LA CURVA DI OFFERTA AGGREGATA, IL MODELLO COMPLETO AD AS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA CURVA DI OFFERTA AGGREGATA, IL MODELLO COMPLETO AD AS"

Transcript

1 Modulo 7 1

2 LA CURVA DI OFFERTA AGGREGATA, IL MODELLO COMLETO AD 1. Dfinizion 2. Il caso noclassico 3. Il caso kynsiano 4. Il caso intrmdio 5. Il modllo AD - l politich di stabilizzazion 5.a olitica fiscal spansiva nl caso Noclassico 5.b olitica fiscal spansiva nl caso Kynsiano 5.c olitica fiscal spansiva nl caso Intrmdio 6. La lgg di Okun 6.a Azioni dlla politica conomica dinamica di przzi 7. La curva di hillips 7.a L aggiustamnto di przzi 8. La curva di hillips gnralizzata o curva di hlps 8.a La curva di hillips gnralizzata nl caso di uno shock sogno di przzi 8.b La frontira dlla razion dlla politica conomica: il trad-off tra inflazion disoccupazion 2

3 1. Dfinizion La curva dll offrta aggrgata indica la rlazion positiva tra il IL ral il livllo gnral di przzi. r individuar l andamnto dlla funzion di offrta aggrgata si può far rifrimnto a du approcci: qullo noclassico a przzi prfttamnt flssibili qullo kynsiano a przzi inchiodati. Tra i du modlli si individuano casi intrmdi ch si avvicinano maggiormnt all conomi ffttiv. 3

4 2. Il caso noclassico Scondo l approccio noclassico sul mrcato sist la prftta flssibilità di przzi, con la consgunza ch il mrcato di bni, qullo dl lavoro qullo montario saranno smpr in quilibrio grazi ai procssi di aggiustamnto di przzi mdsimi. r i motivi anzidtti la funzion di offrta aggrgata sarà prpndicolar all ass dll asciss. La flssibilità di przzi garantisc il raggiungimnto in ogni momnto dl livllo di produzion di pino impigo. rtanto, ssndo tutti i fattori dlla produzion pinamnt occupati, il IL ch si dtrmina riman fisso carattrizzando una funzion di offrta aggrgata prpndicolar all ascissa. 4

5 3. Il caso kynsiano Scondo l approccio kynsiano i przzi di mrcato sono tndnzialmnt rigidi, con la consgunza ch sul mrcato sistrà un livllo di przzi in corrispondnza dl qual la funzion di offrta aggrgata risultrà parallla all ass dll asciss. è il livllo di przzi prdtrminato 5

6 4. Il caso intrmdio Il caso intrmdio a qullo noclassico a qullo kynsiano, è qullo ch più si avvicina all conomi rali. In tal modllo la funzion di offrta aggrgata risulta ssr crscnt, nllo spazio cartsiano dscritto dall variabili przzo () quantità (). 6

7 5. Il modllo AD - l politich di stabilizzazion Il caso kynsiano Il caso noclassico AD Il caso intrmdio AD AD 7

8 Caso kynsiano: l offrta aggrgata è parallla all ass dll asciss con la funzion di domanda aggrgata tipica dcrscnt dall alto vrso il basso in cui si dtrmina l quilibrio dato un livllo di przzo vischioso. il modllo privilgia l aggiustamnto quantitativo. Caso noclassico: l offrta aggrgata è prpndicolar all ass dll asciss d incontrrà la domanda aggrgata ad un crto przzo a cui corrispondrà un dato livllo di produzion, corrispondnt alla pina occupazion. Il przzo si dtrminrà in qull quilibrio dato il livllo di produzion di offrta. Il modllo privilgia l aggiustamnto qualitativo attravrso la variabil rapprsntata dall indicator przzi. Caso intrmdio: modllo di aggiustamnto ch mglio approssima l conomia ral prché ammtt la flssibilità dgli indicatori qualitativi quantitativi dgli aggiustamnti dll variabili. L incognit sono il przzo il rddito. L quilibrio sarà raggiunto grazi agli aggiustamnti dll du. 8

