Dato il Mercato, è possibile individuare il valore e la duration del portafoglio:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dato il Mercato, è possibile individuare il valore e la duration del portafoglio:"

Transcript

1 TEORIA DELL IMMUNIZZAZIONE FINANZIARIA Con il termine immunizzazione finanziaria si intende una metodologia matematica finalizzata a neutralizzare gli effetti della variazione del tasso di valutazione su di un portafoglio attivo (crediti) o passivo (debiti). L'immunizzazione finanziaria è quindi una tecnica che è stata sviluppata per cercare di strutturare le attività e le passività in modo da ridurre o addirittura eliminare le possibili perdite causate da cambiamenti nel livello dei tassi d'interesse. In sostanza la teoria fornisce un metodo di copertura dal rischio di tasso, conosciuto anche come rischio di mercato. La teoria dell immunizzazione finanziaria studia quindi le strategie di protezione da questo rischio. es. Portafoglio di intermediazione Un portafoglio che produce nel futuro entrate e uscite finanziarie a determinate scadenze future. Dati: Attività: Passività: Struttura del mercato: Dato il Mercato, è possibile individuare il valore e la duration del portafoglio: Valore: Netto: Duration: Problema: Se è possibile stabilire agilmente il valore del netto in t, è possibile stabilire? è una variabile aleatoria e dipende dalla struttura del mercato. Questa struttura rappresenterà la fonte di incertezza o fonte di rischio.

2 Strategie di hedging La teoria dell immunizzazione si suddivide in semideterministica e stocastica. Le teorie di immunizzazione stocastiche, riguardanti il mondo della probabilità, non saranno trattate. La teoria semideterministica comprende quattro teoremi ed è immersa in un mondo di contratti a poste per lo più note, limitando l incertezza a pochi casi definiti. TEORIA DELL IMMUNIZZAZIONE FINANZIARIA SEMIDETERMINISTICA Questa teoria intende, per risolvere il problema del controllo del rischio di variazioni nella struttura dei tassi d interesse futuri, risolvere il problema del controllo del. Perfect matching Questo caso particolare di immunizzazione, detto caso a rischio zero, considera una strategia che annulli il rischio di variazioni della struttura dei tassi di interesse. es. Rischio zero Data una qualsiasi struttura del mercato : ; Comunque si muoverà il mercato in il valore netto del portafoglio non sarà influenzato da questo cambiamento poiché le attività e le passività possiedono la medesima sensibilità nei confronti della struttura dei tassi di interesse futuri

3 In conclusione, in questo caso, immunizzarsi dal rischio di mercato (annullandolo), significa costruire un portafoglio di intermediazione in cui entrate e uscite future siano egualmente vulnerabili a perturbazioni aleatorie future della struttura dei tassi di interesse futuri. Rischio di tasso d interesse Dove nasce allora il rischio di mercato? Nel caso in cui sussistano trasformazioni delle scadenze. Il valore netto varia al variare della struttura dei tassi d interesse futuri, e così varia la duration. E per questi motivi che si parla di RISCHIO DI TASSO D INTERESSE. Eccettuato il caso di perfect matching, non è possibile eliminare il rischio: esso non si distrugge ma si trasforma. Il rischio dunque, per realizzare una sana e prudente gestione, va gestito. La teoria dell immunizzazione finanziaria si prefigge dunque di individuare delle regole per gestire il rischio insito in un portafoglio. Ipotesi evolutive del mercato dei tassi d interesse Se il rischio dipende della perturbazione / variazione / evoluzione del mercato dei tassi, sarà necessario formulare delle ipotesi evolutive del mercato dei tassi d interesse, attraverso dei modelli matematici. 1. Shift additivi Per shift additivo si intende una variazione costante dell intensità istantanea di interesse indipendente dalla maturity del portafoglio. Quest ipotesi, introdotta da Fisher e Weil e da Redington, rappresenta senz altro un ipotesi irrealistica delle variazioni della curva dei rendimenti; è chiaro che le informazioni provenienti sul mercato modificano tale curva in maniera diversa a seconda della maturity del portafoglio. Tale ipotesi va quindi considerata come uno strumento semplice ma utile per analizzare le variabili in gioco. 2. Shift qualsiasi In quest ipotesi lo shift è dipendente dalla maturity del portafoglio.

