scientifici.blu Onde, Cmpo elettrico e mgnetico con Physics in English SCIENZE INTERNATIONAL SYSTEM OF UNITS SI BASE UNITS Bse quntity Nme Symbol

Dettagli

PIANO DI LAVORO. Prof. Berni Lucia. DISCIPLINA Scienze Integrate Fisica. Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

PIANO DI LAVORO. Prof. Berni Lucia. DISCIPLINA Scienze Integrate Fisica. Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) 1 Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO Prof.

Dettagli

LE SOLLECITAZIONI. Gli ingranaggi face gear, o a denti frontali (figura DEGLI INGRANAGGI A DENTI FRONTALI

LE SOLLECITAZIONI. Gli ingranaggi face gear, o a denti frontali (figura DEGLI INGRANAGGI A DENTI FRONTALI SANDRO BARONE, PAOLA FORTE LE SOLLECITAZIONI DEGLI INGRANAGGI A DENTI FRONTALI Un ingrnggio denti frontli (Fce Ger) offre vntggi si in termini di peso si in termini di riprtizione dei crichi sui denti,

Dettagli

CONDIZIONAMENTO DELL ARIA

CONDIZIONAMENTO DELL ARIA Corso di Impinti Tecnici.. 009/00 Docente: Prof. C. Isetti CAPITOLO 7 7. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del

Dettagli

Accoppiamento pompa e sistema

Accoppiamento pompa e sistema Accoppimento pomp e sistem 1/9 Considerimo il sistem idrulico dell Fig. 1 costituito d due bcini, mbedue soggetti ll pressione tmosferic e collegti tr loro d un tubzione: si vuole portre l cqu dl bcino

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Imparare: cosa, come, perché.

Imparare: cosa, come, perché. GIOCO n. 1 Imprre: cos, come, perché. L pprendimento scolstico non è solo questione di metodo di studio, m di numerose situzioni di tipo personle e di gruppo, oppure legte l contesto in cui pprendimo.

Dettagli

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro)

Scale con rampe diritte. Scala rettilinea a una rampa. Scala rettilinea a due rampe. Scala destra a una rampa a chiocciola (con un quarto di giro) 0.0 Scle di legno 9 0.0 Scle di legno Le scle servono superre le differenze di ltezz. Nelle cse unifmiliri sono sovente costruite in legno. Un scl è definit tle se formt d lmeno tre sclini consecutivi,

Dettagli

FISICA Biennio e Triennio Classico e Linguistico

FISICA Biennio e Triennio Classico e Linguistico PROGRAMMAZIONE D ISTITUTO FISICA Biennio e Triennio Classico e Linguistico FISICA NEL LICEO LINGUISTICO (BIENNIO) FINALITA Lo studio della fisica al ginnasio deve fornire allo studente un bagaglio di conoscenze

Dettagli

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA 2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA UMIDA 2.1. Ari Atmosferic L'ri tmosferic é costituit d un insieme di componenti gssosi (N 2, O 2, Ar, CO 2, Ne, He, ) e d ltre sostnze che possono presentrsi in

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data: 09/09 /2013 Pag. _1_ di _5 PROGRAMMAZIONE ANNUALE A.S. 2013_ / 2014_

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data: 09/09 /2013 Pag. _1_ di _5 PROGRAMMAZIONE ANNUALE A.S. 2013_ / 2014_ ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data: 09/09 /2013 Pag. _1_ di _5 INDIRIZZO SCOLASTICO DISCIPLINA DOCENTE / I CLASSE / I X MECCANICA e MECCATRONICA X ELETTRONICA X LOGISTICA e TRASPORTI LICEO

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

P.D.P. PIANO DIDATTICO PERSONALIZZATO Per allievi con Bisogni Educativi Speciali

P.D.P. PIANO DIDATTICO PERSONALIZZATO Per allievi con Bisogni Educativi Speciali ISTITUTO COMPRENSIVO STILO-BIVONGI Anno scolstico 2015 2016 Scuol sede P.D.P. PIANO DIDATTICO PERSONALIZZATO Per llievi con Bisogni Eductivi Specili Percorso A : ordinrio obiettivi comuni ll clsse con

Dettagli

Piano di formazione per l ordinanza sulla formazione professionale di base Specialista in fotografia

Piano di formazione per l ordinanza sulla formazione professionale di base Specialista in fotografia BiPl Titolo definitivo i Pino di formzione per l ordinnz sull formzione professionle di bse Specist in fotogrfi dell 8 dicembre 2004 Prte A - ompetenze Prte B - Grig delle lezioni Prte - Procedur di quficzione

