SISTEMI DIGITALI DI CONTROLLO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SISTEMI DIGITALI DI CONTROLLO"

Transcript

1 Sistemi Digitali di Controllo A.A p. /32 SISTEMI DIGITALI DI CONTROLLO PROGETTO DI SISTEMI A TEMPO DI RISPOSTA FINITO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro A. Isidori: Sistemi di Controllo, Vol. I Capitolo VII: Sistemi di controllo numerico Paragrafi VII.4 (fine) e VII.6

2 Sistemi Digitali di Controllo A.A p. 2/32 Progetto di sistemi a tempo di risposta finito Sommario Caratterizzazione dei sistemi discreti a tempo di risposta finito Progetto con tempo di risposta finito (deadbeat) e minimo - caso elementare (cancellazione totale) - caso di poli instabili e/o zeri a fase non minima Condizioni di risposta piatta per ingressi a gradino Progetto con risposta piatta in tempo finito e minimo - caso di possibili poli instabili Nota Rispetto all analoga trattazione del libro di testo, le principali differenze sono presentazione dai casi più semplici a quelli generali (e non viceversa) riferimento diretto alla funzione di trasferimento di errore condizioni esplicite di risposta piatta retroazione eventualmente non unitaria notazione leggermente diversa, uso esclusivo di polinomi con potenze positive di z

3 Sistemi Digitali di Controllo A.A p. 3/32 Notazioni Si farà riferimento al seguente sistema di controllo digitale per un processo continuo P(z) v(t) v(k) u(k) u(t) y(t) y(k) C(z) ZOH P(s) T T T con y d (t) = K d v(t) Funzioni di trasferimento discrete di interesse K d P(z) = Z[H 0 (s)p(s)] G(z) = P(z)C(z) (catena diretta) F(z) = K d P(z)C(z) (anello) W(z) = Y (z) V (z) = G(z) + F(z) = K dg(z) K d + G(z) (anello chiuso) E(z) = Y d (z) Y (z) = (K d W(z))Y (z) W e (z) = E(z) V (z) = K 2 d K d + G(z) (errore)

4 Sistemi Digitali di Controllo A.A p. 4/32 Tempo di risposta finito Per un sistema W(z) asintoticamente stabile, la risposta transitoria ad un gradino discreto unitario può convergere al valore di regime, con errore costante (sistemi di tipo 0) o nullo (sistemi di tipo h ), in tempo finito: indice l : k l, e(k) = e 0 Si ha allora necessariamente E(z) = e(k)z k = k=0 = N(z) z l + e 0 l k=0 e(k)z k + l e 0 z k = (e(k) e 0 )z k + k=l k=0 z z = (z )N(z) + e 0z l (z )z l = W e (z) z z e 0 z k k=0 W e (z) = (z )N(z) + e 0z l z l dove N(z) è al massimo di grado (l ) Pertanto le condizioni necessarie e sufficienti affinchè ciò avvenga sono W e (z) ha tutti i poli in z = 0 W e (z) ha almeno uno zero in z = se il sistema è di tipo h (a regime e 0 = 0)

5 Sistemi Digitali di Controllo A.A p. 5/32 Tempo di risposta finito 2 Tale proprietà si estende alla risposta ad una rampa unitaria (campionata) v(t) = t V (z) = Tz (z ) 2 Ripetendo i passaggi per un sistema asintoticamente stabile di tipo h E(z) =... = N(z) z l + e z z = W Tz e(z) (z ) 2 ( (z )N(z) + e z l) (z ) W e (z) = T z l con e costante (sistemi di tipo ) o nullo (sistemi di tipo h 2) Le condizioni sono allora W e (z) ha tutti i poli in z = 0 e uno zero in z = (sistema di tipo ) W e (z) ha tutti i poli in z = 0 e almeno due zeri in z = (tipo h 2, con e = 0)... e così via. Nel seguito considereremo però solo ingressi a gradino.

6 Sistemi Digitali di Controllo A.A p. 6/32 Progetto con tempo di risposta finito In risposta ad un ingresso a gradino, desiderando un errore a regime nullo in tempo finito (pari a lt ) deve dunque aversi W e (z) = K d + F(z) = K d(z )Q(z) z l ( ) con Q(z) polinomio monico di grado l Tre domande:. qual è il valore minimo ammissibile per l? 2. qual è l espressione di una C(z) realizzabile? 3. problemi di cancellazione poli-zeri dannosi alla stabilità interna? Ci riferiremo ad un processo P(z) con numeratore e denominatore coprimi, per garantire la risolubilità di una certa equazione polinomiale, e con eccesso poli-zero n m, per evitare problemi di loop algebrici nel controllo digitale

7 Sistemi Digitali di Controllo A.A p. 7/32 Progetto con tempo di risposta finito 2 Dalla relazione ( ) sulla funzione di trasferimento di errore ad anello chiuso si ha F(z) = K d P(z)C(z) = K d W e (z) W e (z) C(z) = K d P(z) z l (z )Q(z) (z )Q(z) = K d K d(z )Q(z) z l K d (z )Q(z) z l = zl (z )Q(z) (z )Q(z) La scelta (unica!) di un polinomio monico Q(z) di grado (l )che minimizza il grado del numeratore di C(z) è Q(z) = z l + z l z + z l (z )Q(z) = z l (z l ) =!! Pertanto, in ragione dell inversione del processo P(s) contenuta nell espressione della C(z), per la realizzabilità del controllore si ha l min = n m

