Dato il Mercato, è possibile individuare il valore e la duration del portafoglio:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dato il Mercato, è possibile individuare il valore e la duration del portafoglio:"

Transcript

1 TEORIA DELL IMMUNIZZAZIONE FINANZIARIA Con il termine immunizzazione finanziaria si intende una metodologia matematica finalizzata a neutralizzare gli effetti della variazione del tasso di valutazione su di un portafoglio attivo (crediti) o passivo (debiti). L'immunizzazione finanziaria è quindi una tecnica che è stata sviluppata per cercare di strutturare le attività e le passività in modo da ridurre o addirittura eliminare le possibili perdite causate da cambiamenti nel livello dei tassi d'interesse. In sostanza la teoria fornisce un metodo di copertura dal rischio di tasso, conosciuto anche come rischio di mercato. La teoria dell immunizzazione finanziaria studia quindi le strategie di protezione da questo rischio. es. Portafoglio di intermediazione Un portafoglio che produce nel futuro entrate e uscite finanziarie a determinate scadenze future. Dati: Attività: Passività: Struttura del mercato: Dato il Mercato, è possibile individuare il valore e la duration del portafoglio: Valore: Netto: Duration: Problema: Se è possibile stabilire agilmente il valore del netto in t, è possibile stabilire? è una variabile aleatoria e dipende dalla struttura del mercato. Questa struttura rappresenterà la fonte di incertezza o fonte di rischio.

2 Strategie di hedging La teoria dell immunizzazione si suddivide in semideterministica e stocastica. Le teorie di immunizzazione stocastiche, riguardanti il mondo della probabilità, non saranno trattate. La teoria semideterministica comprende quattro teoremi ed è immersa in un mondo di contratti a poste per lo più note, limitando l incertezza a pochi casi definiti. TEORIA DELL IMMUNIZZAZIONE FINANZIARIA SEMIDETERMINISTICA Questa teoria intende, per risolvere il problema del controllo del rischio di variazioni nella struttura dei tassi d interesse futuri, risolvere il problema del controllo del. Perfect matching Questo caso particolare di immunizzazione, detto caso a rischio zero, considera una strategia che annulli il rischio di variazioni della struttura dei tassi di interesse. es. Rischio zero Data una qualsiasi struttura del mercato : ; Comunque si muoverà il mercato in il valore netto del portafoglio non sarà influenzato da questo cambiamento poiché le attività e le passività possiedono la medesima sensibilità nei confronti della struttura dei tassi di interesse futuri

3 In conclusione, in questo caso, immunizzarsi dal rischio di mercato (annullandolo), significa costruire un portafoglio di intermediazione in cui entrate e uscite future siano egualmente vulnerabili a perturbazioni aleatorie future della struttura dei tassi di interesse futuri. Rischio di tasso d interesse Dove nasce allora il rischio di mercato? Nel caso in cui sussistano trasformazioni delle scadenze. Il valore netto varia al variare della struttura dei tassi d interesse futuri, e così varia la duration. E per questi motivi che si parla di RISCHIO DI TASSO D INTERESSE. Eccettuato il caso di perfect matching, non è possibile eliminare il rischio: esso non si distrugge ma si trasforma. Il rischio dunque, per realizzare una sana e prudente gestione, va gestito. La teoria dell immunizzazione finanziaria si prefigge dunque di individuare delle regole per gestire il rischio insito in un portafoglio. Ipotesi evolutive del mercato dei tassi d interesse Se il rischio dipende della perturbazione / variazione / evoluzione del mercato dei tassi, sarà necessario formulare delle ipotesi evolutive del mercato dei tassi d interesse, attraverso dei modelli matematici. 1. Shift additivi Per shift additivo si intende una variazione costante dell intensità istantanea di interesse indipendente dalla maturity del portafoglio. Quest ipotesi, introdotta da Fisher e Weil e da Redington, rappresenta senz altro un ipotesi irrealistica delle variazioni della curva dei rendimenti; è chiaro che le informazioni provenienti sul mercato modificano tale curva in maniera diversa a seconda della maturity del portafoglio. Tale ipotesi va quindi considerata come uno strumento semplice ma utile per analizzare le variabili in gioco. 2. Shift qualsiasi In quest ipotesi lo shift è dipendente dalla maturity del portafoglio.