Dettagli

Siano A e B due insiemi non vuoti. Una funzione f da A a B è un assegnamento di esattamente un elemento di B ad ogni elemento di A

Siano A e B due insiemi non vuoti. Una funzione f da A a B è un assegnamento di esattamente un elemento di B ad ogni elemento di A Funzioni Definizione di funzione: Sino A e B due insiemi non vuoti. Un funzione f d A B è un ssegnmento di esttmente un elemento di B d ogni elemento di A Scrivimo f() = b se b è l unico elemento dell

Dettagli

Convenzione sull'unificazione di taluni elementi del diritto dei brevetti d'invenzione

Convenzione sull'unificazione di taluni elementi del diritto dei brevetti d'invenzione Serie dei Trttti Europei - n 47 Convenzione sull'unificzione di tluni elementi del diritto dei revetti d'invenzione Strsurgo, 27 novemre 1963 Trduzione ufficile dell Cncelleri federle dell Svizzer Gli

Dettagli

ELEMENTI DI STABILITA

ELEMENTI DI STABILITA tbilità Per stbilità di un nve si intende, in generle, l fcoltà di conservre l su posizione di equilibrio, cioè l su ttitudine resistere lle forze che tendono inclinrl e l cpcità di rddrizzrsi spontnemente

Dettagli

ISTITUTO MAGISTRALE DI RIETI ELENA PRINCIPESSA DI NAPOLI. Liceo: Linguistico Scienze Umane Economico Sociale Musicale

ISTITUTO MAGISTRALE DI RIETI ELENA PRINCIPESSA DI NAPOLI. Liceo: Linguistico Scienze Umane Economico Sociale Musicale ISTITUTO MAGISTRALE DI RIETI ELENA PRINCIPESSA DI NAPOLI Dipartimento: Matematica e fisica Disciplina: Fisica A.S: 2015-2016 Liceo: Linguistico Scienze Umane Economico Sociale Musicale Classe: Prima Seconda

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

Verifica finale del modulo su programmazione e budget nelle imprese industriali e bancarie

Verifica finale del modulo su programmazione e budget nelle imprese industriali e bancarie di Mrgherit Amici supervisore Ssis Lzio Strumenti 35 APRILE/MAGGIO 2005 Verific finle del modulo su progrmmzione e budget nelle imprese industrili e bncrie Acompletmento dell rticolo pubblicto sul n. 34

Dettagli

Modelli di sistemi meccanici

Modelli di sistemi meccanici Modelli di sistemi meccnici Il formlismo fin qui visto è utilizzbile per tutte le clssi di sistemi diversi d quelli elettrici: sistemi meccnici sistemi elettromeccnici..... Anche per i sistemi meccnici

Dettagli

P8 Ponti radio terrestri e satellitari

P8 Ponti radio terrestri e satellitari P8 Ponti rdio terrestri e stellitri P8.1 Un collegmento in ponte rdio 11 GHz impieg due ntenne prboliche uguli venti gudgno G 40 db ed efficienz η 0,5. Gli pprti di ricetrsmissione sono collegti lle rispettive

Dettagli

Cuscinetti ad una corona di sfere a contatto obliquo

Cuscinetti ad una corona di sfere a contatto obliquo Cuscinetti d un coron di sfere conttto obliquo Cuscinetti d un coron di sfere conttto obliquo 232 Definizione ed ttitudini 232 Serie 233 Vrinti 233 Tollernze e giochi 234 Elementi di clcolo 236 Crtteristiche

Dettagli

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009 Corso di Fisic tecnic mbientle e Impinti tecnici.. 008/009 CAPITOLO. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del contenuto

Dettagli

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE

FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE FOGLIO COMPARATIVO SULLE TIPOLOGIE DI MUTUO IPOTECARIO / FONDIARIO PER L ACQUISTO DELL ABITAZIONE PRINCIPALE (disposizioni di trsprenz i sensi dell rt. 2 comm 5 D.L. 29.11.2008 n. 185) Per tutte le condizioni

Dettagli

Edizione dicembre 2010 - Rev 0. Manuale per l applicazione dell immagine coordinata