9 5.a olitica fiscal spansiva nl caso noclassico Un aumnto dlla spsa pubblica nl modllo noclassico comporta una traslazion dlla curva di domanda aggrgata vrso dstra, da AD 1 a AD 2. Il nuovo quilibrio E 2 corrispondrà ad un livllo di przzi 2 più lvato, mntr il IL è rimasto al livllo di produzion di pino impigo. Qusto risultato dimostra ch nl caso noclassico una manovra in sostgno dlla domanda aggrgata si risolv unicamnt in un aumnto dl livllo gnral di przzi, quindi, in un procsso inflazionistico snza fftti sull conomia ral. 2 E E 1 AD 2 AD 1 9

10 5.b olitica fiscal spansiva nl caso kynsiano Un aumnto dlla spsa pubblica nl modllo kynsiano comporta una traslazion dlla curva di domanda aggrgata vrso dstra, da AD 1 a AD 2. Il nuovo quilibrio E 2 corrispondrà ad un livllo dl IL 2 più lvato, mntr il livllo di przzi riman invariato. Qusto risultato dimostra ch nl caso kynsiano una manovra in sostgno dlla domanda aggrgata si risolv sclusivamnt in un aumnto dl IL. rtanto, in qusto caso, si ralizza il massimo di fficacia dlla politica fiscal spansiva. E 1 E 2 AD AD 1 1

11 5.c olitica fiscal spansiva nl caso intrmdio Un aumnto dlla spsa pubblica nl caso intrmdio comporta una traslazion dlla curva di domanda aggrgata vrso dstra, da AD 1 a AD 2. Il nuovo quilibrio E 2 corrispondrà ad un livllo dl IL di przzi più lvati. Mntr nl caso noclassico l aggiustamnto macroconomico avvin solo pr il tramit dll aggiustamnto di przzi, in qullo kynsiano solo pr il tramit dlla variabil, nl caso intrmdio una politica fiscal spansiva, provoca contmporanamnt fftti sul livllo di produzion sul livllo di przzi. 2 + E 1 E 2 1 AD AD 1 11

12 6. La lgg di Okun Importanti studi conomtrici hanno vidnziato una rlazion tra il livllo dl IL ffttivo il tasso di disoccupazion. Qusta rlazion vin dfinita lgg di Okun, dal nom dll conomista amricano ch pr primo la vidnziò all inizio dgli anni sssanta dl scolo scorso. Essa stabilisc ch: ogni punto di disoccupazion al di sopra di qullo natural corrispond a tr punti prcntuali dlla produzion al di sotto di qullo di pino impigo. Lo scostamnto dl livllo dl IL dal suo livllo di pino impigo vin dfinito divario (o gap) dl IL. Indichiamo con il IL ffttivo con il IL di pino impigo. Il gap di IL può ssr così dfinito: ± % S il gap di IL è maggior di zro, in trmini prcntuali, vi sarà un ccsso di IL ffttivo risptto a qullo di pino impigo (ccsso di IL), s è minor di zro il IL ffttivo è al di sotto di qullo di pino impigo (vuoto di IL) 12

13 Rapprsntazion grafica dl vuoto di IL (o prssion dlla domanda) dll ccsso di IL (o dprssion dlla domanda). E E AD AD Vuoto di IL < Eccsso di IL > 13