4 Graficamente: 1. Shift additivi con Y = shift additivo 2. Shift qualsiasi

5 Per ogni ipotesi evolutiva, la teoria fornisce diverse soluzioni per l immunizzazione del portafoglio dal rischio di variazioni della struttura dei tassi d interesse futuri. Teorema di Fisher e Weil Sia δ(t,s) la struttura osservata in t, un importo esigibile in, un flusso di importi non negativi sullo scadenzario, tale che: Il portafoglio è immunizzato per shift additivi aleatori se e solo se la duration di della passività : è uguale alla maturity In altri termini: Condizione necessaria e sufficiente perché sia e è che valga la disequazione. es. Immunizzazione di Fisher e Weil Ricevo un finanziamento in t di uno ZCB non unitario pari a, come investo quest importo per immunizzare dal rischio di tasso d interesse? Per Fisher/Weil, bisogna investire in un flusso di importi che abbia valore pari al valore del finanziamento e duration pari alla vita a scadenza della passività In questo caso, l investimento garantirà: Dunque, in ipotesi di evoluzione della struttura dei tassi d interesse secondo shift additivi, al criterio di perfect matching si sostituisce, come criterio di immunizzazione, quello di duration matching Bisogna ricordare come sia una passività singola con scadenza e come da essa si possa ricavare un valore minimo garantito di sull orizzonte :

6 Problema: In un mercato caratterizzato da n titoli rischiosi, come selezionare un portafoglio che garantisca? Svolg. Posto nonché istante presente e data una qualsiasi struttura del mercato, una passività esigibile in e un paniere di titoli comprendente tutti i titoli con e e dato il vettore delle quotazioni di questi titoli: costruire un portafoglio immunizzato vuol dire determinare il vettore delle quote α : ovvero bisogna impostare una funzione obiettivo che minimizzi il costo di acquisto dei titoli, sotto determinati vincoli di bilancio e di duration: Dunque i criteri validi per Fisher/Weil sono il valore e la duration. Teorema di Redington Ipotizzando che la struttura dei tassi d interesse si evolva per shift additivi infinitesimi:. Sia δ(t,s) la struttura del mercato osservata in t, siano due flussi di importi non negativi sullo scadenzario, tali che:

7 Il portafoglio è immunizzato per shift additivi infinitesimi se e solo se la duration di di : è uguale alla duration e se la duration di secondo ordine di è maggiore della duration di secondo ordine di : es. Immunizzazione di Redington Ricevo un finanziamento in t di 95, come investo quest importo per immunizzare dal rischio di tasso d interesse? Per Redington, bisogna investire in un flusso che abbia valore e duration pari al valore e alla duration del flusso e duration di secondo ordine o indice di dispersione maggiore o uguale alla duration di secondo ordine o indice di dispersione del flusso. Bisogna cioè investire in un portafoglio titoli che abbia maggiore (al più uguale) dispersione del portafoglio dei finanziamenti. La gestione dinamica del portafoglio investimenti di Redington vale solo fino al successivo shift Carlo Mottura Per Redington i criteri validi sono il valore, la duration e l indice di dispersione. Oss. Se si pone : Se vale il criterio della duration:, allora:

8 Problema: In un mercato caratterizzato da n titoli rischiosi, come selezionare un portafoglio che garantisca il passivo? Svolg. Posto nonché istante presente e data una qualsiasi struttura del mercato, dati due flussi di importi non negativi sullo scadenzario, e un paniere di titoli comprendente tutti i titoli con e e dato il vettore delle quotazioni di questi titoli: costruire un portafoglio immunizzato vuol dire determinare il vettore delle quote α : ovvero bisogna impostare una funzione obiettivo che minimizzi il costo di acquisto dei titoli, sotto determinati vincoli di bilancio, di duration e di dispersione: Tuttavia è anche possibile impostare una funzione obiettivo che massimizzi la dispersione dei titoli, sotto determinati vincoli di bilancio, di duration e di duration di secondo ordine:

9 Dunque si giunge ad un paradosso: sia che i tassi aumentino sia che i tassi diminuiscano, varrà sempre:. Studiando cioè un procedimento che immunizzi l investimento dal rischio di tasso, si crea un meccanismo che cerca il rischio e fa profitto, infatti questo meccanismo realizza sempre un profitto certo. Come si è visto l obiettivo dichiarato dell investitore è quello di massimizzare la dispersione del portafoglio:. In conclusione si può affermare che l ipotesi di evoluzione dei tassi d interesse per shift additivi deprime il rischio e produce esclusivamente profitto ed è pertanto incompatibile con il principio di assenza di arbitraggi privi di rischio. Teorema generale di immunizzazione Ipotizzando che la struttura dei tassi d interesse si evolva per shift additivi finiti:. Sia δ(t,s) la struttura del mercato osservata in t, siano due flussi di importi non negativi sullo scadenzario, tali che: Il portafoglio è immunizzato per shift additivi finiti se e solo se la duration di è uguale alla duration di : e se la deviazione media assoluta dell attivo è maggiore, al più uguale, della deviazione media assoluta del passivo: Anche in questo caso, il metodo per immunizzare un portafoglio è stabilito: si tratterà di utilizzare il criterio della minimizzazione del costo d acquisto dei titoli o quello della massimizzazione della loro dispersione. Tuttavia anche questo teorema si fonda sull ipotesi di evoluzione per shift additivi del mercato dei tassi d interesse, quindi anche questa soluzione genererà profitti certi e anch essa sarà dunque incompatibile con il principio di assenza di arbitraggi privi di rischio.

10 Teorema di immunizzazione a minimo rischio Ipotizzando che la struttura dei tassi d interesse si evolva per shift qualsiasi: Data δ(t,s) la struttura del mercato osservata in t, siano due flussi di importi non negativi sullo scadenzario, tali che: sia la duration di uguale alla duration di : sia la deviazione media assoluta dell attivo maggiore, al più uguale, della deviazione media assoluta del passivo: Il valore netto futuro sarà descritto dalla relazione: Dunque anche per questo teorema, esposto nel 1982 da Fong e Vasicek, immunizzare un portafoglio significa replicare un portafoglio di attività con un portafoglio di passività. Poiché e non sono noti, in quanto la prima è una variabile aleatoria e il secondo fattore è indipendente da e da ( questo teorema ammette esistenza del rischio in ), per minimizzare il rischio di tasso d interesse bisogna minimizzare o al massimo annullarlo, attuando quindi una strategia di perfect matching. In conclusione, secondo Fong e Vasicek, il metodo da attuare per immunizzare un portafoglio dal rischio di mercato, l unico nell impostazione semideterministica a rispettare il principio di assenza d arbitraggi privi di rischio: questo criterio è quello di minimizzare la dispersione dei titoli del portafoglio.

SUL CONTROLLO DEL RISCHIO DI TASSO DI INTERESSE *

SUL CONTROLLO DEL RISCHIO DI TASSO DI INTERESSE * GIANCARLO CAPOZZA, DARIO CUSATELLI Dipartimento di Scienze statistiche Carlo Cecchi Università degli Studi di Bari SUL CONTROLLO DEL RISCHIO DI TASSO DI INTERESSE * SOMMARIO 1. Introduzione 2. Definizioni

Dettagli

Modelli operativi di Asset & liability management. Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di. Mario Parisi.

Modelli operativi di Asset & liability management. Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di. Mario Parisi. Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di Economia Mario Parisi Modelli operativi di Asset & liability management 1 Il controllo dei rischi Uno dei primi obiettivi di un

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli

Il rischio di tasso di interesse

Il rischio di tasso di interesse MEBS Lecture 2 Il rischio di tasso di interesse MEBS, lezioni Roberto Renò Università di Siena 2.1 Il rischio di tasso di interesse Per rischio di tasso di interesse si intende la possibilità che, effettuato

Dettagli

Tecnica Bancaria (Cagliari - 2015)