4 Graficamente: 1. Shift additivi con Y = shift additivo 2. Shift qualsiasi

5 Per ogni ipotesi evolutiva, la teoria fornisce diverse soluzioni per l immunizzazione del portafoglio dal rischio di variazioni della struttura dei tassi d interesse futuri. Teorema di Fisher e Weil Sia δ(t,s) la struttura osservata in t, un importo esigibile in, un flusso di importi non negativi sullo scadenzario, tale che: Il portafoglio è immunizzato per shift additivi aleatori se e solo se la duration di della passività : è uguale alla maturity In altri termini: Condizione necessaria e sufficiente perché sia e è che valga la disequazione. es. Immunizzazione di Fisher e Weil Ricevo un finanziamento in t di uno ZCB non unitario pari a, come investo quest importo per immunizzare dal rischio di tasso d interesse? Per Fisher/Weil, bisogna investire in un flusso di importi che abbia valore pari al valore del finanziamento e duration pari alla vita a scadenza della passività In questo caso, l investimento garantirà: Dunque, in ipotesi di evoluzione della struttura dei tassi d interesse secondo shift additivi, al criterio di perfect matching si sostituisce, come criterio di immunizzazione, quello di duration matching Bisogna ricordare come sia una passività singola con scadenza e come da essa si possa ricavare un valore minimo garantito di sull orizzonte :

6 Problema: In un mercato caratterizzato da n titoli rischiosi, come selezionare un portafoglio che garantisca? Svolg. Posto nonché istante presente e data una qualsiasi struttura del mercato, una passività esigibile in e un paniere di titoli comprendente tutti i titoli con e e dato il vettore delle quotazioni di questi titoli: costruire un portafoglio immunizzato vuol dire determinare il vettore delle quote α : ovvero bisogna impostare una funzione obiettivo che minimizzi il costo di acquisto dei titoli, sotto determinati vincoli di bilancio e di duration: Dunque i criteri validi per Fisher/Weil sono il valore e la duration. Teorema di Redington Ipotizzando che la struttura dei tassi d interesse si evolva per shift additivi infinitesimi:. Sia δ(t,s) la struttura del mercato osservata in t, siano due flussi di importi non negativi sullo scadenzario, tali che:

7 Il portafoglio è immunizzato per shift additivi infinitesimi se e solo se la duration di di : è uguale alla duration e se la duration di secondo ordine di è maggiore della duration di secondo ordine di : es. Immunizzazione di Redington Ricevo un finanziamento in t di 95, come investo quest importo per immunizzare dal rischio di tasso d interesse? Per Redington, bisogna investire in un flusso che abbia valore e duration pari al valore e alla duration del flusso e duration di secondo ordine o indice di dispersione maggiore o uguale alla duration di secondo ordine o indice di dispersione del flusso. Bisogna cioè investire in un portafoglio titoli che abbia maggiore (al più uguale) dispersione del portafoglio dei finanziamenti. La gestione dinamica del portafoglio investimenti di Redington vale solo fino al successivo shift Carlo Mottura Per Redington i criteri validi sono il valore, la duration e l indice di dispersione. Oss. Se si pone : Se vale il criterio della duration:, allora:

8 Problema: In un mercato caratterizzato da n titoli rischiosi, come selezionare un portafoglio che garantisca il passivo? Svolg. Posto nonché istante presente e data una qualsiasi struttura del mercato, dati due flussi di importi non negativi sullo scadenzario, e un paniere di titoli comprendente tutti i titoli con e e dato il vettore delle quotazioni di questi titoli: costruire un portafoglio immunizzato vuol dire determinare il vettore delle quote α : ovvero bisogna impostare una funzione obiettivo che minimizzi il costo di acquisto dei titoli, sotto determinati vincoli di bilancio, di duration e di dispersione: Tuttavia è anche possibile impostare una funzione obiettivo che massimizzi la dispersione dei titoli, sotto determinati vincoli di bilancio, di duration e di duration di secondo ordine:

9 Dunque si giunge ad un paradosso: sia che i tassi aumentino sia che i tassi diminuiscano, varrà sempre:. Studiando cioè un procedimento che immunizzi l investimento dal rischio di tasso, si crea un meccanismo che cerca il rischio e fa profitto, infatti questo meccanismo realizza sempre un profitto certo. Come si è visto l obiettivo dichiarato dell investitore è quello di massimizzare la dispersione del portafoglio:. In conclusione si può affermare che l ipotesi di evoluzione dei tassi d interesse per shift additivi deprime il rischio e produce esclusivamente profitto ed è pertanto incompatibile con il principio di assenza di arbitraggi privi di rischio. Teorema generale di immunizzazione Ipotizzando che la struttura dei tassi d interesse si evolva per shift additivi finiti:. Sia δ(t,s) la struttura del mercato osservata in t, siano due flussi di importi non negativi sullo scadenzario, tali che: Il portafoglio è immunizzato per shift additivi finiti se e solo se la duration di è uguale alla duration di : e se la deviazione media assoluta dell attivo è maggiore, al più uguale, della deviazione media assoluta del passivo: Anche in questo caso, il metodo per immunizzare un portafoglio è stabilito: si tratterà di utilizzare il criterio della minimizzazione del costo d acquisto dei titoli o quello della massimizzazione della loro dispersione. Tuttavia anche questo teorema si fonda sull ipotesi di evoluzione per shift additivi del mercato dei tassi d interesse, quindi anche questa soluzione genererà profitti certi e anch essa sarà dunque incompatibile con il principio di assenza di arbitraggi privi di rischio.

10 Teorema di immunizzazione a minimo rischio Ipotizzando che la struttura dei tassi d interesse si evolva per shift qualsiasi: Data δ(t,s) la struttura del mercato osservata in t, siano due flussi di importi non negativi sullo scadenzario, tali che: sia la duration di uguale alla duration di : sia la deviazione media assoluta dell attivo maggiore, al più uguale, della deviazione media assoluta del passivo: Il valore netto futuro sarà descritto dalla relazione: Dunque anche per questo teorema, esposto nel 1982 da Fong e Vasicek, immunizzare un portafoglio significa replicare un portafoglio di attività con un portafoglio di passività. Poiché e non sono noti, in quanto la prima è una variabile aleatoria e il secondo fattore è indipendente da e da ( questo teorema ammette esistenza del rischio in ), per minimizzare il rischio di tasso d interesse bisogna minimizzare o al massimo annullarlo, attuando quindi una strategia di perfect matching. In conclusione, secondo Fong e Vasicek, il metodo da attuare per immunizzare un portafoglio dal rischio di mercato, l unico nell impostazione semideterministica a rispettare il principio di assenza d arbitraggi privi di rischio: questo criterio è quello di minimizzare la dispersione dei titoli del portafoglio.

Modelli operativi di Asset & liability management. Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di. Mario Parisi.

Modelli operativi di Asset & liability management. Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di. Mario Parisi. Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di Economia Mario Parisi Modelli operativi di Asset & liability management 1 Il controllo dei rischi Uno dei primi obiettivi di un

Dettagli

SUL CONTROLLO DEL RISCHIO DI TASSO DI INTERESSE *

SUL CONTROLLO DEL RISCHIO DI TASSO DI INTERESSE * GIANCARLO CAPOZZA, DARIO CUSATELLI Dipartimento di Scienze statistiche Carlo Cecchi Università degli Studi di Bari SUL CONTROLLO DEL RISCHIO DI TASSO DI INTERESSE * SOMMARIO 1. Introduzione 2. Definizioni

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli

Economia Intermediari Finanziari 1

Economia Intermediari Finanziari 1 Economia Intermediari Finanziari Il rischio, inteso come possibilità che il rendimento atteso da un investimento in strumenti finanziari, sia diverso da quello atteso è funzione dei seguenti elementi:

Dettagli

Il rischio di tasso di interesse

Il rischio di tasso di interesse MEBS Lecture 2 Il rischio di tasso di interesse MEBS, lezioni Roberto Renò Università di Siena 2.1 Il rischio di tasso di interesse Per rischio di tasso di interesse si intende la possibilità che, effettuato

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

LA DURATION E LA GESTIONE DEL PORTAFOGLIO OBBLIGAZIONARIO

LA DURATION E LA GESTIONE DEL PORTAFOGLIO OBBLIGAZIONARIO LA DURATION E LA GESTIONE DEL PORTAFOGLIO OBBLIGAZIONARIO FLAVIO ANGELINI Sommario. In queste note si vuole mostrare come la Duration venga utilizzata quale strumento per la gestione del portafoglio obbligazionario.