14 Rapprsntazion grafica dlla lgg di Okun B A AD = % 1 A AD 1 % A Lgg di OKUN 1 % = 6% B B 1 3% 5% U U 1 U 14

15 Sul primo grafico è rapprsntato l quilibrio domanda offrta aggrgata, nll ipotsi in cui la curva di offrta aggrgata sia di tipo kynsiano, dov rapprsnta un livllo prfissato di przzi. Sul scondo grafico sull ass dll asciss è indicato smpr il IL, mntr su qullo dll ordinat c è il vuoto di IL. Sul trzo grafico è riportato sull ass dll asciss il tasso di disoccupazion U su qullo dll ordinat il vuoto di IL. Il punto A rapprsnta l quilibrio inizial AD-, a cui corrispond un livllo di produzion di quilibrio di pino impigo. In corrispondnza dl livllo di produzion, sul scondo grafico, assumndo ch =,. sull ass dll ordinat si vidnzia un vuoto di IL pari a zro a cui corrispond, sul trzo grafico, un tasso natural di disoccupazion dl 3%. Si supponga ch la curva dlla domanda aggrgata AD subisca una traslazion vrso sinistra, dtrminandosi un nuovo punto di quilibrio B corrispondnt ad un minor livllo di ch passrà da livllo potnzial a qullo ffttivo 1. Sull ass dll ordinat, in corrispondnza di B, quindi, si dtrminrà un vuoto di IL con sgno ngativo, in quanto >1. Si supponga ch tal vuoto di IL sia pari a -6%. Unndo i punti A B si ottin la rlazion vuoto di IL Tasso di disoccupazion. Il caso rapprsntato dimostra ch ad ogni punto prcntual di disoccupazion al di sopra dl tasso natural U corrispondono 3 punti prcntuali di IL al di sotto dl livllo di pino impigo. 15

16 Da quanto dtto si comprnd com nll ipotsi ch il IL sia pari a zro, il tasso di disoccupazion è pari al 3%. Qusto tasso di disoccupazion è dtto tasso di disoccupazion fisiologica, drivant dall asimmtri ch carattrizzano i procssi di aggiustamnto dll variabili macroconomich. 6.a Azioni dlla politica conomica dinamica di przzi Dall risultanz dlla lgg di Okun, driva la possibilità di valutar concrtamnt l fficacia dll azion dlla politica conomica. Cosicché sarà possibil, anch, dfinir modlli rapprsntativi dl futuro. Esist una corrlazion tra voluzion di przzi nl tmpo prssion dlla domanda, pr cui: - s il vuoto di IL è maggior di zro, si avrà un incrmnto dl livllo di przzi; - s il vuoto di IL è minor di zro, si avrà una riduzion dl livllo di przzi. 1 1 > + < nl tmpo succssivo nl tmpo succssivo Da quanto dtto drivano du importanti considrazioni: 1) una prssion positiva dlla domanda dà luogo ad una prssion inflazionistica vicvrsa 2) dipnd da -1, cioè è prdtrminato dall condizioni dlla domanda nl priodo 16 prcdnt

17 7. La curva di hillips ( ) = + f 1 1 Funzion di offrta aggrgata Essa mostra i vari livlli di przzi a cui l imprs sono dispost a vndr i vari possibili livlli dll quantità prodott. 17

18 ortando -1 al primo mmbro ( ) 1 = f 1 Dividndo ntrambi i mmbri rispttivamnt pr -1 : 1 1 = f 1 Curva di hillips 1 1 = π Tasso di inflazion nl caso in cui l imprsa rapprsntativa prvda ch il przzo di mrcato attso rimanga qullo dll anno prcdnt La curva di hillips studia il fnomno inflazionistico dll conomia. La vrsion original dlla curva di hillips si rifrisc ad una rlazion tra tasso di crscita dl salario montario W/W tasso di disoccupazion U, nlla bas 18 di dati rlativi al Rgno Unito nl priodo

19 Rapprsntazion grafica W W Originaria curva di hillips U La crscita di salari montari è molto lvata pr bassi valori dl tasso di disoccupazion. La curva di hillips consgu alla maggior consapvolzza dll intrrlazion tra costi domanda. Con rifrimnto al fnomno dll inflazion ssa appar in sintonia con la tsi dll inflazion da domanda. La spigazion sarbb ch un lvata domanda di lavoro (basso tasso di disoccupazion) comporta una sostnuta crscita di salari montari, ch, a sua volta, da origin ad una consgunt crscita di przzi. 19