8 Sistemi Digitali di Controllo A.A p. 8/32 Progetto con tempo di risposta finito 3 Se il processo P(s) è stabile asintoticamente e a fase minima (caso elementare: tutti i poli e zeri sono interni al cerchio unitario e quindi cancellabili), il controllore è quindi C(z) = K d P(z) z n m e si raggiunge il minimo tempo di risposta finito. Risulta infatti W(z) = K dp(z)c(z) K d + P(z)C(z) = K d + Kd z n m K d z n m = K d Y (z) = zn m V (z) ed essendo V (z) = Y d (z)/k d Y (z) = z n m Y d(z) y(k) = y d (k (n m)) (equazione alle differenze) Si noti infine che il fattore (z n m ) a denominatore della C(z) ha sempre almeno una radice in z = ( azione integrale sempre presente in G(z), sia che il processo abbia sia che non abbia già un integratore)

9 Sistemi Digitali di Controllo A.A p. 9/32 Esempio di progetto con tempo di risposta finito Si consideri il processo P(s) = Si ha s(s + ) con ZOH, campionamento T = s e K d =. P(z) = z z z = (z ) (z )(z ) 0.37(z ) (z )(z 0.37) e nel progetto si utilizzerà l approssimazione alla seconda cifra decimale. A parte l azione integrale, il polo e lo zero di P(z) sono interni al cerchio unitario

10 Sistemi Digitali di Controllo A.A p. 0/32 Esempio di progetto con tempo di risposta finito cont Essendo n m = 2 =, il controllore è C(z) = K d P(z) z = 0.37 z 0.37 z W(z) = z I campioni digitali dell uscita convergono in un solo passo T = s al valore y d =, ma sono presenti notevoli oscillazioni di inter-sampling su y(t) associate al fenomeno di ringing del comando u(t) a valle dello ZOH y samples over y continuous u samples with ZOH continuous time t continuous time t

11 Sistemi Digitali di Controllo A.A p. /32 Progetto con tempo di risposta finito 4 Consideriamo ora la situazione più generale in cui il processo P(z) abbia poli instabili e/o zeri a fase non minima. Si definiscono N + P (z) e D+ P (z) i polinomi che forniscono, rispettivamente, gli zeri e i poli cancellabili del processo e N P (z) e D P (z) i restanti (con D P monico) P(z) = N+ P (z) D + P (z) N P (z) D P (z) grado(n P ) = m P = m grado(n + P ) grado(d P ) = n P = n grado(d + P ) Il controllore modificato per il deadbeat ha la forma C(z) = K d z D + P (z) N + P (z) N C (z) D C (z) con D C monico dove l azione integrale è introdotta solo se non è già presente nel processo. Per la realizzabilità di C(z) deve sussistere la seguente relazione tra i gradi dei polinomi incogniti N C (z) e D C (z) grado(d C ) grado(n C ) + grado(d + P ) grado(n+ P ) ( )

12 Sistemi Digitali di Controllo A.A p. 2/32 Progetto con tempo di risposta finito 5 Dalle F = K d PC = z N P D P N C D C W = K df + F = K d N P N C W e = K d W = K d (z )D P D C + N P N C ( den(w) N P N C den(w) = K dn P N C den(w) ) la condizione di progetto con tempo di risposta finito si riscrive solo come (den(w e ) = den(w) =) (z )D P (z)d C(z) + N P (z)n C(z) = z l ( ) per un l opportuno. Infatti se la ( ) è soddisfatta, allora anche num(w e ) = K d ( den(w) N P N C) = Kd (z )D P D C ha necessariamente uno zero in z = (o nel processo, D P, o dal fattore al denominatore della C(z))

13 Sistemi Digitali di Controllo A.A p. 3/32 Progetto con tempo di risposta finito 6 Studiamo la risolubilità della equazione di progetto ( ) (le incognite sono in rosso) (z )D P (z)d C(z) + N P (z)n C(z) = z l Poichè D P e N P sono coprimi (dovunque si trovi il fattore (z ))a, dalla teoria generale delle equazioni diofantine (anche dette di Bezout se nella forma polinomiale) esisterà certamente una soluzione. Per stabilire il minimo valore di l, calcoliamo i gradi dei polinomi coinvolti (e il numero di coefficienti incogniti) deg(n C ) = r (da definirsi) r + coefficienti deg(n P ) = m P deg(d C ) = r + (n n P ) (m m P ) (dalla ( ) con il segno di uguaglianza) r + (n n P ) (m m P ) coefficienti (monico) deg(d P ) = n P deg((z )) = a si può esclude la presenza di uno zero del processo in z= perchè non permetterebbe di risolvere il problema di regolazione dell uscita ad un valore desiderato costante

14 Sistemi Digitali di Controllo A.A p. 4/32 Progetto con tempo di risposta finito 7 Ne segue deg((z )D P D C) = r + (n m) + m P > r + m P = deg(n P N C) e quindi necessariamente l = r + (n m) + m P. Poichè i termini di ordine massimo (uguale) a destra e sinistra dell equazione polinomiale di progetto hanno coefficiente unitario, il principio di identità tra polinomi si esplicita in r + (n m) + m P equazioni e 2r + (n m) + m P n P coefficienti incogniti di N C, D C Uguagliando tali numeri (ossia, quadrando il sistema per avere soluzione unica e grado l minimo) si ottiene r = n P (o r = n P, se non serve aggiungere l integratore) e l min = (n m) + n P + m P (o =..., senza integratore aggiunto) che generalizza la relazione trovata nel caso elementare. Il minimo tempo di risposta aumenta di un passo di campionamento T per ogni evento (polo o zero) non cancellato Si noti infine che la sintesi porta in questo caso a W(z) = K dn P N C(z), con z l min denominatore assegnato ma con numeratore non unitario e non prevedibile a priori (tranne per il grado totale che è pari a n P + m P )