Tecnica Bancaria (Cagliari - 2015) Tecnica Bancaria (Cagliari - 2015) prof. Mauro Aliano mauro.aliano@unica.it mauro.aliano@unica.it 1 Il rischio di interesse 2 Il rischio di tasso di interesse Il rischio di tasso di interesse può essere

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

I Titoli Obbligazionari. S. Corsaro Matematica Finanziaria a.a. 2007/08 1

I Titoli Obbligazionari. S. Corsaro Matematica Finanziaria a.a. 2007/08 1 I Titoli Obbligazionari S. Corsaro Matematica Finanziaria a.a. 2007/08 1 Obbligazione (bond) E emessa da un unità in deficit (un impresa, un Comune, lo Stato). Il flusso di cassa, dal punto di vista dell

Dettagli

LA DURATION E LA GESTIONE DEL PORTAFOGLIO OBBLIGAZIONARIO

LA DURATION E LA GESTIONE DEL PORTAFOGLIO OBBLIGAZIONARIO LA DURATION E LA GESTIONE DEL PORTAFOGLIO OBBLIGAZIONARIO FLAVIO ANGELINI Sommario. In queste note si vuole mostrare come la Duration venga utilizzata quale strumento per la gestione del portafoglio obbligazionario.

Dettagli

Milliman ALM Per Fondi Pensione

Milliman ALM Per Fondi Pensione Entro il prossimo 31 dicembre 2013, anche le forme pensionistiche iscritte all Albo COVIP aventi numero di iscritti compreso tra le 100 e 1000 unità saranno obbligate ad adeguarsi a quanto disposto da

Dettagli

Economia Intermediari Finanziari 1

Economia Intermediari Finanziari 1 Economia Intermediari Finanziari Il rischio, inteso come possibilità che il rendimento atteso da un investimento in strumenti finanziari, sia diverso da quello atteso è funzione dei seguenti elementi:

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Risparmio e Investimento

Risparmio e Investimento Risparmio e Investimento Risparmiando un paese ha a disposizione più risorse da utilizzare per investire in beni capitali I beni capitali a loro volta fanno aumentare la produttività La produttività incide

Dettagli

OPZIONI, DURATION E INTEREST RATE SWAP (IRS)

OPZIONI, DURATION E INTEREST RATE SWAP (IRS) ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI, DURATION E INTEREST RATE SWAP (IRS) Valutazione delle opzioni Esercizio 1 2 ESERCIZIO 1 Il portafoglio di un investitore è composto di 520 azioni della società

Dettagli

Dividendi e valore delle azioni

Dividendi e valore delle azioni Dividendi e valore delle azioni La teoria economica sostiene che in ultima analisi il valore delle azioni dipende esclusivamente dal flusso scontato di dividendi attesi. Formalmente: V = E t=0 1 ( ) t

Dettagli

Anteprima Estratta dall' Appunto di Matematica finanziaria 10 cfu

Anteprima Estratta dall' Appunto di Matematica finanziaria 10 cfu Anteprima Estratta dall' Appunto di Matematica finanziaria 10 cfu Università : Università La Sapienza Facoltà : Economia Indice di questo documento L' Appunto Le Domande d'esame e' un sito di knowledge

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 10 Contenuti della lezione Valutazione di titoli obbligazionari

Dettagli

MERCATO IMMOBILIARE: CRISI FINANZIARIA?

MERCATO IMMOBILIARE: CRISI FINANZIARIA? MERCATO IMMOBILIARE: CRISI FINANZIARIA? MILANO, 24 Giugno 2008 La crisi Immobiliare in Europa - Lorenzo Greppi CRISI IMMOBILIARE E PARAMETRI DI RISCHIO La crisi internazionale ha avuto pesanti riflessi

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario AREA FINANZA DISPENSA FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Strumenti di Valutazione di un Prodotto Finanziario ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA Strumenti

Dettagli

Economia monetaria e creditizia. Slide 4

Economia monetaria e creditizia. Slide 4 Economia monetaria e creditizia Slide 4 Le teorie diverse che spiegano come di determina la domanda di moneta possono essere ricondotte alle due funzioni di mezzo di pagamento e di riserva di valore la