20 7.a L aggiustamnto di przzi π 1 f = Alla bas di qusta rlazion, è possibil riscontrar la toria formulata da Kyns sul livllo di przzi, in quanto si assum ch i przzi sono spigati dalla struttura di costi (salari) sostnuti pr produrr i rlativi bni; è la prssion di domanda di lavoro (ossia un ccsso di domanda di lavoro) ch gnra un aumnto dl salario W/W, dando origin ad un aumnto dl livllo di occupazion quindi dl IL ffttivo. In tal modo si dtrmina un vuoto di IL positivo, ch a sua volta gnrrà una dinamica positiva sul livllo di przzi, scondo la rlazion sopra. Si parla, prtanto, di Inflazion da Domanda, ossia di un fnomno inflazionistico spigato dalla dinamica dlla domanda. 2

21 8. La curva di hillips gnralizzata o curva di hlps S si assum una variazion dl przzo di mrcato attso, occorr considrar il tasso di inflazion attso: 1 π = π + f dov π = inflazion ffttiva π = inflazion attsa Scondo qusta rlazion l inflazion è spigata oltr ch dal vuoto di IL anch dall aspttativ sul tasso di inflazion, ossia sulla dinamica di przzi. Qusta rlazion rapprsnta un valido strumnto pr valutar l fficacia dll azion dlla politica conomica. π π = π Curva di hillips gnralizzata π 1 π + f =

22 Dal grafico si vinc ch s il tasso d inflazion è maggior dl tasso d inflazion attso, si avrà un vuoto di IL positivo, mntr s il tasso d inflazion è minor dl tasso d inflazion attso, si avrà un vuoto di IL ngativo. π Curva di hillips gnralizzata π 1 π + f = π > π π = π π < π < 1 > > < ( π > π ) ( π < π ) :inflazionffttiva maggiordi qulla attsa :inflazionffttiva minor di qulla attsa La funzion di offrta aggrgata proposta da hlps prmtt di studiar la razion dlla politica conomica quando nl sistma macroconomico si dtrminano di fattori sogni ch influiscono sulla dinamica dl tasso di inflazion. In qusti casi si parla di inflazion importata. Un smpio di fattor sogno ch crtamnt influisc sulla dinamica dl tasso di inflazion è lo shock sogno dl livllo di przzi, ad smpio, un aumnto dl livllo di przzi di prodotti stratgici utilizzati in un dato sistma conomico ad (ad s. un significativo d improvviso aumnto dl przzo dl ptrolio). 22

23 8.a La curva di hillips gnralizzata nl caso di uno shock sogno di przzi Indicando con z lo shock sogno di przzi, la curva di hillips gnralizzata divnta: π = π + 1 f + z In prsnza di uno shock sogno (z divrso da zro) la curva risulta traslata vrso sinistra. > max = π > π < A B π = π C 1 + f π + z 1 π + f = Indichiamo con g la razion dlla politica conomica (E) 1 π ch nl caso di shock sogno di przzi può assumr tr divrsi attggiamnti: 1. un attggiamnto passivo, nl snso ch non assum nssun provvdimnto, val a dir g =, pr cui l inflazion drivant dallo shock sarà massima (punto C): π = π + z ; = g 1 = max max ( - ) U =U ( + ) ( U U ) 1 2. un attggiamnto attivo, nl snso ch adottrà tutti i provvdimnti possibili pr mantnr il livllo di inflazion sistnt (punto A). Nl caso A, prtanto, la razion dlla E è massima (max g) divnta massimo, pr la lgg di Okun, anch il divario tra tasso di disoccupazion ffttiva qullo natural: max (U-U); 3. Il punto B rapprsnta invc un caso intrmdio: g max g 23