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Tecnica Bancaria (Cagliari - 2015)

Tecnica Bancaria (Cagliari - 2015) Tecnica Bancaria (Cagliari - 2015) prof. Mauro Aliano mauro.aliano@unica.it mauro.aliano@unica.it 1 Il rischio di interesse 2 Il rischio di tasso di interesse Il rischio di tasso di interesse può essere

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti ipotesi: Gli investitori sono avversi al rischio; Gli investitori

Dettagli

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE.

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. Lezione 5 Castellanza, 17 Ottobre 2007 2 Summary Il costo del capitale La relazione rischio/rendimento

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

I Titoli Obbligazionari. S. Corsaro Matematica Finanziaria a.a. 2007/08 1

I Titoli Obbligazionari. S. Corsaro Matematica Finanziaria a.a. 2007/08 1 I Titoli Obbligazionari S. Corsaro Matematica Finanziaria a.a. 2007/08 1 Obbligazione (bond) E emessa da un unità in deficit (un impresa, un Comune, lo Stato). Il flusso di cassa, dal punto di vista dell

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

Risparmio e Investimento

Risparmio e Investimento Risparmio e Investimento Risparmiando un paese ha a disposizione più risorse da utilizzare per investire in beni capitali I beni capitali a loro volta fanno aumentare la produttività La produttività incide

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

Rischi in Finanza. Rischi finanziari. Rischi puri. Rischi sistematici. Rischi non sistematici

Rischi in Finanza. Rischi finanziari. Rischi puri. Rischi sistematici. Rischi non sistematici Rischi in Finanza Rischi puri Rischi finanziari Rischi sistematici Rischi non sistematici Rischi non sistematici I rischi non sistematici sono rischi specifici Tipologie di rischi specifico più frequenti:

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Obiettivi della lezione #4

Obiettivi della lezione #4 Obiettivi della lezione #4 La lezione oggi affronta i seguenti temi: modelli DCF: valore attuale netto e rendimento (saggio di rendimento interno) di un progetto il ruolo delle modalità di finanziamento

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente

Dettagli

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012 ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI 2 LE OPZIONI Le opzioni sono contratti che forniscono al detentore il diritto di acquistare o vendere una certa quantità del bene sottostante a una certa

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

ANALISI COSTI-BENEFICI

ANALISI COSTI-BENEFICI ANALISI COSTI-BENEFICI ANALISI COSTI BENEFICI Fondamento dell ANALISI COSTI BENEFICI è l idea che un progetto o una politica possono essere considerati validi dal punto di vista della società se i benefici

Dettagli

Calcolo del valore attuale e principi di valutazione delle obbligazioni

Calcolo del valore attuale e principi di valutazione delle obbligazioni CAPITOLO 2 Calcolo del valore attuale e principi di valutazione delle obbligazioni Semplici PROBLEMI 1. a. Negativo; b. VA = C 1 /(1 + r); c. VAN = C 0 + [C 1 /(1 + r)]; d. r è la remunerazione a cui si

Dettagli

IL CAPITALE. 1) Domanda di capitale 2) Offerta di capitale

IL CAPITALE. 1) Domanda di capitale 2) Offerta di capitale IL CAPITALE 1) Domanda di capitale 2) Offerta di capitale CAPITALE FINANZIARIO E CAPITALE REALE Col termine capitale i si può riferire a due concetti differenti Il capitale finanziario è costituito dalla

Dettagli

L analisi degli investimenti

L analisi degli investimenti Corso di Laurea in Produzione dell Edilizia Corso di Economia e Gestione delle Imprese 9^ lezione L analisi degli investimenti 3 maggio 2005 Prof. Federico Della Puppa - A.A. 2004-2005 Dalla teoria alla

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI

EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI Indice 1 EQUILIBRIO ECONOMICO GENERALE ------------------------------------------------------------------------------ 3 2 L EQUILIBRIO ECONOMICO GENERALE