15 Sistemi Digitali di Controllo A.A p. 5/32 Esempio di progetto generale con tempo di risposta finito Si consideri il processo discreto P(z) = z(z 0.5)(z2 + z + ) (z 3)(z 0.) 2 (z + 0.5) 2 n = 5, m = 4 Il fattore (z 2 + z + ) a numeratore ha radici in z = 0.5 ( ± j 3 ) esterne al cerchio unitario. Risulta dunque m P = 2 e n P =. Inoltre, P(z) non ha un azione integrale Il controllore deadbeat sarà quindi della forma C(z) = z (z 0.) 2 (z + 0.5) 2 N C (z) D C (z) z(z 0.5) con deg(n C ) = n P =, deg(d C ) = n (m m p ) = 2, l min = (n m) + n p + m p = 4. Posto allora D C (z) = z 2 + az + b N C (z) = cz + d l equazione di progetto è (z )(z 3)(z 2 + az + b) + (z 2 + z + )(cz + d) = z 4

16 Sistemi Digitali di Controllo A.A p. 6/32 Esempio di progetto generale con tempo di risposta finito cont Il sistema di quattro equazioni in quattro incognite è a b c d = che restituisce a =.053 b = c = d = Il controllore è quindi di ordine 5 e proprio C(z) = (z 0.)2 (z + 0.5) 2 (2.9487z 2.654) z(z )(z 0.5)(z z ) La funzione di trasferimento ingresso-uscita ad anello chiuso è W(z) = (z2 + z + )(2.9487z 2.654) z 4 = Y (z) V (z)

17 Sistemi Digitali di Controllo A.A p. 7/32 Problema della risposta piatta per ingressi a gradino Si vuole studiare sotto quali condizioni è possibile avere, in risposta ad un gradino campionato: errore nullo dei campioni in uscita a partire da un tempo finito (e minimo) risposta piatta a regime al di fuori degli istanti di campionamento errore definitivamente nullo dell uscita continua a partire da un istante finito (e minimo possibile) Si forniranno prima delle condizioni sufficienti (e alcune anche necessarie) per l esistenza di risposta piatta in un sistema di controllo digitale e poi un procedimento di sintesi del controllore, che garantisce anche il minimo tempo per il raggiungimento di tale soluzione, basato su tali condizioni (costruttive) Il problema ha senso solo in sistemi ibridi (controllo digitale di processi continui discretizzati)

18 Sistemi Digitali di Controllo A.A p. 8/32 Condizioni di risposta piatta per ingressi a gradino Teorema Con riferimento allo schema del lucido #3, se un istante di campionamento k tale che h k valgano le seguenti condizioni:. e(h) = 0 2. u(h) = cost = P K d con P = lim s 0 P(s) = lim z P(z) = { 0 se P(s) ha almeno un polo in s = 0 finito 0 se P(s) non ha poli in s = 0 allora, purchè si sia scelto il passo di campionamento T con una certa cautela, si avrà che l uscita y(t) del processo in risposta ad un gradino assume identicamente il valore desiderato K d per ogni t kt (risposta piatta) Prova (cenni) Nel caso di autovalori distinti (λ i λ j, i, j {,...,n}, i j) si esprime l uscita y(t) nell intervallo [kt, (k + )T) (usando l hp 2) e si impone l annullamento dell errore (hp ) in tutti gli istanti di campionamento t = ht, con h k; ne risulta un sistema di equazioni con matrice V nella forma di Vandermonde che ha soluzione y(t + kt) = K d per ogni t 0 se detv 0, il che accade per tutte le scelte di T tali che e λ it e λ jt i j

19 Sistemi Digitali di Controllo A.A p. 9/32 Condizioni di risposta piatta per ingressi a gradino 2 Le condizioni del Teorema si riscrivono come. e(h) = 0 h k E(z) = Q(z) z k 2. u(h) = P K d h k U(z) = P z K d z + S(z) z k con Q(z) e S(z) polinomi di grado k. Sia inoltre F(z) = K d P(z)C(z) = N F(z) D F (z) Teorema 2 Con riferimento allo schema del lucido #3, le condizioni. e 2. sono soddisfatte se e solo se A) N F (z) + D F (z) = z k B) D F (z) ha una radice in z = C) non ci sono cancellazioni di zeri di P(z) con poli di C(z)

20 Sistemi Digitali di Controllo A.A p. 20/32 Condizioni di risposta piatta per ingressi a gradino 3 Prova Dalla E(z) = W e (z) z z = K d + F(z) z z = K d N F (z) N F (z) + D F (z) z z = Q(z) z k segue immediatamente la necessità di A) e B). Per provare la necessità di C), si fattorizzino P(z) e C(z) come al solito P(z) = N+ P (z) D + P (z) N P (z) D P (z) C(z) = D+ P (z) N + P (z) N C (z) D C (z) con i rispettivi polinomi al num/den coprimi tra loro e dove N + P del processo cancellabili dal controllore. Segue (z) sono gli eventuali zeri F(z) = e quindi (dalla A) N P (z)n C(z) K d D P (z)d C(z) = N F(z) D F (z) (con N F e D F coprimi) N F (z) + D F (z) = N P (z)n C(z) + K d D P (z)d C(z) = z k

