PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE"

Transcript

1 PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito. 1. Formulre ipotesi, sperimentre e/o interpretre leggi fisiche, proporre e utilizzre modelli e nlogie. 2. Anlizzre fenomeni fisici e ppliczioni tecnologiche, riuscendo individure le grndezze fisiche crtterizznti e proporre relzioni quntittive tr esse. 3. Spiegre le più comuni ppliczioni dell fisic nel cmpo tecnologico, con l conspevolezz dell reciproc influenz tr evoluzione tecnologic e ricerc scientific. 4. Risolvere problemi utilizzndo il linguggio lgebrico e grfico, nonché il Sistem Internzionle delle unità di misur. 5. Collocre le principli scoperte scientifiche e invenzioni tecniche nel loro contesto storico e socile

2 didttic di bse L velocità P P P P Il punto mterile in movimento e l triettori. I sistemi di riferimento. Il moto rettilineo. L velocità medi. I grfici spzio-tempo. Crtteristiche del moto rettilineo uniforme. Anlisi di un moto ttrverso grfici spzio-tempo e velocità-tempo. Il significto dell pendenz nei grfici spzio-tempo. Utilizzre il sistem di riferimento nello studio di un moto. Clcolre l velocità medi, lo spzio percorso e l intervllo di tempo di un moto. Interpretre il significto del coefficiente ngolre di un grfico spzio-tempo. Conoscere le crtteristiche del moto rettilineo uniforme. Interpretre correttmente i grfici spzio-tempo e velocità-tempo reltivi un moto. L ccelerzion e P P P P I concetti di velocità istntne, ccelerzione medi e ccelerzione istntne. Le crtteristiche del moto uniformemente ccelerto, con prtenz d fermo. Il moto uniformemente ccelerto con velocità inizile. Le leggi dello spzio e dell velocità in funzione del tempo. Clcolre i vlori dell velocità istntne e dell ccelerzione medi di un corpo in moto. Interpretre i grfici spzio-tempo e velocità-tempo nel moto uniformemente ccelerto. Clcolre lo spzio percorso d un corpo utilizzndo il grfico spziotempo. Clcolre l ccelerzione di un corpo utilizzndo un grfico velocità-tempo. I moti nel pino I principi dell dinmic P P P I vettori posizione, spostmento e velocità. Il moto circolre uniforme. Periodo, frequenz e velocità istntne nel moto circolre uniforme. L ccelerzione centripet. Il moto rmonico. L composizione di moti. L velocità dell luce. P P P P P I principi dell dinmic. L enuncito del primo principio dell dinmic. I sistemi di riferimento inerzili. Il principio di reltività glilein. Il secondo principio dell dinmic. Unità di misur delle forze nel SI. Il concetto di mss inerzile. Il terzo principio dell dinmic. Applicre le conoscenze sulle grndezze vettorili i moti nel pino. Operre con le grndezze fisiche sclri e vettorili. Clcolre le grndezze crtteristiche del moto circolre uniforme e del moto rmonico. Comporre spostmenti e velocità di due moti rettilinei. Anlizzre il moto dei corpi qundo l forz risultnte pplict è null. Riconoscere i sistemi di riferimento inerzili. Studire il moto di un corpo sotto l zione di un forz costnte. Applicre il terzo principio dell dinmic. Proporre esempi di ppliczione dell legge di Newton.