Dettagli

Calcolo del Valore Attuale Netto (VAN)

Calcolo del Valore Attuale Netto (VAN) Calcolo del Valore Attuale Netto (VAN) Il calcolo del valore attuale netto (VAN) serve per determinare la redditività di un investimento. Si tratta di utilizzare un procedimento che può consentirci di

Dettagli

CAPITOLO 10 I SINDACATI

CAPITOLO 10 I SINDACATI CAPITOLO 10 I SINDACATI 10-1. Fate l ipotesi che la curva di domanda di lavoro di una impresa sia data da: 20 0,01 E, dove è il salario orario e E il livello di occupazione. Ipotizzate inoltre che la funzione

Dettagli

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta Economia Aperta In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta Analizziamo i mercati finanziari in economia aperta 158 Economia aperta applicata ai mercati dei beni mercati

Dettagli

Valore equo di un derivato. Contingent claim

Valore equo di un derivato. Contingent claim Contingent claim Ci occuperemo ora di determinare il prezzo equo di un prodotto derivato, come le opzioni, e di come coprire il rischio associato a questi contratti. Assumeremo come dinamica dei prezzi

Dettagli

CRITERI DI VALUTAZIONE DI UN ALBERGO

CRITERI DI VALUTAZIONE DI UN ALBERGO CRITERI DI VALUTAZIONE DI UN ALBERGO PERCHE UN AZIENDA ALBERGHIERA VA IN CRISI? 1) PER LA DESTINAZIONE 2) PER MOTIVI GESTIONALI 3) PER MOTIVI ECONOMICO- FINANZIARI OVVIAMENTE LA SECONDA E LA TERZA MOTIVAZIONE

Dettagli

Le decisioni di finanziamento dell impresa. Stefano Lucarelli. Bergamo a.a. 2007-08

Le decisioni di finanziamento dell impresa. Stefano Lucarelli. Bergamo a.a. 2007-08 Bergamo a.a. 2007-08 08 lezione nell ambito del corso di Imposte, Incentivi fiscali, Appalti Le decisioni di finanziamento dell impresa Stefano Lucarelli Testo di riferimento Giorgio Ragazzi, Lezioni di

Dettagli

Il mercato della moneta

Il mercato della moneta Il mercato della moneta Alessandro Scopelliti Università di Reggio Calabria e University of Warwick alessandro.scopelliti@unirc.it 1 Funzioni della moneta Consideriamo i mercati della moneta e delle attività

Dettagli

MERCATO IMMOBILIARE: CRISI FINANZIARIA?

MERCATO IMMOBILIARE: CRISI FINANZIARIA? MERCATO IMMOBILIARE: CRISI FINANZIARIA? MILANO, 24 Giugno 2008 La crisi Immobiliare in Europa - Lorenzo Greppi CRISI IMMOBILIARE E PARAMETRI DI RISCHIO La crisi internazionale ha avuto pesanti riflessi

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Indice 1 Mercati finanziari 2 Arbitraggio 3 Conseguenze del non-arbitraggio

Dettagli

Tempo e rischio Tempo Rischio

Tempo e rischio Tempo Rischio Il Valore Attuale Tempo e rischio Tempo: i 100 euro di oggi valgono di meno dei 100 euro di domani perché i primi possono essere investiti nel mercato dei capitali e fruttare un tasso di interesse r. Rischio:

Dettagli

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1 ISSIS DON MILANI LICEO Corso di DIRITTO ed ECONOMIA POLITICA 1 NEL MERCATO FINANZIARIO SI NEGOZIANO TITOLI CON SCADENZA SUPERIORE A 18 MESI AZIONI OBBLIGAZIONI TITOLI DI STATO 2 VALORE DEI TITOLI VALORE

Dettagli

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta Economia Aperta In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta Analizziamo i mercati finanziari in economia aperta 167 Economia aperta applicata ai mercati dei beni mercati

Dettagli

ECONOMIA URBANA. Valeria Costantini Facoltà di Architettura, Università Roma Tre. Contatti: costanti@uniroma3.it