21 Sistemi Digitali di Controllo A.A p. 2/32 Condizioni di risposta piatta per ingressi a gradino 4 Per la trasformata del segnale di controllo si ha U(z) = = C(z) + F(z) z z = K d N C (z)d + P (z)d P (z) N C (z)d + P (z) D C (z)n + P (z) + N P (z)n C(z) K d D P (z)d C(z) K d D P (z)d C(z) + N P (z)n C(z) N + P (z) z z z z = K dn C (z)d + P (z)d P (z) z k N + P (z) z z = K dn C (z)d + P (z)d P (z) z k (z ) N + P (z) =P K d z z + S(z) z =... k z k (z ) da cui necessariamente N + P (z) = cost (grado 0) e non possono esserci cancellazioni degli zeri (anche se a fase minima!) del processo Per dimostrare la sufficienza delle A)-C), si ponga anzitutto N + P (z) = [hp C)]

22 Sistemi Digitali di Controllo A.A p. 22/32 Condizioni di risposta piatta per ingressi a gradino 5 Si ha allora per l espressione si U(z) il seguente sviluppo in frazioni parziali U(z) = K dn C (z)d + P (z)d P (z) z k (z ) = S(z) Az + zk z con un trucco tecnico per il residuo nel polo z = (si sviluppa U(z)/z anzichè solo U(z) per far comparire la trasformata del gradino) che si calcola come A = lim z (z ) U(z) z K d N C (z)d + P = lim (z)d P (z) z z k N P (z) N P (z) = lim z P(z) = lim z K d P(z) K d N C (z)n P (z) z k F(z) + F(z) = ( lim z = lim z P(z) K d P(z) ) K d N F (z) [dalla hp A)] N F (z) + D F (z) ) F(z) = P K d [dalla hp B)] + F(z) ( lim z da cui U(z) ha la struttura 2. richiesta c.v.d.

23 Sistemi Digitali di Controllo A.A p. 23/32 Progetto con risposta piatta per ingressi a gradino Le condizioni A) N F + D F = z k, B) D F ha una radice in z =, e C) nessuna cancellazione degli zeri di P si prestano bene a una sintesi costruttiva del controllore Consideriamo dapprima il caso in cui P(z) non abbia poli in z =. Sia allora P(z) = b n z n b z + b 0 D + P (z)(zr + a r z r a z + a 0 ) con grado(d + P ) + r = n dove D + P (z) contiene gli eventuali poli (stabili) di P(z) cancellabili senza problemi Il controllore ha la struttura propria C(z) = K d z D + P (z)(d sz s + d s z s d z + d 0 ) z m + c m z m c z + c 0 con grado(d + P ) + s = m + Dalle definizioni dei gradi dei polinomi segue che s + n = r + m + con m e s da definire mentre il numero dei coefficienti incogniti {c 0, c,...,c m, d 0, d,...,d s } è pari a m + s +

24 Sistemi Digitali di Controllo A.A p. 24/32 Progetto con risposta piatta per ingressi a gradino 2 Dalla D F + N F = z k si ha l equazione di progetto z k = (z )(z m + c m z m c 0 )(z r + a r z r a 0 ) + (b n z n b 0 )(d s z s + d s z s d 0 ) in cui il polinomio a destra è certamente di grado (m + r + ) con (m + s + ) coefficienti incogniti Per la risolubilità occorre allora che s r k = m + r + (= n + s) per cui il campione k a partire dal quale si può avere risposta piatta non può essere comunque inferiore al grado n del denominatore di P(z) Il valore minimo di k si ottiene per s = 0, il che implica k min = n e r = 0. Ciò accade quando l intero denominatore den(p) = D + P è cancellabile, ossia il processo P(z) è asintoticamente stabile. Il controllore diventa C(z) = K d d 0 D + P (z) (z )(z m + c m z m c z + c 0 ) ed è possibile determinarne i coefficienti incogniti in forma esplicita (m = n )

25 Sistemi Digitali di Controllo A.A p. 25/32 Progetto con risposta piatta per ingressi a gradino 3 Infatti in tal caso l equazione di progetto z n = (z )(z n + c n 2 z n c 0 ) + (b n z n b 0 )d 0 è equivalente, per il principio di identità dei polinomi, a un sistema di n equazioni in n incognite della forma b 0 d 0 c 0 = 0 b d 0 + c 0 c = 0 b 2 d 0 + c c 2 = 0. =.. b n 2 d 0 + c n 3 c n 2 = 0 b n d 0 + c n 2 = Sommando tutte le equazioni si ha (b n + b n b + b 0 ) d 0 = e poichè num(p()) = b n + b n b + b 0 0 cioè il processo non ha zeri in z = (in caso contrario, non sarebbe neanche possibile per la D F (z) avere un polo in z = ), il sistema è risolubile

26 Sistemi Digitali di Controllo A.A p. 26/32 Progetto con risposta piatta per ingressi a gradino 4 Si ha allora d 0 = b n + b n b + b 0 c 0 = b 0 d 0 c = c 0 + b d 0 = d 0 (b + b 0 ). c n 3 = c n 4 + b n 3 d 0 = d 0 (b n 3 + b n b + b 0 ) c n 2 = c n 3 + b n 2 d 0 = d 0 (b n 2 + b n b + b 0 ) Ovviamente nel caso in cui non si possano cancellare tutti i poli del processo, la soluzione va trovata numericamente caso per caso. Si applicano i risultati del caso generale di risposta in tempo finito, tenendo presente che per avere risposta piatta si ha sempre m P = m. La seguente tabella ricapitola le diverse situazioni: l min /k min deadbeat risposta piatta P : stabile, a fase minima n m n P : stabile, m P zeri a fase non minima (n m) + m P n P : a fase minima, n P poli instabili (n m) + n P n + n P P : n P poli instabili, m P zeri a fase non minima (n m) + n P + m P n + n P