3 didttic di bse Le forze e il movime nto P P P P P Il moto di cdut liber dei corpi. L differenz tr i concetti di peso e di mss. Il moto lungo un pino inclinto. Le crtteristiche del moto dei proiettili. Il moto dei stelliti. L forz centripet. L grvitzione universle. L velocità e il periodo dei stelliti. Il moto rmonico e il pendolo. Anlizzre il moto di cdut dei corpi. Distinguere tr peso e mss di un corpo. Studire il moto dei corpi lungo un pino inclinto. Anlizzre il moto dei proiettili con velocità inizili diverse. Interpretre il moto dei stelliti. Esprimere e comprendere il significto dell legge di grvitzione universle. Comprendere le crtteristiche del moto rmonico e del moto del pendolo. L energ i e l quntità di moto P P P P P L definizione di lvoro. L potenz. Il concetto di energi. L energi cinetic e l relzione tr lvoro ed energi cinetic. L energi potenzile grvitzionle e l energi elstic. Il principio di conservzione dell energi meccnic. L conservzione dell energi totle. L quntità di moto di un corpo. L legge di conservzione dell quntità di moto per un sistem isolto. Urti elstici e nelstici. L impulso di un forz e il teorem dell impulso. Clcolre il lvoro compiuto d un forz. Clcolre l potenz. Ricvre l energi cinetic di un corpo, nche in relzione l lvoro svolto. Clcolre l energi potenzile grvitzionle di un corpo e l energi potenzile elstic di un sistem oscillnte. Applicre il principio di conservzione dell energi meccnic. Clcolre l quntità di moto di un corpo e l impulso di un forz. Riconoscere e spiegre le leggi di conservzione dell energi e dell quntità di moto in vrie situzioni dell vit quotidin. Applicre il teorem dell impulso. L temper tur P P P P P Termoscopi e termometri. L definizione opertiv di tempertur. Le scle di tempertur Celsius e ssolut. L diltzione linere dei solidi. L diltzione volumic dei solidi e dei liquidi. Le trsformzioni di un gs. L legge di Boyle e le due leggi di Gy-Lussc. Il modello del gs perfetto e l su equzione di stto. Comprendere l differenz tr termoscopio e termometro. Clcolre l vrizione di corpi solidi e liquidi sottoposti riscldmento. Riconoscere i diversi tipi di trsformzione di un gs. Applicre le leggi di Boyle e Gy- Lussc lle trsformzioni di un gs. Riconoscere le crtteristiche di un gs perfetto e sperne utilizzre l equzione di stto.

4 didttic di bse Il clore P P P P Clore e lvoro come forme di energi in trnsito. Unità di misur per il clore. Cpcità termic e clore specifico. Quntità di energi e vrizione di tempertur. Il clorimetro e l misur del clore specifico. L tempertur di equilibrio. L trsmissione del clore per conduzione e convezione. L irrggimento. L legge di Stefn-Boltzmnn. I cmbimenti di stto: fusione e solidificzione, vporizzzione e condenszione, sublimzione. Comprendere come riscldre un corpo con il clore o con il lvoro. Distinguere fr cpcità termic dei corpi e clore specifico delle sostnze. Clcolre il clore specifico di un sostnz con l utilizzo del clorimetro e l tempertur di equilibrio. Descrivere le modlità di trsmissione dell energi termic e clcolre l quntità di clore trsmess d un corpo. Applicre l legge di Stefn- Boltzmnn. Descrivere i pssggi tr i vri stti di ggregzione molecolre. Clcolre l energi impiegt nei cmbimenti di stto. Interpretre il concetto di clore ltente. L luce e l ottic geometr ic P P P P P L luce: sorgenti, propgzione rettiline, velocità. L riflessione e lo specchio pino Gli specchi curvi Le leggi dell rifrzione. L riflessione totle L indice di rifrzione. Lenti convergenti e divergenti. Individure le crtteristiche delle immgini e distinguere quelle reli e quelle virtuli. Riconoscere i vri tipi di specchi Determinre, medinte un procedimento grfico, l immgine prodott d uno specchio. Determinre, medinte un procedimento grfico, l immgine prodott d un lente. Appliczioni: mcchin fotogrfic e cinem. L occhio e l visione. Il microscopio e il cnnocchile. Si prevede di svolgere le prime 4 unità didttiche nel trimestre e le rimnenti nel pentmestre. L progrmmzione potrebbe subire modifiche in bse l grdo di pprendimento dll clsse o d imprevisti. MODALITÀ DI VERIFICA Le verifiche srnno effettute medinte colloqui orli, relzioni delle esperienze di lbortorio ed esercitzioni scritte. Queste ultime potrnno essere strutturte come esercizi, problemi o quesiti d risolvere, test rispost breve e/o scelt multipl. Nelle interrogzioni si drà molto peso ll esposizione degli rgomenti che dovrà essere scorrevole ed