ECONOMIA URBANA. Valeria Costantini Facoltà di Architettura, Università Roma Tre. Contatti: costanti@uniroma3.it ECONOMIA URBANA Valeria Costantini Facoltà di Architettura, Università Roma Tre Contatti: costanti@uniroma3.it LA MACROECONOMIA Economia Urbana 2 L economia aperta Per economia aperta si intende l insieme

Dettagli

Corso di Economia degli Intermediari Finanziari

Corso di Economia degli Intermediari Finanziari Corso di Economia degli Intermediari Finanziari Alcuni strumenti finanziari particolari Alcuni strumenti proposti nel panorama internazionale Gli strumenti ai quali faremo riferimento sono: i financial

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 10 Contenuti della lezione Valutazione di titoli obbligazionari

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

OPZIONI, DURATION E INTEREST RATE SWAP (IRS)

OPZIONI, DURATION E INTEREST RATE SWAP (IRS) ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI, DURATION E INTEREST RATE SWAP (IRS) Valutazione delle opzioni Esercizio 1 2 ESERCIZIO 1 Il portafoglio di un investitore è composto di 520 azioni della società

Dettagli

Richiami di teoria della domanda di moneta

Richiami di teoria della domanda di moneta Richiami di teoria della domanda di moneta Parte seconda La teoria della preferenza della liquidità di Keynes Keynes distingue tre moventi principali per cui si detiene moneta. Transattivo Precauzionale

Dettagli

Risparmio, investimenti e sistema finanziario

Risparmio, investimenti e sistema finanziario Risparmio, investimenti e sistema finanziario Una relazione fondamentale per la crescita economica è quella tra risparmio e investimenti. In un economia di mercato occorre individuare meccanismi capaci

Dettagli

Dividendi e valore delle azioni

Dividendi e valore delle azioni Dividendi e valore delle azioni La teoria economica sostiene che in ultima analisi il valore delle azioni dipende esclusivamente dal flusso scontato di dividendi attesi. Formalmente: V = E t=0 1 ( ) t

Dettagli

LA CASSETTA DEGLI ATTREZZI

LA CASSETTA DEGLI ATTREZZI LA CASSETTA DEGLI ATTREZZI FATTORI CHE INFLUENZANO I TASSI D INTERESSE TASSI D INTERESSE E INFLAZIONE LA STRUTTURA PER SCADENZE DEI TASSI D INTERESSE Capitoli 4 e 5 MEF SAPRESTE RISPONDERE A QUESTE DOMANDE?

Dettagli

Capitolo Terzo Valore attuale e costo opportunità del capitale

Capitolo Terzo Valore attuale e costo opportunità del capitale Capitolo Terzo Valore attuale e costo opportunità del capitale 1. IL VALORE ATTUALE La logica di investimento aziendale è assolutamente identica a quella adottata per gli strumenti finanziari. Per poter

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 24/11/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 24/11/2015 Valutazioni di operazioni finanziarie Esercizio 1. Un operazione finanziaria

Dettagli

Mercati e strumenti derivati (2): Swap e Opzioni

Mercati e strumenti derivati (2): Swap e Opzioni Mercati e strumenti derivati (2): Swap e Opzioni A.A. 2008-2009 20 maggio 2009 Agenda I contratti Swap Definizione Gli Interest Rate Swap Il mercato degli Swap Convenienza economica e finalità Le opzioni

Dettagli

Mercati finanziari e valore degli investimenti

Mercati finanziari e valore degli investimenti 7 Mercati finanziari e valore degli investimenti Problemi teorici. Nei mercati finanziari vengono vendute e acquistate attività. Attraverso tali mercati i cambiamenti nella politica del governo e le altre

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Il mercato dei cambi

Il mercato dei cambi Il mercato dei cambi 18 maggio 2009 Agenda Il mercato valutario Nozioni fondamentali Tassi di cambio Operazioni in cambi Cross rates Operatori del mercato Andamento del tasso di cambio 2 Nozioni fondamentali

Dettagli

ANALISI DELLA STRUTTURA FINANZIARIA a cura Giuseppe Polli

ANALISI DELLA STRUTTURA FINANZIARIA a cura Giuseppe Polli ANALISI DELLA STRUTTURA FINANZIARIA a cura Giuseppe Polli PRIMA PARTE clicca QUI per accedere direttamente alla seconda parte dell'intervento... 1 INTRODUZIONE Da un punto di vista ragionieristico lo Stato