27 Sistemi Digitali di Controllo A.A p. 27/32 Progetto con risposta piatta per ingressi a gradino 5 Rimane da trattare il caso in cui P(z) abbia un polo in z =, che però non presenta particolari differenze. Si ha allora P(z) = b n z n b z + b 0 (z )D + P (z)(zr + a r z r a z + a 0 ) con grado(d + P ) + r + = n e il controllore ha ancora la struttura propria C(z) = K d D + P (z)(d sz s + d s z s d z + d 0 ) z m + c m z m c z + c 0 con grado(d + P ) + s = m Poichè dalle definizioni dei gradi dei polinomi segue la stessa relazione di progetto del caso di P(z) senza azione integrale s + n = r + m + con m e s da definire il resto della trattazione procede in modo del tutto analogo

28 Sistemi Digitali di Controllo A.A p. 28/32 Esempio di progetto con risposta piatta Si riconsideri il processo P(s) dell esempio di progetto deadbeat P(z) 0.37(z ) (z )(z 0.37) T = s P = 0 in cui D + p (z) = (z 0.37) è cancellabile, ma per avere risposta piatta lo zero non si può più rimuovere (m P = ; b = 0.37, b 0 = )

29 Sistemi Digitali di Controllo A.A p. 29/32 Esempio di progetto con risposta piatta cont Il progetto (con k = (n m) + m P = + = 2) prevede C(z) = (z 0.37)d 0 z + c 0 (z )(z+c 0 )+0.37d 0 (z+0.72) = z 2 d 0 = c 0 = L uscita continua diviene piatta e assume il valore desiderato unitario (K d = ) a partire da 2T = 2 s, con u(h k) = y samples over y continuous u samples with ZOH continuous time t continuous time t

30 Sistemi Digitali di Controllo A.A p. 30/32 Secondo esempio di progetto con risposta piatta Si consideri il processo instabile P(s) = P(z) = s(s ) con ZOH, T = s e K d =. Si ha b z + b 0 (z )(z + a 0 ) = z + (z )(z 2.780) 0.72 z + (z )(z 2.72) = P (z) Nel progetto si utilizzeranno sia i valori con quattro cifre decimali (P(z)) che quelli approssimati alla seconda cifra (P (z)). A parte l azione integrale, nè polo (instabile) nè zero (risposta piatta, comunque a fase non minima) sono cancellabili (m P =, n P = )

31 Sistemi Digitali di Controllo A.A p. 3/32 Secondo esempio di progetto con risposta piatta 2 In questo caso r =, e quindi s =, m = k min = 3. Si pone C(z) = d z + d 0 z + c 0 (b z + b 0 )(d z + d 0 ) + (z )(z + a 0 )(z + c 0 ) = z 3 Il sistema da risolvere è 0 b a 0 b b 0 a 0 b 0 0 c 0 d 0 d = a 0 a 0 0 Sostituendo i valori numerici di P(z) e, rispettivamente, P (z) si ottiene C(z) = z z +.77 oppure C (z) = 3.6z 3.03 z +. La sensibilità ad arrotondamenti numerici è più elevata nei metodi di sintesi con prestazioni spinte (come il deadbeat e la risposta piatta) ed è anche accentuata dalle caratteristiche di instabilità del processo

32 Sistemi Digitali di Controllo A.A p. 32/32 Secondo esempio di progetto con risposta piatta 3 Risposta al gradino e uscita del controllore (a valle dello ZOH) con C(z) y samples over y continuous u samples with ZOH e con C (z) continuous time t continuous time t y samples over y continuous u samples with ZOH continuous time t continuous time t

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del corso di Controllo digitale Corso di Laurea in Ingegneria Informatica e dell Informazione Università di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte VI Sintesi diretta a tempo discreto

Dettagli

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/2006 2 aprile 2006 TESTO E SOLUZIONE Esercizio Assegnato il sistema dinamico, non lineare, tempo invariante x (k + ) = x (k) + x 2 (k) 2 + u(k) x 2

Dettagli

Schema a campionamento dell uscita

Schema a campionamento dell uscita Schema a campionamento dell uscita Introduzione Il progetto di un controllore digitale può svilupparsi secondo due linee alternative: La prima si basa su tecniche di progetto a tempo continuo basate su

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo AA 2009-2010 p 1/74 SISTEMI DIGITALI DI CONTROLLO Prof Alessandro De Luca DIS, Università di Roma La Sapienza deluca@disuniroma1it Lucidi tratti dal libro C Bonivento, C Melchiorri,

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-200 p. /32 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento,

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - CFU) COMPITO DI TEORIA DEI SISTEMI Giugno - A.A. - Esercizio. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: x(t +

Dettagli

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco)

Sintesi diretta. (Complementi di Controlli Automatici: prof. Giuseppe Fusco) Sintesi diretta (Complementi di Controlli Automatici: prof. Giuseppe Fusco) La tecnica di progetto denominata sintesi diretta ha come obiettivo il progetto di un controllore C(s) il quale assicuri che

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) (A.A. fino al 2017/2018) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) (A.A. fino al 2017/2018) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) (A.A. fino al 2017/2018) Prova scritta 7 giugno 2019 SOLUZIONE ESERCIZIO 1. Si consideri il problema della regolazione di quota dell aerostato ad aria calda mostrato