5 orgnic. NUMERO MINIMO DI VERIFICHE Nel trimestre: lmeno 2 prove (di cui 1 orle) Nel pentmestre: lmeno 3 prove (di cui 1 orle) CRITERI DI VALUTAZIONE L vlutzione complessiv terrà conto, oltre che dei risultti rggiunti dgli lunni, nche dell ttenzione e interesse durnte le lezioni, dell impegno, dell ssiduità, e del progresso sviluppto nel tempo. CRITERI DI SUFFICIENZA (Stndrd minimo) Possedere le essenzili conoscenze di bse, sperle utilizzre ed esporre in mnier corrett.

UDA N 2 Scienze e Tecnologie Applicate: Indirizzo INFORMATICA

UDA N 2 Scienze e Tecnologie Applicate: Indirizzo INFORMATICA Sch ed di pro gettzion e d elle Un ità d i App rend imento nu mero 1 UDA N 1 Scienze e Tecnologie Applicte: Indirizzo INFORMATICA UdA N 1 Disciplin Riferimento Titolo The incredibile mchine! informtic

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

CLASSI PRIME 2013/14

CLASSI PRIME 2013/14 LICEO SCIENTIFICO STATALE G.B. GRASSI CLASSI PRIME 2013/14 INDICAZIONI DI LAVORO PER LA SOSPENSIONE DEL GIUDIZIO IN FISICA Liceo scientifico e liceo delle scienze pplicte In relzione lle esigenze del secondo

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

COMPETENZE della UDA DISCIPLINA DI RIFERIMENTO. Saper spiegare il principio di funzionamento e la struttura dei principali dispositivi hardware

COMPETENZE della UDA DISCIPLINA DI RIFERIMENTO. Saper spiegare il principio di funzionamento e la struttura dei principali dispositivi hardware ISTITUTO TECNICO INDUSTRIALE ITI "E. MEDI" PIANO DI STUDIO DELLA DISCIPLINA Scienze e Tecnologie Applicte: indirizzo INFORMATICA PIANO DELLE UDA 2 G prof. Cludi Crimi UDA COMPETENZE dell UDA ABILITA UDA

Dettagli

Compitino di Fisica II del 14/6/2006

Compitino di Fisica II del 14/6/2006 Compitino di Fisic II del 14/6/2006 Ingegneri Elettronic Un solenoide ssimilbile d un solenoide infinito è percorso d un corrente I(t) = I 0 +kt con k > 0. Se il solenoide h un lunghezz H, rggio, numero

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli

PROGRAMMA SVOLTO A. S. 2014/ 2015

PROGRAMMA SVOLTO A. S. 2014/ 2015 A. S. 4/ Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G mnutenzione e ssistenz tecnic ore complessive di insegnmento settimne X 4 ore = ore Nome Ins. Tecn.

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Lezione 14. Risoluzione delle equazioni algebriche.

Lezione 14. Risoluzione delle equazioni algebriche. Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di

UNIVERSITA DEGLI STUDI DI SALERNO. FACOLTA DI INGEGNERIA Corso di laurea in Ingegneria Meccanica. Tesina del corso di UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA Corso di lure in Ingegneri Meccnic Tesin del corso di TRASMISSIONE DEL CALORE Docente Prof. Ing. Gennro Cuccurullo Tesin n.7a Effetti termici del

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere

Dettagli

Progettazione strutturale per elementi finiti Sergio Baragetti

Progettazione strutturale per elementi finiti Sergio Baragetti Progettzione strutturle per elementi finiti Sergio Brgetti Fcoltà di Ingegneri Università degli Studi di Bergmo Il metodo degli Elementi Finiti permette di risolvere il problem dell determinzione dello