24 π π π 8.b La frontira dlla razion dlla politica conomica: il trad-off tra inflazion disoccupazion Indicando sull ass dll asciss il costo social da disoccupazion U su qullo dll ordinat il costo social da inflazion, è possibil rapprsntar su un sistma di assi cartsiani la frontira dlla razion dlla politica conomica, dfinita nll intrvallo chiuso [ U, U ] corrispondnt agli C A strmi carattrizzanti la razion dlla politica conomica. U C U B Frontira dlla razion dlla politica conomica Funzioni di disutilità U A A ( U C U ) = C π π ( U A ) = A Nl grafico il lgam tra costo social da inflazion costo social da disoccupazion è rapprsntabil tramit curv di indiffrnza di disutilità social, ch hanno la proprità di ssr convss vrso l origin. A livllo aggrgato è possibil immaginar una famiglia di curv di indiffrnza di disutilità. Quanto più ci avvicina all origin dgli assi, tanto minori saranno i costi sociali da inflazion disoccupazion. Data la frontira dlla politica conomica, ch rapprsnta tutt i possibili intrvnti pr contnr i costi sociali suddtti nll intrvallo sopra dfinito, ci si chid qual possa ssr la sclta ottimal dlla stssa pr il contnimnto di tali costi. Nl punto A, a front di un basso costo da inflazion il sistma dv sopportar un lvato costo da disoccupazion: in A si ha max U. Vicvrsa nl punto C a front di un basso costo da disoccupazion il sistma dv sopportar un lvato costo da inflazion: in C si ha max. π U La sclta miglior è rapprsntata da punto B, in cui la frontira dlla razion dlla politica conomica è 24 tangnt alla più bassa curva di disutilità social: in B si ha π,u. ( )

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100

Mercato del lavoro. Tasso di partecipazione alla forza lavoro = (Forza lavoro/popolazione civile) 100 Mrcato dl lavoro Popolazion civil Forza lavoro (FL) Inattivi (bambini, pnsionati, casalinghi, studnti) Occupati () Disoccupati (U) Tasso di partcipazion alla forza lavoro (Forza lavoro/popolazion civil)

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

4/29/2011. Lisa Montanari

4/29/2011. Lisa Montanari Lisa Montanari lisa.montanari@unibo.it Modllo IS-LM, quilibrio di brv priodo Modllo DA-OA, quilibrio di lungo priodo Intrazion tra politich conomich confronto di politich. Modllo Mundll Flming Modllo:

Dettagli

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza Qual quantità produrr? Massimizzazion dl profitto offrta concorrnzial In ch modo l imprsa scgli il livllo di produzion ch massimizza il profitto. Com l sclt di produzion dll singol imprs contribuiscono

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA Esrcizio n 1 C= 400 + 0,8D I= 200-1400r G= 200 TA= 0,25 X= 300-100 Q=156+0,4 r*=0,36 L=50+0,2-100r M o =99 a) Dtrminat l quazion dlla IS dlla LM, il tasso

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

CAPITOLO 12 Una rivisitazione dell economia aperta: il modello di Mundell- Fleming e il regime dei tassi di cambio

CAPITOLO 12 Una rivisitazione dell economia aperta: il modello di Mundell- Fleming e il regime dei tassi di cambio CPITOLO Una rivisitazion dll conomia aprta: il modllo di Mundll- Flming il rgim di tassi di cambio Domand di ripasso. Nl modllo di Mundll-Flming, a front di un aumnto dll impost la curva IS si sposta vrso

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Politica Economica Europea

Politica Economica Europea Politica Economica Europa 4 Altr caus di divrsità I pasi, oltr a distingursi pr l prfrnz ch sprimono su inflazion/disoccupazion pr l istituzioni ch govrnano i loro mrcati divrsità strutturali), possono

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

SCHEMA delle LEZIONI della SETTIMA SETTIMANA

SCHEMA delle LEZIONI della SETTIMA SETTIMANA Corso di Istituzioni di conomia, Corso di Laura in Ing. Gstional, II canal (M-Z), A.A. 2010-2011. Prof. R. Sstini SCHEMA dll LEZIONI dlla SETTIMA SETTIMANA Corso di Macroconomia, Corso di Laura in Ing.