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

Capitolo 6. Sintesi nel dominio a tempo discreto

Capitolo 6. Sintesi nel dominio a tempo discreto Capitolo 6 Sintesi nel dominio a tempo discreto Sommario. In questo capitolo vengono presentati i metodi di sintesi diretta di regolatori digitali ingresso-uscita. 6. Sintesi diretta nel discreto Si consideri

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 20 Febbraio 2014

COMPITO DI CONTROLLI AUTOMATICI 20 Febbraio 2014 COMPITO DI CONTROLLI AUTOMATICI Febbraio 14 Esercizio 1. [11 punti] Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 3 s(s + 1)(s + 1) (s

Dettagli

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 18 Settembre 2012

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 18 Settembre 2012 COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 8 Settembre Esercizio. (pt.) Sia G(s) = (s +.)(s s + ) s (s ) la funzione di trasferimento di un modello ingresso/uscita,

Dettagli

COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 16 Febbraio 2010

COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 16 Febbraio 2010 COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 6 Febbraio Esercizio. Si consideri il modello ingresso/uscita a tempo continuo e causale descritto dalla seguente equazione differenziale: d 3 y(t) dt 3

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

Slide del corso di. Controllo digitale

Slide del corso di. Controllo digitale Slide del corso di Controllo digitale Corso di Laurea in Ingegneria Informatica e dell Informazione Università di Siena, Dip. Ing. dell Informazione e Sc. Matematiche Parte II Sistemi lineari a tempo discreto

Dettagli

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32

Corso di Controllo DigitaleAntitrasformate Zeta e calcolo della risposta p.1/32 Corso di Controllo Digitale Antitrasformate Zeta e calcolo della risposta Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo Istituto per la Sistemistica

Dettagli

01) Identità ed equazioni 02) Equazione di primo grado ad una incognita 03) Equazione di primo grado frazionarie

01) Identità ed equazioni 02) Equazione di primo grado ad una incognita 03) Equazione di primo grado frazionarie Unità Didattica N 07 Le equazioni di primo grado ad una incognita 6 U.D. N 07 Le equazioni di primo grado ad una incognita 0) Identità ed equazioni 0) Equazione di primo grado ad una incognita 0) Equazione

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 CFU): 6 degli 8 esercizi numerici + 4 delle 5 domande a risposta multipla (v. ultime due pagine) NOTA: nell effettiva prova d esame

Dettagli

Esercitazione 11: Sintesi del controllore Parte 2

Esercitazione 11: Sintesi del controllore Parte 2 Esercitazione : Sintesi del controllore Parte 2 27 maggio 209 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state scritte e redatte dal

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

Sistemi LTI a tempo continuo

Sistemi LTI a tempo continuo Esercizi 4, 1 Sistemi LTI a tempo continuo Equazioni di stato, funzioni di trasferimento, calcolo di risposta di sistemi LTI a tempo continuo. Equilibrio di sistemi nonlineari a tempo continuo. Esercizi

Dettagli

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 2 Sistemi LTI a tempo continuo Trasformando con Laplace si ottiene la seguente espressione

Dettagli

Esercizi sulla discretizzazione

Esercizi sulla discretizzazione Controlli digitali Esercizi sulla discretizzazione - Progetta un controllore digitale per il seguente sistema con P(s) = 3 400 (2 s)(s + 200), s(s + 2) assumendo un tempo di campionamento pari a T = 0.0s.

Dettagli

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A

Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 10 Luglio Parte A Università degli Studi di Parma - Facoltà di Ingegneria Appello di Controlli Digitali del 0 Luglio 2007 - Parte A - (6 p.) - Illustra il metodo della formula di inversione per il calcolo dell antitrasformata

Dettagli

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t)

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t) Esercizio Circuiti R in serie). Si considerino i sistemi elettrici R rappresentati nella seguente figura: + + + + u t) R y t) u t) R y t) Si consideri inoltre il sistema ottenuto collegando in serie i

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff

Dettagli

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato:

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Trasformando con Laplace si ottiene la seguente espressione per l uscita: Risposta libera Risposta

Dettagli

x 2 (t) K 1 K 2 2z + z 2 z 3 + 2z 2 z 2 = z(z + 2)

x 2 (t) K 1 K 2 2z + z 2 z 3 + 2z 2 z 2 = z(z + 2) 1 1. CONNESSIONI Esercizio 1.1. Si consideri lo schema di figura, in cui i sistemi e Σ 2 sono sistemi discreti connessi in serie e i segnali di retroazione dallo stato di e dallo stato di Σ 2 vengono iniettati

Dettagli

Prova TIPO C per: ESERCIZIO 1.