Dettagli

ISIS LE FILANDIERE, A.S. 2015/2016 PIANO DI LAVORO DELLA CLASSE: II B (LS) DISCIPLINA: FISICA Docente: Costantini Gianni

ISIS LE FILANDIERE, A.S. 2015/2016 PIANO DI LAVORO DELLA CLASSE: II B (LS) DISCIPLINA: FISICA Docente: Costantini Gianni ISIS LE FILANDIERE, A.S. 2015/2016 PIANO DI LAVORO DELLA CLASSE: II B (LS) Programmazione per competenze: DISCIPLINA: FISICA Docente: Costantini Gianni Le competenze specifiche che l insegnamento di questa

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G Liceo Scientifico Sttle Leonrdo d Vinci Vi Possidone 14 8915 Reggio Clbri Anno Scolstico 008/009 Clsse III Sezione G Dirigente scolstico: Preside Prof. ss Vincenzin Mzzuc Professore coordintore del progetto:

Dettagli

Esercizi sugli urti tra punti materiali e corpi rigidi

Esercizi sugli urti tra punti materiali e corpi rigidi Esercizi sugli urti tr punti mterili e corpi rigidi Un st omogene di mss 0.9 kg e di lunghezz 0. m è incerniert nel suo punto di mezzo in un pino orizzontle ed è inizilmente erm. Un proiettile di mss m100g

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

PIANO DI STUDIO D ISTITUTO

PIANO DI STUDIO D ISTITUTO PIANO DI STUDIO D ISTITUTO Materia: FISICA Casse 2 1 Quadrimestre Modulo 1 - RIPASSO INIZIALE Rappresentare graficamente nel piano cartesiano i risultati di un esperimento. Distinguere fra massa e peso

Dettagli

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE

UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITÀ DI APPRENDIMENTO II QUADRIMESTRE SCUOLE PRIMARIE CLASSI SECONDE UNITA DI APPRENDIMENTO Denominzione Compito-prodotto Competenze mirte Comuni/cittdinnz IL TEMPO PASSA IL MONDO GIRA REALIZZAZIONE DI

Dettagli

PIANO di LAVORO A. S. 2013/ 2014

PIANO di LAVORO A. S. 2013/ 2014 Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G IPSIA ore complessive di insegnmento 33 settimne X 3 ore = 99 ore Nome Ins. Tecn. Prtico Testo in dozione

Dettagli

UDA N 1 Sistemi e Reti: Indirizzo INFORMATICA Classe 5 Inf Prof. Titolo: Tecniche crittografiche applicate alla protezione delle reti Sistemi e Reti

UDA N 1 Sistemi e Reti: Indirizzo INFORMATICA Classe 5 Inf Prof. Titolo: Tecniche crittografiche applicate alla protezione delle reti Sistemi e Reti UDA N 1 : Indirizzo INFORMATICA Clsse 5 Inf Prof. Sched di progettzione delle Unità di Apprendimento numero 1 UdA N 1 Disciplin Riferimento Tecniche crittogrfiche pplicte ll protezione delle reti Anno

Dettagli

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010 IIS MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO AS 2009-2010 Modulo A Grandezze fisiche e misure Le basi dell algebra e dei numeri relativi Proporzionalità tra grandezze Calcolo di equivalenze tra

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

3 Esercizi. disegno in scala

3 Esercizi. disegno in scala olitecnico di orino eem ispositivi e istemi Meccnici Esercizio 3 Un utocrro con cmio "in olle" viene rento su tutte le ruote l limite dell'derenz in rettilineo orizzontle. oto il peso totle e l posizione

Dettagli

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate.