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET

RISCHIO E CONTROLLO DI GESTIONE LA COSTRUZIONE DI UN BUDGET LA COSTRUZIONE DI UN BUDGET Prof. Francesco Albergo Docente di PIANIFICAZIONE E CONTROLLO Corso di Laurea in Economia Aziendale Curriculum in Gestione Aziendale Organizzata UNIVERSITA degli Studi di Bari

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani

RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI. Docente: Prof. Massimo Mariani RISCHIO E RENDIMENTO DEGLI STRUMENTI FINANZIARI Docente: Prof. Massimo Mariani 1 SOMMARIO Il rendimento di un attività finanziaria: i parametri rilevanti Rendimento totale, periodale e medio Il market

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE.

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. Lezione 5 Castellanza, 17 Ottobre 2007 2 Summary Il costo del capitale La relazione rischio/rendimento

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Corso di Macroeconomia. Il modello IS-LM. Appunti

Corso di Macroeconomia. Il modello IS-LM. Appunti Corso di Macroeconomia Il modello IS-LM Appunti 1 Le ipotesi 1. Il livello dei prezzi è fisso. 2. L analisi è limitata al breve periodo. La funzione degli investimenti A differenza del modello reddito-spesa,

Dettagli

EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI

EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI Indice 1 EQUILIBRIO ECONOMICO GENERALE ------------------------------------------------------------------------------ 3 2 L EQUILIBRIO ECONOMICO GENERALE

Dettagli

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti ipotesi: Gli investitori sono avversi al rischio; Gli investitori

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Metodi matematici 2 21 settembre 2006

Metodi matematici 2 21 settembre 2006 Metodi matematici 1 settembre 006 TEST (Nuovo ordinamento) Cognome Nome Matricola Rispondere alle dieci domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta

Dettagli

Il mercato della moneta

Il mercato della moneta Il mercato della moneta Alessandro Scopelliti Università di Reggio Calabria e University of Warwick alessandro.scopelliti@unirc.it 1 Funzioni della moneta Consideriamo i mercati della moneta e delle attività

Dettagli

Obiettivi della lezione #4

Obiettivi della lezione #4 Obiettivi della lezione #4 La lezione oggi affronta i seguenti temi: modelli DCF: valore attuale netto e rendimento (saggio di rendimento interno) di un progetto il ruolo delle modalità di finanziamento

Dettagli

Contenuti. Fatti stilizzati microeconomici. L evidenza empirica è in contrasto con le previsioni del teorema Modigliani Miller.

Contenuti. Fatti stilizzati microeconomici. L evidenza empirica è in contrasto con le previsioni del teorema Modigliani Miller. Contenuti L evidenza empirica è in contrasto con le previsioni del teorema Modigliani Miller. ECONOMIA MONETARIA E FINANZIARIA (7) Esistono quindi delle imperfezioni dei mercati. Le imperfezioni dei mercati

Dettagli

Lezione 3 Esercitazioni

Lezione 3 Esercitazioni Lezione 3 Esercitazioni Forlì, 26 Marzo 2013 Teoria della produzione Esercizio 1 Impiegando un fattore produttivo (input) sono stati ottenuti i livelli di produzione (output) riportati in tabella. Fattore

Dettagli

Calcolo del valore attuale e principi di valutazione delle obbligazioni

Calcolo del valore attuale e principi di valutazione delle obbligazioni CAPITOLO 2 Calcolo del valore attuale e principi di valutazione delle obbligazioni Semplici PROBLEMI 1. a. Negativo; b. VA = C 1 /(1 + r); c. VAN = C 0 + [C 1 /(1 + r)]; d. r è la remunerazione a cui si

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Richiami di teoria della domanda di moneta

Richiami di teoria della domanda di moneta Richiami di teoria della domanda di moneta Parte seconda La teoria della preferenza della liquidità di Keynes Keynes distingue tre moventi principali per cui si detiene moneta. Transattivo Precauzionale

Dettagli

Valore equo di un derivato. Contingent claim

Valore equo di un derivato. Contingent claim Contingent claim Ci occuperemo ora di determinare il prezzo equo di un prodotto derivato, come le opzioni, e di come coprire il rischio associato a questi contratti. Assumeremo come dinamica dei prezzi