Prova TIPO C per: ESERCIZIO 1. Prova TIPO C per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta multipla (v. ultime

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 212 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 9 giugno 2017 SOLUZIONE ESERCIZIO 1. Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 9 Settembre 2013

COMPITO DI CONTROLLI AUTOMATICI 9 Settembre 2013 COMPITO DI CONTROLLI AUTOMATICI 9 Settembre 213 Esercizio 1. [1 punti] Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 3 (s.1)2 (s + 1) s

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 13 luglio 2017 SOLUZIONE ESERCIZIO 1. I moderni robot industriali con funzionalità collaborative (i.e. co-esistenza e interazione sicura tra umani

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 29/06/2017 Prof. Marcello Farina SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A. Scrivere le equazioni del sistema linearizzato

Dettagli

Controllo Digitale - A.A. 2013/2014 Elaborato 6: metodi nello spazio degli stati, stima dello stato, sintesi del regolatore

Controllo Digitale - A.A. 2013/2014 Elaborato 6: metodi nello spazio degli stati, stima dello stato, sintesi del regolatore Controllo Digitale - A.A. 23/24 Elaborato 6: metodi nello spazio degli stati, stima dello stato, sintesi del regolatore Problema. È dato il sistema α 2 3 +. Al variare di α determinare l insieme degli

Dettagli

Sistemi di controllo digitali. Concetti introduttivi

Sistemi di controllo digitali. Concetti introduttivi Sistemi di controllo digitali Concetti introduttivi I sistemi di controllo digitali o a tempo discreto si distinguono dai sistemi di controllo analogici o a tempo continuo in quanto caratterizzati dalla

Dettagli

Regolazione e Controllo (solo V.O.) I Parte 7 Settembre 2004

Regolazione e Controllo (solo V.O.) I Parte 7 Settembre 2004 Regolazione e Controllo (solo V.O.) I Parte 7 Settembre 4 Numero di matricola = α = β = γ Si consideri il sistema meccanico di fig., costituito da due masse mobili (pari rispettivamente a m = + α kg e

Dettagli

STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI

STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI L DEI SISTEMI DISCRETI Ing. Cristian Secchi Tel. 0522 522235 e-mail:

Dettagli

K 1 + T s. W (s) = dove T è la costante di tempo e K è il guadagno di Bode. Nel seguito supporremo K = 1. L 1 T e t/t δ ( 1) = w(t) (13.

K 1 + T s. W (s) = dove T è la costante di tempo e K è il guadagno di Bode. Nel seguito supporremo K = 1. L 1 T e t/t δ ( 1) = w(t) (13. Capitolo 3 Sistemi elementari 3. Introduzione In questo capitolo intendiamo esaminare il comportamento dei sistemi del primo e del secondo ordine. Lo studio ha un duplice scopo. Anzitutto, esso consentirà

Dettagli

COMPITO DI SEGNALI E SISTEMI 25 febbraio 2016

COMPITO DI SEGNALI E SISTEMI 25 febbraio 2016 COMPIO DI SEGNALI E SISEMI 25 febbraio 2016 eoria 1. [5 punti] Si forniscano le definizioni di stabilità asintotica e stabilità BIBO per un sistema LI e causale descritto da un equazione differenziale

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Le equazioni di I grado

Le equazioni di I grado Le equazioni di I grado ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Le equazioni abbiamo una uguaglianza tra due quantità (espressioni algebriche, perché nei due termini ci possono essere

Dettagli

SISTEMI A TEMPO DISCRETO

SISTEMI A TEMPO DISCRETO CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008

COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 2008 COMPITO DI CONTROLLI AUTOMATICI 26 Settembre 28 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo descritto dalla seguente equazione differenziale: a d2 y(t) 2 con a parametro reale.

Dettagli

Esempi di sintesi per tentativi con il luogo delle radici

Esempi di sintesi per tentativi con il luogo delle radici Esempi di sintesi per tentativi con il luogo delle radici Esempio 1 È dato il sistema di controllo: u + G(s) P(s) y in cui: P(s) = s(s ) Utilizzando la sintesi per tentativi con il luogo delle radici,

Dettagli

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 1 Febbraio 2013

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 1 Febbraio 2013 COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 1 Febbraio 13 Esercizio 1. [11 punti] Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione

Dettagli

Dispensa n.1. Sul legame tra autovalori della matrice A e poli della funzione di trasferimento

Dispensa n.1. Sul legame tra autovalori della matrice A e poli della funzione di trasferimento Dispensa n.1 Sul legame tra autovalori della matrice A e poli della funzione di trasferimento E dato un sistema lineare, avente un solo ingresso, una sola uscita e uno spazio di stato a dimensione n. Tale

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 4/5 settembre 5 TESTO E Esercizio In riferimento allo schema a blocchi in figura. y y u - s5 sk y k s y 4 Domanda.. Determinare una realizzazione in equazioni

Dettagli

1. Si individuino tutti i valori del parametro α per i quali il sistema assegnato è asintoticamente stabile.

1. Si individuino tutti i valori del parametro α per i quali il sistema assegnato è asintoticamente stabile. Appello di Fondamenti di Automatica (Gestionale) a.a. 2017-18 7 Settembre 2018 Prof. SILVIA STRADA Tempo a disposizione: 2 h. ESERCIZIO 1 Si consideri il sistema dinamico lineare invariante a tempo continuo

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale

Dettagli

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h.

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h. Politecnico di Milano Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 206 Tempo a disposizione:.30 h. Nome e Cognome................................................................................

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel

Ingegneria Informatica. Prof. Claudio Melchiorri DEIS-Università di Bologna Tel CONTROLLI AUTOMATICI LS Ingegneria Informatica Sistemi a Dati Campionati Prof. DEIS-Università di Bologna Tel. 51 29334 e-mail: claudio.melchiorri@unibo.it http://www-lar lar.deis.unibo.it/people/cmelchiorri

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 25 Giugno 2007

COMPITO DI CONTROLLI AUTOMATICI 25 Giugno 2007 COMPITO DI CONTROLLI AUTOMATICI 25 Giugno 27 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo descritto dalla seguente equazione differenziale: a 2d2 y(t) 2 con a parametro reale.