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate. Contenuti di mtemtic clsse prim liceo scientifico di ordinmento e delle scienze pplicte. SAPERE Sper definire, rppresentre e operre con gli insiemi. Conoscere gli insiemi numerici N, Z, Q e sperci operre

Dettagli

IIS D ORIA - UFC. Laboratorio Relazioni di laboratorio Verifiche scritte di laboratorio (elaborazione dati, domande aperte, test a risposta multipla)

IIS D ORIA - UFC. Laboratorio Relazioni di laboratorio Verifiche scritte di laboratorio (elaborazione dati, domande aperte, test a risposta multipla) INDICE DELLE UFC 0 OBIETTIVI MINIMI CLASSE PRIMA (v. programmazione anno precedente) 1 LA TEMPERATURA 2 IL CALORE 3 L EQUILIBRIO DEI SOLIDI 4 IL MOVIMENTO: LA VELOCITÀ 5 IL MOVIMENTO: L ACCELERAZIONE 6

Dettagli

PROVE PER L ESAME. Peso specifico. Ricordando che ps = P/V e quindi P = ps V, rispondi alle seguenti domande:

PROVE PER L ESAME. Peso specifico. Ricordando che ps = P/V e quindi P = ps V, rispondi alle seguenti domande: PROVE PER L ESAME PROVE PER L ESAME Un tomo di ferro h numero tomico e peso tomico 5. Qunti elettroni contiene? Qunti protoni? Qunti neutroni? [Contiene elettroni e protoni. Il numero di neutroni ugule

Dettagli

Stampa Preventivo. A.S Pagina 1 di 6

Stampa Preventivo. A.S Pagina 1 di 6 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 6 Insegnante VISINTIN ANTONELLA Classe 4AL Materia fisica preventivo consuntivo 129 0 titolo modulo 4.1 Grandezze fisiche e misure 4.2 Le forze e l'equilibrio

Dettagli

Gioco Interno Tipologie e Norme

Gioco Interno Tipologie e Norme Gioco Interno Tipologie e Norme Per gioco interno si intende l misur complessiv di cui un nello si può spostre rispetto ll ltro in direzione oppost. E necessrio distinguere fr gioco rdile e gioco ssile.

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA Freni e frizioni ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA 1. forz di ttuzione del meccnismo. coppi trsmess 3. perdit di energi 4. incremento di tempertur 1

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Indice. Le grandezze e le leggi fisiche Verifica dei prerequisiti 2. Per cominciare. modulob Le forze e l equilibrio Verifica dei prerequisiti 42

Indice. Le grandezze e le leggi fisiche Verifica dei prerequisiti 2. Per cominciare. modulob Le forze e l equilibrio Verifica dei prerequisiti 42 Indice Le prti riportte negli incorniciti con questo fondino zzurro sono disponibili nel libro digitle proposto, unitmente molti ltri contenuti, nel DVD llegto. Per comincire Come è ftto il tuo libro Come

Dettagli

Corso di Componenti e Impianti termotecnici IL PROGETTO TERMOTECNICO PARTE SECONDA

Corso di Componenti e Impianti termotecnici IL PROGETTO TERMOTECNICO PARTE SECONDA IL PROGETTO TERMOTECNICO PARTE ECONDA 1 I ponti termici Il ponte termico può essere definito come: un elemento di elevt conduttività inserito in un prete o elemento di prete di minore conduttività. I ponti

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI CAGLIARI Fcoltà di Ingegneri Corso di Lure Specilistic in Ingegneri per l Ambiente e il Territorio TESINA DI CALCOLO NUMERICO Anlisi dell errore nei metodi di risoluzione dei

Dettagli

LICEO SCIENTIFICO FORESI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE

LICEO SCIENTIFICO FORESI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE Istituto Statale d'istruzione Superiore R.FORESI LICEO CLASSICO LICEO SCIENTIFICO LICEO DELLE SCIENZE APPLICATE FORESI LICEO SCIENZE UMANE FORESI ISTITUTO PROFESSIONALE PER L INDUSTRIA E L ARTIGIANATO