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Renato Filosa e Giuseppe Marotta. Stabilità finanziaria e crisi. Il ruolo dei mercati, delle istituzioni e delle regole

Renato Filosa e Giuseppe Marotta. Stabilità finanziaria e crisi. Il ruolo dei mercati, delle istituzioni e delle regole Supplmnto analitico al tsto, dito nl 011 dalla Socità ditric Il Mulino, Bologna, di Rnato Filosa Giuspp Marotta Stabilità finanziaria crisi. Il ruolo di mrcati, dll istituzioni dll rgol Supplmnto onlin

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

Ottimizzazione economica degli scambiatori di recupero.

Ottimizzazione economica degli scambiatori di recupero. Facoltà di Inggnria Univrsità dgli tudi di Bologna Dipartimnto di Inggnria Industrial Marco Gntilini Ottimizzazion conomica dgli scambiatori di rcupro Quadrni dl Dipartimnto MARCO GENTILINI OTTIMIZZAZIONE

Dettagli

Il punto sulla liberalizzazione del mercato postale

Il punto sulla liberalizzazione del mercato postale Il punto sulla libralizzazion dl mrcato postal Andra Grillo Il punto di vista di Post Italian sul procsso di libralizzazion l implicazioni concorrnziali; l carattristich dl srvizio univrsal nll ambito

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

Mercato globale delle materie prime: il caso Ferrero

Mercato globale delle materie prime: il caso Ferrero Mrcato global dll matri prim: il caso Frrro Mauro Fontana In un priodo di fort crisi, com qullo ch attualmnt stiamo vivndo, il vincolo dl potr di acquisto di consumatori assum un importanza fondamntal

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

APPUNTI DI MACROECONOMIA

APPUNTI DI MACROECONOMIA Brtocco G., Kalajzić A. Mourad Agha G. Univrsità dgli Studi dll Insubria Dipartimnto di Economia Anno accadmico 2014-2015 APPUNTI DI MACROECONOMIA (Sconda part pp. 175-296) Il modllo IS-LM pr una conomia

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Cntro Rgional di Programmazion I n t r POR Sardgna FESR 2007/2013 - ASSE VI COMPETITIVITÀ Lina di attività 6.1.1.A Promozion

Dettagli

CAPITOLO I DISOCCUPAZIONE E TEORIE ECONOMICHE

CAPITOLO I DISOCCUPAZIONE E TEORIE ECONOMICHE CAPITOLO I DISOCCUPAZIONE E TEORIE ECONOMICHE. PANORAMA SULLA DISOCCUPAZIONE Sino all avvnto dl primo shock ptrolifro nl 973, il tasso di disoccupazion ni Pasi appartnnti alla Comunità Europa (ora Union

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ).

Soluzioni. a) Il dominio è dato da tutti i numeri reali tranne quelli che annullano il denominatore di (x+1)/x. Quindi D = R {0} = (-,0) (0,+ ). Soluzioni Data la unzion a trova il dominio di b indica quali sono gli intrvalli in cui risulta positiva qulli in cui risulta ngativa c dtrmina l vntuali intrszioni con gli assi d studia il comportamnto

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Renato Filosa e Giuseppe Marotta. Stabilità finanziaria e crisi. Il ruolo dei mercati, delle istituzioni e delle regole

Renato Filosa e Giuseppe Marotta. Stabilità finanziaria e crisi. Il ruolo dei mercati, delle istituzioni e delle regole Supplmnto analitico al tsto, dito nl 011 dalla Socità ditric Il Mulino, Bologna, di Rnato Filosa Giuspp Marotta Stabilità finanziaria crisi. Il ruolo di mrcati, dll istituzioni dll rgol Supplmnto onlin

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

La formazione per i lavoratori colpiti dalla crisi nel quadro dell offerta 2010

La formazione per i lavoratori colpiti dalla crisi nel quadro dell offerta 2010 La formazion pr i lavoratori colpiti dalla crisi nl quadro dll offrta 2010 di Luca Fasolis ARTICOLO 2/2012 Prmssa Sommario Prmssa Anticipazioni sull offrta 2010 L carattristich dgli allivi La FP pr lavoratori