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

SOLUZIONE della Prova TIPO F per:

SOLUZIONE della Prova TIPO F per: SOLUZIONE della Prova TIPO F per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio 2013 - A.A. 2012-2013 Esercizio 1. Si consideri il sistema a tempo continuo descritto dalle seguenti

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi:

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi: Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del /9/7 Esercizio Sia (F, g, H) un sistema discreto, raggiungibile e osservabile, con un ingresso e un uscita, e sia n(z) R(z)

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013 COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 213 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 1 (s.1)(s + 1) 2 s(s +.1) 2 (s

Dettagli

SOLUZIONE della Prova TIPO B per:

SOLUZIONE della Prova TIPO B per: SOLUZIONE della Prova TIPO B per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) domande a risposta multipla

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 21/09/2016 - Soluzioni Prof Marcello Farina Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A Spiegare

Dettagli

Fondamenti di Automatica per Ing. Elettrica

Fondamenti di Automatica per Ing. Elettrica Fondamenti di Automatica per Ing. Elettrica Prof. Patrizio Colaneri 2, Prof. Gian Paolo Incremona Esame del 7 Settembre 28 Cognome Nome Matricola Firma Durante la prova non è consentita la consultazione

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di tipologia quadricottero.

Dettagli

Prova TIPO D per: ESERCIZIO 1.

Prova TIPO D per: ESERCIZIO 1. Prova TIPO D per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) domande a risposta multipla (v. ultime

Dettagli

Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione

Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/2004 4 gennaio 2004 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi. La chiarezza

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 crediti) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 crediti) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 crediti) / CONTROLLI AUTOMATICI Prova scritta 24 luglio 2019 SOLUZIONE ESERCIZIO 1. Si consideri un sistema per il riscaldamento di parti metalliche, costituito da

Dettagli

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2

Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Controllo Digitale a.a. 2007-2008 Strumenti matematici per l analisi dei sistemi tempo discreto LT-Cap. 2 Ing. Federica Pascucci Equazioni alle differenze (ricorsive) f legame tra le sequenze {e k } ed

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 26 luglio 213 Anno Accademico 212/213 ESERCIZIO 1 Si consideri il sistema descritto dalla equazione

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006 La trasformata Z (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata Z 1 / 33 Outline 1 La trasformata Z 2 Trasformazioni di

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Informazione 18 Luglio 2016

COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Informazione 18 Luglio 2016 COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Informazione 18 Luglio 16 Esercizio 1. [9.5 punti] Dato il sistema a tempo-continuo di funzione di trasferimento s 2 ( s 2 + 2) G(s) = (s 2.2s + 1) (s +

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI TEMA A - 2 Febbraio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI TEMA A - 2 Febbraio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI TEMA A - Febbraio 1 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s)

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff e le formule di base

Dettagli

Quali condizionisi si possono richiedere sulla funzione interpolante?

Quali condizionisi si possono richiedere sulla funzione interpolante? INTERPOLAZIONE Problema generale di INTERPOLAZIONE Dati n punti distinti ( i, i ) i=,..,n si vuole costruire una funzione f() tale che nei nodi ( i ) i=,..n soddisfi a certe condizioni, dette Condizioni

Dettagli

Progetto del controllore

Progetto del controllore Parte 10, 1 - Problema di progetto Parte 10, 2 Progetto del controllore Il caso dei sistemi LTI a tempo continuo Determinare in modo che il sistema soddisfi alcuni requisiti - Principali requisiti e diagrammi

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Soluzioni della seconda prova scritta intermedia 25 giugno 2018

Fondamenti di Automatica Prof. Luca Bascetta. Soluzioni della seconda prova scritta intermedia 25 giugno 2018 Fondamenti di Automatica Prof. Luca Bascetta Soluzioni della seconda prova scritta intermedia 25 giugno 28 ESERCIZIO Si consideri il sistema di controllo di figura, con y variabile controllata e y o riferimento:

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 18 Settembre 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 18 Settembre 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 8 Settembre 22 Esercizio. Si consideri il modello ingresso/uscita a tempo continuo e causale descritto dalla seguente equazione differenziale:

Dettagli

COMPITO DI SEGNALI E SISTEMI 2 febbraio 2017

COMPITO DI SEGNALI E SISTEMI 2 febbraio 2017 COMPITO DI SEGNALI E SISTEMI 2 febbraio 2017 NOTA: Tutte le risposte vanno adeguatamente giustificate. Risposte errate e/o con motivazioni errate avranno valore negativo nella valutazione Teoria 1. Si

Dettagli

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 6 Settembre 2013

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 6 Settembre 2013 COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 6 Settembre 213 Esercizio 1. [9. + 1 punti] Sia G(s) = (s 2 +1)(s+1) (s.1)(s 2 +.2s+1) la funzione di trasferimento di un

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici Compito A 2 Aprile 2007 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si considerino

Dettagli

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE A.A. 25/6 Prima prova di Fondamenti di Automatica (CL Ing. Gestionale) 27 Novembre 25 ESERCIZIO punti: 8 su 32 Si consideri il sistema

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 9 Luglio 22 Esercizio. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = (s + )

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/11 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 29 gennaio 2018 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema robotico, costituito da un attuatore lineare che integra il circuito elettronico

Dettagli

Regime permanente e transitorio

Regime permanente e transitorio Regime permanente e transitorio Schema di controllo Si consideri il consueto schema di controllo: r r y des + e u + d y C(s) F(s) + (s) G a = C(s) F(s) y(s) y(s) W(s) = ; W y (s) = r(s) y (s) des Fdt d

Dettagli

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI

Dettagli