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni

FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA. OBIETTIVI U. D. n 1.2: La rappresentazione di dati e fenomeni FISICA E LABORATORIO INDIRIZZO C.A.T. CLASSE PRIMA Le competenze di base a conclusione dell obbligo di istruzione sono le seguenti: Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

disegno in scala Innanzitutto di valutare a dinamica del moto di arresto del pericolo. Si individua il diagramma di corpo libero del sistema globale:

disegno in scala Innanzitutto di valutare a dinamica del moto di arresto del pericolo. Si individua il diagramma di corpo libero del sistema globale: olitecnico di orino eem ispositivi e istemi Meccnici Esercizio 3 Un utocrro con cmio "in olle" viene rento su tutte le ruote l limite dell'derenz in rettilineo orizzontle. oto il peso totle e l posizione

Dettagli

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico

Nome Cognome. Classe 1D 29 Novembre 2010 Verifica di Fisica formula Nome grafico Noe Cognoe. Clsse D 9 Novebre 00 erific di Fisic forul Noe grfico Proporzionlità qudrtic invers = ) icordndo i possibili legi tr due grndezze,, coplet l seguente tbell ) Specific il significto dei prefissi

Dettagli

CAMBIAMENTI CLIMATICI

CAMBIAMENTI CLIMATICI CAMBIAMENTI CLIMATICI Conoscere, studire, gire Obiettivo Conoscere l problemtic dei cmbimenti climtici livello globle e locle (con riferimento i dti ttuli e lle possibili proiezioni future), l effetto

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

TITOLAZIONI ACIDO-BASE

TITOLAZIONI ACIDO-BASE TITOLAZIONI ACIDO-BASE Soluzioni stndrd Le soluzioni stndrd impiegte nelle titolzioni di neutrlizzzione sono cidi forti o bsi forti poiché queste sostnze regiscono completmente con l nlit, fornendo in

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Tavola di programmazione di FISICA Classe 1 1 Quadrimeste

Tavola di programmazione di FISICA Classe 1 1 Quadrimeste Tavola di programmazione di FISICA Classe 1 1 Quadrimeste Modulo 1 - LE GRANDEZZE FISICHE Competenze Abilità/Capacità Conoscenze Osservare, descrivere ed analizzare fenomeni appartenenti alla realtà naturale

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente

Sorgenti di campo magnetico. Esempio 1. Soluzione 1. Campo magnetico generato da un lungo filo rettilineo percorso da corrente Cmpo mgnetico generto d un lungo filo rettilineo percorso d corrente Sorgenti di cmpo mgnetico Ingegneri Energetic Docente: Angelo Crone Il cmpo mgnetico dovuto d un filo rettilineo è inversmente proporzionle

Dettagli

IPSSAR P. ARTUSI - Forlimpopoli (Fc) 1 ANNO MODULO: ACCOGLIENZA

IPSSAR P. ARTUSI - Forlimpopoli (Fc) 1 ANNO MODULO: ACCOGLIENZA MODULO: ACCOGLIENZA - Il programma di Fisica da svolgere assieme - Conoscere gli alunni - Il metodo di lavoro e di valutazione - Far conoscere agli alunni il metodo di lavoro - Esporre il metodo di valutazione

Dettagli

A Qual è la capacità dei due condensatori prima dell inserimento delle piastre? Quella dopo?

A Qual è la capacità dei due condensatori prima dell inserimento delle piastre? Quella dopo? 3 luglio 2008 II Prov di esonero di Fisic Generle per Edile-Architettur (esercizi 1, 2, 3) Prov scritt di Fisic Generle per Edile-Architettur (esercizi 1, 2, 3) Prov scritt di Fisic I per Automzione ed

Dettagli

Appunti di Elettrotecnica

Appunti di Elettrotecnica Appunti di Elettrotecnic Premess Il presente opuscolo non può e non vuole essere considerto sostitutivo del libro di testo, vuole semplicemente essere un supporto, per rmmentre gli studenti lcuni degli

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

3. Modellistica dei sistemi dinamici a tempo continuo

3. Modellistica dei sistemi dinamici a tempo continuo Fondenti di Autotic 3. Modellistic dei sistei dinici tepo continuo Esercizio 1 (es. 10 del Te d ese del 18-9-2002) Si consideri il siste dinico elettrico riportto in figur, i cui coponenti ssuono i seguenti