Edizione dicembre 2010 - Rev 0. Manuale per l applicazione dell immagine coordinata Edizione dicembre 20 - Rev 0 Mnule per l ppliczione dell immgine coordint 1 Mnule per l ppliczione dell immgine coordint 1 Presentzione 2 Elementi bse Logotipo generico 3-4 Logotipo d personlizzre 5-8

Dettagli

Mancanze disciplinari Sanzioni disciplinari Organi competenti

Mancanze disciplinari Sanzioni disciplinari Organi competenti Allegto 1 - REGOLAMENTO DI DISCIPLINA PER LA SCUOLA PRIMARIA Prte integrnte dello stesso Regolmento Mncnze disciplinri Snzioni disciplinri Orgni competenti Il presente llegto costituisce un elenco esemplifictivo,

Dettagli

Energia rinnovabile. Aeromotori per pompaggio acqua. BEMEDO srl via Rubino, 10/12 58100 Grosseto Tel. 0564.451.513 Fax. 0564.454.

Energia rinnovabile. Aeromotori per pompaggio acqua. BEMEDO srl via Rubino, 10/12 58100 Grosseto Tel. 0564.451.513 Fax. 0564.454. Energi rinnovbile Aeromotori per pompggio cqu BEMEDO srl vi Rubino, 10/12 58100 Grosseto Tel. 0564.451.513 Fx. 0564.454.264 Appliczioni L'eromotore può essere impiegto per sollevre cqu d pozzi, fiumi,

Dettagli

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60

Da 9.500,01 a 15.000,00 > 15.000,01 9.500,00 COSTO PASTO 1,15 2,30 3,45 4,60 Per l Anno Scolstico 2015/2016 l Deliber di Giunt Comunle n.25 del 16.04.2015 d oggetto: Determinzione dei criteri e ppliczione delle triffe dei servizi comunli introitti dl Comune nno 2015. Ricognizione

Dettagli

LE COMPETENZE ESSENZIALI DI FISICA

LE COMPETENZE ESSENZIALI DI FISICA LE COMPETENZE ESSENZIALI DI FISICA classe prima Liceo scientifico COMPETENZE raccogliere dati attraverso l osservazione diretta dei fenomeni naturali fisici e attraverso l attività di laboratorio OSA comprendere

Dettagli

Quarta Esercitazione di Fisica I 1. Problemi Risolti

Quarta Esercitazione di Fisica I 1. Problemi Risolti Qurt Esercitzione di Fisic I 1 Problemi Risolti 1. Sul cruscotto pitto dell mi uto è ppoggito un libro di 1.5 kg il cui coefficiente di ttrito sttico con il pino d'ppoggio è µ = 0.3. mssim velocità secondo

Dettagli

Elementi di calcolo degli impianti oleodinamici

Elementi di calcolo degli impianti oleodinamici Frnco Qurnt, Crmine Sbtino Elementi di clcolo degli iminti oleodinmici F. Qurnt, C. Sbtino Elementi di clcolo degli iminti oleodinmici 1 di 15 Not introduttiv Lo scoo di qunto esosto nelle gine seguenti

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8)

COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionale 18 febbraio 2010, n. 8) COMUNICAZIONE PER VARIAZIONE BIVACCHI FISSI (Legge regionle 18 febbrio 2010, n. 8) N Prot. VARIAZIONE...del (d compilrsi cur dell ufficio competente) Al Comune di.. Il/L sottoscritto/: Cognome Nome Dt

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

Catalogo Interregionale dell Alta Formazione Edizione 2013 Adeguamento monetario delle tabelle di riferimento per il calcolo dei costi forfettari

Catalogo Interregionale dell Alta Formazione Edizione 2013 Adeguamento monetario delle tabelle di riferimento per il calcolo dei costi forfettari Allegto B) Ctlogo Interregionle dell Alt Formzione Edizione 2013 Adegumento monetrio delle tbelle di riferimento per il clcolo dei costi forfettri Nell mbito del Ctlogo Interregionle Alt Formzione, per

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273

Attuatori pneumatici 1400, 2800 e 2 x 2800 cm² Tipo 3271 Comando manuale Tipo 3273 Attutori pneumtici 00, 00 e x 00 cm² Tipo Comndo mnule Tipo Appliczione Attutore linere per il montggio su vlvole di regolzione Serie 0, 0 e 0 Dimensione: 00 e 00 cm² Cors: fino 0 mm Gli ttutori pneumtici