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

Anteprima Estratta dall' Appunto di Matematica finanziaria 10 cfu

Anteprima Estratta dall' Appunto di Matematica finanziaria 10 cfu Anteprima Estratta dall' Appunto di Matematica finanziaria 10 cfu Università : Università La Sapienza Facoltà : Economia Indice di questo documento L' Appunto Le Domande d'esame e' un sito di knowledge

Dettagli

Milliman ALM Per Fondi Pensione

Milliman ALM Per Fondi Pensione Entro il prossimo 31 dicembre 2013, anche le forme pensionistiche iscritte all Albo COVIP aventi numero di iscritti compreso tra le 100 e 1000 unità saranno obbligate ad adeguarsi a quanto disposto da

Dettagli

Obiettivi, Valori e Risultati

Obiettivi, Valori e Risultati Corso di Analisi Strategiche Obiettivi, Valori e Risultati Prof. V.Maggioni Facoltà di Economia S.U.N. L obiettivo primario dell impresa è la massimizzazione del profitto nel lungo termine. Il valore si

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Domande a scelta multipla 1

Domande a scelta multipla 1 Domande a scelta multipla Domande a scelta multipla 1 Rispondete alle domande seguenti, scegliendo tra le alternative proposte. Cercate di consultare i suggerimenti solo in caso di difficoltà. Dopo l elenco

Dettagli

COMPLEMENTI SULLE LEGGI FINANZIARIE

COMPLEMENTI SULLE LEGGI FINANZIARIE COMPLEMENI SULLE LEGGI FINANZIARIE asso di rendimento di operazioni finanziarie in valuta estera La normativa vigente consente di effettuare operazioni finanziarie, sia di investimento che di finanziamento,

Dettagli

Paperone e Rockerduck: a cosa serve l antitrust?

Paperone e Rockerduck: a cosa serve l antitrust? Paperone e Rockerduck: a cosa serve l antitrust? Paperone Anna Torre, Rockerduck Ludovico Pernazza 1-14 giugno 01 Università di Pavia, Dipartimento di Matematica Concorrenza Due imprese Pap e Rock operano

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Black-Scholes: le Greche

Black-Scholes: le Greche Black-Scholes: le Greche R. Marfé Indice 1 Delta 2 2 Gamma 4 3 Theta 6 4 Vega 7 5 Rho 8 6 Applicazione in VBA 9 1 1 Delta Il delta di un opzione (o di un portafoglio di opzioni) indica la sensibilità del

Dettagli

Corso di Macroeconomia. Il modello IS-LM. Appunti

Corso di Macroeconomia. Il modello IS-LM. Appunti Corso di Macroeconomia Il modello IS-LM Appunti 1 Le ipotesi 1. Il livello dei prezzi è fisso. 2. L analisi è limitata al breve periodo. La funzione degli investimenti A differenza del modello reddito-spesa,

Dettagli

CAPITOLO 27. Gestione dei rischi PROBLEMI

CAPITOLO 27. Gestione dei rischi PROBLEMI CAPITOLO 27 Gestione dei rischi Semplici PROBLEMI 1. a. Vero; b. falso (pagate alla consegna); c. vero; d. vero. 2. a. Prezzo pagato per consegna immediata. b. I contratti a termine sono contratti per

Dettagli

Metodi matematici II 15 luglio 2003

Metodi matematici II 15 luglio 2003 MM.II Prova Generale - Test Vecchio Ordinamento, 5 luglio Metodi matematici II 5 luglio TEST (Vecchio ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene

Dettagli

Metodi matematici 2 21 settembre 2006

Metodi matematici 2 21 settembre 2006 Metodi matematici 1 settembre 006 TEST (Nuovo ordinamento) Cognome Nome Matricola Rispondere alle dieci domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

FINANZA AZIENDALE. Lezione n. 7

FINANZA AZIENDALE. Lezione n. 7 FINANZA AZIENDALE Lezione n. 7 Valutare i titoli obbligazionari 1 SCOPO DELLA LEZIONE L obbligazione è il titolo più semplice che si possa trovare sul mercato. Il suo valore dipende da due elementi: i