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

PROGRAMMAZIONE CLASSE QUINTA - MATEMATICA NUMERO

PROGRAMMAZIONE CLASSE QUINTA - MATEMATICA NUMERO PROGRMMZIONE CLSSE QUINT - MTEMTIC NUMERO.1. Leggere e scrivere numeri consolidando la consapevolezza del valore posizionale delle cifre. MPLIRE LE CONOSCENZE RELTIVE I NUMERI NTURLI E DECIMLI Leggere,

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Introduzione al concetto di funzione: macchine input - output, tabelle, grafici, formule

Introduzione al concetto di funzione: macchine input - output, tabelle, grafici, formule PROGRAMMA EFFETTIVAMENTE SVOLTO UNICO FILE DOCENTE PATRIZIA LOCATELLI MATERIA: MATEMATICA CLASSE: 1E Domingo Paola, Michele Impedovo Matematica dappertutto Ed Zanichelli Volume A primo biennio SEZIONE

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

a b c d e x = operai addetti a un lavoro y = tempo impiegato per svolgere il lavoro Un operaio impiega 10 giorni

a b c d e x = operai addetti a un lavoro y = tempo impiegato per svolgere il lavoro Un operaio impiega 10 giorni ) Iniviu tr questi grfici quelli in cui è rppresentt un situzione i irett e un situzione i invers; poi inic il rispettivo nome ei grfici scelti. c e ) Per ognun elle seguenti telle te, stilisci il tipo

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Mtemtik olsz nyelven középszint 061 É RETTSÉGI VIZSGA 007. október 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Indiczioni

Dettagli

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado U.D.1:ripetizione U.D.1: pino rtesino U.D.2 :L rett U. D.3 : I sistemi U.D.1: Le equzioni frtte U.D.1:Disequzioni di primo grdo Istituzione Solsti MARGHERITA DI SAVOIA Anno Solstio 2014/15 CLASSE II B

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi)

Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Istituto Tecnico Commerciale Statale e per Geometri E. Fermi Pontedera (Pi) Via Firenze, 51 - Tel. 0587/213400 - Fax 0587/52742 http://www.itcgfermi.it E-mail: mail@itcgfermi.it PIANO DI LAVORO Prof. BASILE

Dettagli

Pressioni nelle condotte

Pressioni nelle condotte 10 Pressioni nelle condotte 10.1 Sovrppressioni ccidentli L e sovrppressioni ccidentli si possono verificre cus delle vrizioni del moto dell cqu nell tubzione. In questo cso si dirà che il moto non viene

Dettagli

C A 10 [HA] C 0 > 100 K

C A 10 [HA] C 0 > 100 K Soluzioni Tmpone Le soluzioni tmpone sono soluzioni in cui sono presenti un cido debole e l su bse coniugt sotto form di sle molto solubile. Hnno l crtteristic di mntenere il ph qusi costnte nche se d

Dettagli

Titolo: Funzioni Logaritmiche Specializzanda: Serena Bezzan

Titolo: Funzioni Logaritmiche Specializzanda: Serena Bezzan Titolo: Funzioni Logritmiche Specilizznd: Seren Bezzn Clsse destintri: L unità didttic è rivolt d un clsse terz di un Liceo Scientifico d indirizzo PNI. I ritmi rppresentno un prerequisito fondmentle nello

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Esame di stato Seconda prova 17 giugno 2004 ESAME DI STATO DI ISTITUTO PROFESSIONALE CORSO DI ORDINAMENTO

Esame di stato Seconda prova 17 giugno 2004 ESAME DI STATO DI ISTITUTO PROFESSIONALE CORSO DI ORDINAMENTO Impinto ESAME DI STATO DI ISTITUTO PROFESSIONALE CORSO DI ORDINAMENTO Indirizzo: TECNICO INDUSTRIE ELETTRICHE Tem di: ELETTROTECNICA, ELETTRONICA ED APPLICAZIONI Soluzione di Ruggero Giometti L impinto