Dettagli

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario

Modulo 6. La raccolta bancaria e il rapporto di conto corrente. Unità didattiche che compongono il modulo. Tempo necessario 58 Modulo 6 L rccolt bncri e il rpporto di conto corrente I destintri del Modulo sono gli studenti del quinto nno che, dopo ver nlizzto e ppreso le crtteristiche fondmentli dell ttività delle ziende di

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

COMPUTO METRICO ESTIMATIVO

COMPUTO METRICO ESTIMATIVO DIREZIONE DI AREA 3 Orgnizzzione e Risorse SETTORE SEDI, LOGISTICA E INTERVENTI PER LA SICUREZZA SERVIZIO DI INDAGINI PRELIMINARI AL PROGETTO DI RESTAURO DELLE SUPERFICI DECORATE DI ALCUNE SALE DEI PALAZZI

Dettagli

3 Geberit Mepla. 3.1 Sistema... 125 3.1.1 Descrizione del sistema... 125 3.1.2 Dati tecnici... 127 3.1.3 Dati chimici... 128 3.1.4 Omologazioni...

3 Geberit Mepla. 3.1 Sistema... 125 3.1.1 Descrizione del sistema... 125 3.1.2 Dati tecnici... 127 3.1.3 Dati chimici... 128 3.1.4 Omologazioni... 3.1 Sistem........................................... 125 3.1.1 Descrizione del sistem.............................. 125 3.1.2 Dti tecnici........................................... 127 3.1.3 Dti chimici...........................................

Dettagli

CORSO DI RAGIONERIA A.A. 2013/2014

CORSO DI RAGIONERIA A.A. 2013/2014 CORSO DI RAGIONERIA A.A. 2013/2014 MODULO A LEZIONE N. 12 LE SCRITTURE CONTABILI Ftture d emettere e ricevere e fondi rischi/oneri LE SCRITTURE AL Prim dell chiusur dell esercizio è necessrio operre le

Dettagli

Pareti verticali Cappotto esterno

Pareti verticali Cappotto esterno Preti verticli Cppotto esterno L isolmento termico dei fbbricti dll esterno, comunemente detto cppotto, h vuto le sue prime ppliczioni lcuni decenni f e ncor oggi costituisce uno dei sistemi di isolmento

Dettagli

Industria agroalimentare Proteggete la vostra produzione con i lubrificanti NEVASTANE

Industria agroalimentare Proteggete la vostra produzione con i lubrificanti NEVASTANE Industri grolimentre Proteggete l vostr produzione con i lubrificnti Prodotto e distribuito in Itli d Servizi: il mssimo dl vostro prodotto! Sempre più produttori sono convinti dell necessità di utilizzre

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

ELETTRONICA ED ELETTROTECNICA

ELETTRONICA ED ELETTROTECNICA DOCUMENTI PFR LA DISCUSSIONE MPPRESENTAZIONE SINOTTICA DELLE COMPETENZE-ABILITA.CONOSCENZE DELL'INDIRIZZO'ELETTRONICA ED ELETTROTECNICA" E DELLE SUE ARTICOLMIONI ELETTRONICA ED ELETTROTECNICA 57 BOZTAPROWISORIA

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

LCA e prevenzione dei rifiuti: caso di studio sull acqua da bere

LCA e prevenzione dei rifiuti: caso di studio sull acqua da bere Anlisi del ciclo di vit del sistem di gestione rifiuti in Lombrdi Milno 8 Mggio 212 LCA e prevenzione dei rifiuti: cso di studio sull cqu d bere S. Nessi Politecnico di Milno DIIAR Sezione mbientle Obiettivo

Dettagli

Prova n. 1 LEGER TEST

Prova n. 1 LEGER TEST Prov n. 1 LEGER TEST Descrizione L prov si svolge su un percorso delimitto d due coni, posti ll distnz di 20 mt l uno dll ltro. Il cndidto deve percorrere spol l distnz tr i due coni, pssndo dll velocità

Dettagli

La relazione fondamentale che descrive il funzionamento delle lenti sottili ( si suppone che le superfici siano sferiche!

La relazione fondamentale che descrive il funzionamento delle lenti sottili ( si suppone che le superfici siano sferiche! L. Grtton SISS AA: 2000-01 Ottic geometric: Lenti sottili, ingrndimento ottico (linere, ngolre), strumenti ottici, potere e risolutivo degli strumenti ottici. L relzione ondmentle che descrive il unzionmento

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ;

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ; CAPITOLO ESPONENZIALI E LOGARITMI ESPONENZIALI Teori in sintesi Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z. + Sono definite:

Dettagli