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

Statistica multivariata Donata Rodi 04/11/2016

Statistica multivariata Donata Rodi 04/11/2016 Statistica multivariata Donata Rodi 4//6 La rgrssion logistica Costruzion di un modllo ch intrprti la dipndnza di una variabil catgorial dicotomica da un insim di variabili splicativ Trasformazioni da

Dettagli

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci Consumatori in cifr Tariff dll prstazioni sanitari nll divrs rgioni italian Laura Filippucci La rcnt proposta dl Govrno di aggiornar il tariffario dll prstazioni sanitari di laboratorio ha sollvato un

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

Big Switch: prospettive nel mercato elettrico italiano

Big Switch: prospettive nel mercato elettrico italiano Big Switch: prospttiv nl mrcato lttrico italiano Ottavio Slavio I mrcati lttrici libralizzati non smpr consntono ai consumatori finali di trarr vantaggio dalla concorrnza tra i produttori. Il caso ingls

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Scopi e principali caratteristiche del mercato Valutazione delle azioni Regolamentazione

Scopi e principali caratteristiche del mercato Valutazione delle azioni Regolamentazione MERCATO AZIONARIO A.A. 2015/2016 Prof. Albrto Drassi adrassi@units.it DEAMS Univrsità di Trist ARGOMENTI Scopi principali carattristich dl mrcato Valutazion dll azioni Rgolamntazion 2 1 Rapprsntano l intrss

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

PROCESSI DI CONSOLIDAZIONE

PROCESSI DI CONSOLIDAZIONE PROCESSI DI CONSOLIDAZIONE L applicazion di un carico su un trrno comporta l insorgr di sovrapprssion dll acqua intrstizial, la cui ntità varia da punto a punto all intrno dl volum individuato dal bulbo

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti

Svolgimento dei temi d esame di Matematica Anno Accademico 2015/16. Alberto Peretti Svolgimnto di tmi d sam di Matmatica Anno Accadmico 05/6 Albrto Prtti April 06 A Prtti Svolgimnto di tmi d sam di Matmatica AA 05/6 PROVA INTERMEDIA DI MATEMATICA I part Vicnza, 04//05 Domanda Scomporr

Dettagli

La lunga crisi dei consumi delle famiglie italiane

La lunga crisi dei consumi delle famiglie italiane La lunga crisi di consumi dll famigli italian Fdl D Novllis La fas di bassa crscita di consumi in Italia ch si è prodotta dall inizio dl dcnnio dipnd dalla mancata crscita dl rddito dll famigli. Qusta

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

STABILITÀ DELL EQILIBRIO 5. Tensione critica e snellezza. Al carico critico euleriano (1) N cr =

STABILITÀ DELL EQILIBRIO 5. Tensione critica e snellezza. Al carico critico euleriano (1) N cr = Tnsion critica snllzza Al carico critico ulriano STABILITÀ DELL EQILIBRIO 5 π EI cr () l do l è la lunghzza libra di inflssion corrispondnt alla smilunghzza d onda dlla sinusoid formata dalla lina lastica,

Dettagli

Banda larga: su tecnologia e innovazione si gioca il futuro del Paese

Banda larga: su tecnologia e innovazione si gioca il futuro del Paese Banda larga: su tcnologia innovazion si gioca il futuro dl Pas Antonllo Bustto Quando facciamo rifrimnto alla cosiddtta crisi conomica è bn inquadrar chiaramnt il fnomno. S guardiamo la Fig. 1 possiamo

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

Altroconsumo Finanza: 10 anni di indice della fiducia dei risparmiatori

Altroconsumo Finanza: 10 anni di indice della fiducia dei risparmiatori Altroconsumo Finanza: 10 anni di indic dlla fiducia di risparmiatori Pitro Cazzaniga L indic Altroconsumo Finanza sulla fiducia di risparmiatori è nato nl 2002 all intrno dll associazion consumristica