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

NEL MODELLO MICROECONOMICO

NEL MODELLO MICROECONOMICO NEL MODELLO MICROECONOMICO 1 solo periodo Output: flusso Input: flusso Decisioni dell impresa: raffrontare ricavi correnti con costi correnti Questo si adatta bene ad alcuni fattori (il LAVORO) Meno soddisfacente

Dettagli

I processi di finanziamento

I processi di finanziamento I processi di finanziamento 1. pianificazione finanziaria: fabbisogno e fonti di finanziamento 2. acquisizione del finanziamento tutte quelle attività volte a reperire, gestire e rimborsare i finanziamenti

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Economia monetaria e creditizia. Slide 4

Economia monetaria e creditizia. Slide 4 Economia monetaria e creditizia Slide 4 Le teorie diverse che spiegano come di determina la domanda di moneta possono essere ricondotte alle due funzioni di mezzo di pagamento e di riserva di valore la

Dettagli

TEORIE DI INVESTIMENTO

TEORIE DI INVESTIMENTO TEORIE DI INVESTIMENTO di Roberto Cornetti 1 TEORIE STOCASTICHE NON FINANZIARIE ESAMINATE Hartman (1972) Abel (1983) (1984) Pindyck (1982) (1991) (1993) Questi modelli analizzano l effetto prodotto da

Dettagli

RISPARMIO, INVESTIMENTO E SISTEMA FINANZIARIO

RISPARMIO, INVESTIMENTO E SISTEMA FINANZIARIO Università degli studi di MACERATA Facoltà di SCIENZE POLITICHE ECONOMIA POLITICA: MICROECONOMIA A.A. 2009/2010 RISPARMIO, INVESTIMENTO E SISTEMA FINANZIARIO Fabio CLEMENTI E-mail: fabio.clementi@univpm.it

Dettagli

continuazione CORSO ECONOMIA DEGLI INTERMEDIARI FINANZIARI II Testi di riferimento PROGRAMMA Parte relativa alla gestione dei rischi bancari

continuazione CORSO ECONOMIA DEGLI INTERMEDIARI FINANZIARI II Testi di riferimento PROGRAMMA Parte relativa alla gestione dei rischi bancari continuazione CORSO ECONOMIA DEGLI INTERMEDIARI FINANZIARI II 3) Rischi e redditività ruolo del capitale allocazione del capitale valutazione della performance della banca e dei singoli centri operativi

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

Bilancio Economico Pluriennale 2014 2015-2016

Bilancio Economico Pluriennale 2014 2015-2016 Regione Calabria Azienda Sanitaria Provinciale Cosenza Il Direttore Generale Bilancio Economico Pluriennale 2014 2015-2016 Il Direttore Generale Dott. Gianfranco Scarpelli RELAZIONE AL BILANCIO PLURIENNALE

Dettagli

Lezioni di Economia Aziendale classe quarta Prof. Monica Masoch LA FINANZA AZIENDALE E LE DECISIONI DI INVESTIMENTO

Lezioni di Economia Aziendale classe quarta Prof. Monica Masoch LA FINANZA AZIENDALE E LE DECISIONI DI INVESTIMENTO Lezioni di Economia Aziendale classe quarta Prof. Monica Masoch LA FINANZA AZIENDALE E LE DECISIONI DI INVESTIMENTO LE DECISIONI DI INVESTIMENTO Cosa significa «Investimento»? L investimento è la seconda

Dettagli

Analisi dei margini: componenti e rischi

Analisi dei margini: componenti e rischi Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Analisi dei margini: componenti e rischi Capitolo 7 Indice degli argomenti 1. Principali componenti del reddito operativo 2. Tipici fattori

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

REGOLAMENTO DEL FONDO INTERNO CREDITRAS UNIATTIVA (scad. 12/2017)

REGOLAMENTO DEL FONDO INTERNO CREDITRAS UNIATTIVA (scad. 12/2017) REGOLAMENTO DEL FONDO INTERNO CREDITRAS UNIATTIVA (scad. 12/2017) 1 - ISTITUZIONE, DENOMINAZIONE E CARATTERISTICHE DEL FONDO INTERNO CREDITRAS VITA S.p.A. (di seguito Società) ha istituito e gestisce,

Dettagli