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

SOLEX : film di copertura a micro-sfere di vetro Valutazione Agronomica su colture orticole di pomodoro e melanzane

SOLEX : film di copertura a micro-sfere di vetro Valutazione Agronomica su colture orticole di pomodoro e melanzane SOLEX : film di copertur micro-sfere di vetro Vlutzione Agronomic su colture orticole di pomodoro e melnzne M. Cscone* - A. Ferrresi* - G.Mgnni** - F. Filippi** * Soc. Agriplst S.r.L., Vittori (Itli) **Diprtimento

Dettagli

LICEO SCIENTIFICO G. GALILEI - Verona Anno Scolastico

LICEO SCIENTIFICO G. GALILEI - Verona Anno Scolastico PROGRAMMA PREVISTO Testo di riferimento: "L indagine del mondo fisico Vol. B (Bergamaschini, Marazzini, Mazzoni) Le unità didattiche a fondo chiaro sono irrinunciabili. Le unità didattiche a fondo scuro

Dettagli

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto IISS Enzo Ferrari, Roma Plesso Vallauri, Liceo delle Scienze Applicate Programma svolto ANNO SCOLASTICO: 2015-2016 DISCIPLINA: FISICA CLASSE: 2ª F DOCENTE: MICHAEL ROTONDO Richiami sulle grandezze fisiche,

Dettagli

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica PERCORSO FORMATIVO DEL 3 ANNO - CLASSE 3 A L LSSA A. S. 2015/2016 Tempi Moduli Unità /Segmenti MODULO 0: Ripasso e consolidamento di argomenti del biennio MODULO 1: Il moto dei corpi e le forze. (Seconda

Dettagli

Controlli automatici

Controlli automatici Controlli utomtici Elementi di robotic industrile Prof. Polo Rocco (polo.rocco@polimi.it) Politecnico di Milno Diprtimento di Elettronic, Informzione e Bioingegneri Che cos è un robot? Il robot è un mnipoltore

Dettagli

ovvero quella verticale. Da ricordare che quando si scrive F=ma per F si intende la risultante delle forze agenti sul corpo considerato.

ovvero quella verticale. Da ricordare che quando si scrive F=ma per F si intende la risultante delle forze agenti sul corpo considerato. DINAMICA EX Con un sliscendi formto d due crrucole si vuole sollevre un mss M =50kg. Spendo che il crico di rottur dell fune è T 0 =670N clcolre: ) il vlore mssimo dell mss M e le ccelerzioni; b) il vlore

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

ESERCITAZIONE SECONDO PREESAME

ESERCITAZIONE SECONDO PREESAME ESERCITAZIE SECD REESAME 1) Clcolre il peso molecolre di un sostnz A poco voltile che form un soluzione con il benzene spendo che qundo 18.5 g di A sono sciolti in 85.8 g di benzene, l soluzione congel

Dettagli

ISTITUTO MAGISTRALE DI RIETI ELENA PRINCIPESSA DI NAPOLI. Liceo: Linguistico Scienze Umane Economico Sociale Musicale

ISTITUTO MAGISTRALE DI RIETI ELENA PRINCIPESSA DI NAPOLI. Liceo: Linguistico Scienze Umane Economico Sociale Musicale ISTITUTO MAGISTRALE DI RIETI ELENA PRINCIPESSA DI NAPOLI Dipartimento: Matematica e fisica Disciplina: Fisica A.S: 2016-2017 Liceo: Linguistico Scienze Umane Economico Sociale Musicale Classe: Prima Seconda

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2015/2016 CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2015/2016 CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA ALGEBRA RICHIAMI SU EQUAZIONI DI II GRADO (COMPLETE ED INCOMPLETE) E SULLE PRINCIPALI OPERAZIONI CON I RADICALI RICHIAMI SU DISEQUAZIONI

Dettagli