Dettagli

IL RUOLO DELLA SPENDING REVIEW

IL RUOLO DELLA SPENDING REVIEW IL RUOLO DELLA SPENDING REVIEW PREMESSA 1. La spnding rviw, ch trova appoggio su numros sprinz intrnazionali, è una procdura di govrno lgata all dcisioni, alla gstion al controllo dlla spsa pubblica ch

Dettagli

ESERCIZI DI CALCOLO NUMERICO

ESERCIZI DI CALCOLO NUMERICO ESERCIZI DI CALCOLO NUMERICO Mawll Equazioni non linari: problma di punto fisso Esrcizio : Si vogliono approssimar l soluzioni dll quazion non linar. Dtrminar il numro di radici dll quazion localizzarl.

Dettagli

La ricchezza delle famiglie: confronto internazionale 1. Riccardo De Bonis

La ricchezza delle famiglie: confronto internazionale 1. Riccardo De Bonis La ricchzza dll famigli: confronto intrnazional 1 Riccardo D Bonis L articolo confronta la ricchzza dll famigli italian con qulla di altri si Pasi industrializzati. L famigli italian occupano una posizion

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico AZIONI ANALISI STRUTTURALE sistma STRUTTURA STATO I modlli mccanici possono suddividrsi in: MODELLI CONTINUI Forz Coazioni STRUTTURA = modllo mccanico IDEALIZZAZIONE DELLA STRUTTURA Posizion Vlocità Acclrazion

Dettagli

Il paradosso dei carburanti in Italia. Marco Bulfon

Il paradosso dei carburanti in Italia. Marco Bulfon Consumatori in cifr Il paradosso di carburanti in Italia Marco Bulfon I carburanti hanno un norm incidnza sull inflazion gnral. È pr qusta ragion ch la dinamica di loro przzi è così important. Nl momnto

Dettagli

I CAMBIAMENTI DI STATO

I CAMBIAMENTI DI STATO I CAMBIAMENTI DI STATO Il passaggio a uno stato in cui l molcol hanno maggior librtà di movimnto richid nrgia prché occorr vincr l forz attrattiv ch tngono vicin l molcol Ni passaggi ad uno stato in cui

Dettagli

Le Reti di Impresa: aspetti operativi e commerciali

Le Reti di Impresa: aspetti operativi e commerciali L Rti Imprsa: asptti oprativi commrciali Stfano COCCHIERI Had of Soft Loans Contributions & Subsis Prugia, 21 Novmbr 2012 IL CONTRATTO DI RETE ll Contratto rapprsnta una forma aggrgativa ibrida aggiuntiva

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

0.06 100 + (100 100)/4 (100 + 2 100)/3

0.06 100 + (100 100)/4 (100 + 2 100)/3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

2. L ambiente celeste

2. L ambiente celeste unità 2. L ambint clst L EVOLUZIONE DI UNA STELLA nana Bruna s la massa inizial è poco infrior a qulla dl Sol nana Bianca Nbulosa Protostlla fusion nuclar stlla dlla squnza principal dl diagramma HR gigant

Dettagli

DISPENSE DEL CORSO DI MACROECONOMIA A.A. 2016/2017 MODELLO IS-LM: ECONOMIA APERTA

DISPENSE DEL CORSO DI MACROECONOMIA A.A. 2016/2017 MODELLO IS-LM: ECONOMIA APERTA DISPENSE DEL CORSO DI MACROECONOMIA A.A. 2016/2017 Prof. Massimiliano Srati Prof. Alssandro Graffi Dott.sa Fdrica Sottrici Dott. Andra Vngoni MODELLO IS-LM: ECONOMIA APERTA Indic 1-Nozioni di bas... 2

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo Foglio Comparativo sull tipologi mutuo ipotcario/fonario pr l acquisto dll abitazion principal (sposizioni trasparnza ai snsi dll art. 2 comma 5 D.L. 29.11.2008 n. 185) Pr tutt l conzioni conomich contrattuali

Dettagli