Dettagli

LA CASSETTA DEGLI ATTREZZI

LA CASSETTA DEGLI ATTREZZI LA CASSETTA DEGLI ATTREZZI FATTORI CHE INFLUENZANO I TASSI D INTERESSE TASSI D INTERESSE E INFLAZIONE LA STRUTTURA PER SCADENZE DEI TASSI D INTERESSE Capitoli 4 e 5 MEF SAPRESTE RISPONDERE A QUESTE DOMANDE?

Dettagli

Corso di Intermediari Finanziari e Microcredito

Corso di Intermediari Finanziari e Microcredito Cosa si intende per sistema finanziario Corso di Intermediari Finanziari e Microcredito Il sistema finanziario E la struttura attraverso cui si svolge l attività finanziaria; L attività finanziaria è la

Dettagli

Macroeconomia 9 gennaio 2014 SCRIVI NOME E COGNOME SU OGNI FOGLIO

Macroeconomia 9 gennaio 2014 SCRIVI NOME E COGNOME SU OGNI FOGLIO Macroeconomia 9 gennaio 2014 Il punteggio di ogni domanda è fissato in uno o due asterischi. Il punteggio intero viene dato solo Non consegnare se non sei convinto di aver realizzato almeno 7 punti. 1.

Dettagli

Le decisioni di finanziamento dell impresa. Stefano Lucarelli. Bergamo a.a. 2007-08

Le decisioni di finanziamento dell impresa. Stefano Lucarelli. Bergamo a.a. 2007-08 Bergamo a.a. 2007-08 08 lezione nell ambito del corso di Imposte, Incentivi fiscali, Appalti Le decisioni di finanziamento dell impresa Stefano Lucarelli Testo di riferimento Giorgio Ragazzi, Lezioni di

Dettagli

Rischio e rendimento degli strumenti finanziari

Rischio e rendimento degli strumenti finanziari Finanza Aziendale Analisi e valutazioni per le decisioni aziendali Rischio e rendimento degli strumenti finanziari Capitolo 15 Indice degli argomenti 1. Analisi dei rendimenti delle principali attività

Dettagli

Studia lo scambio di importi monetari aleatori, dunque di operazioni che comportano un RISCHIO FINANZIARIO.

Studia lo scambio di importi monetari aleatori, dunque di operazioni che comportano un RISCHIO FINANZIARIO. TEORIA MATEMATICA DEL PORTAFOGLIO FINANZIARIO ELEMENTI DI TEORIA DELL UTILITÀ Studia lo scambio di importi monetari aleatori, dunque di operazioni che comportano un RISCHIO FINANZIARIO. es. Generica operazione

Dettagli

Mercati finanziari e valore degli investimenti

Mercati finanziari e valore degli investimenti 7 Mercati finanziari e valore degli investimenti Problemi teorici. Nei mercati finanziari vengono vendute e acquistate attività. Attraverso tali mercati i cambiamenti nella politica del governo e le altre

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Quesiti livello Application

Quesiti livello Application 1 2 3 4 Se la correlazione tra due attività A e B è pari a 0 e le deviazioni standard pari rispettivamente al 4% e all 8%, per quali dei seguenti valori dei loro pesi il portafoglio costruito con tali

Dettagli

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012 ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI 2 LE OPZIONI Le opzioni sono contratti che forniscono al detentore il diritto di acquistare o vendere una certa quantità del bene sottostante a una certa

Dettagli

1a 1b 2a 2b 3 4 5 6 6 5 4 3

1a 1b 2a 2b 3 4 5 6 6 5 4 3 MATEMATICA FINANZIARIA A e B - Prova scritta del 30 maggio 2000 1. (11 pti) Un tale deve pagare un debito di ammontare D. L ammortamento viene strutturato su 3 anni valutando gli interessi coi tassi variabili

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Indice 1 Mercati finanziari 2 Arbitraggio 3 Conseguenze del non-arbitraggio

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Metodi matematici II 15 luglio 2003

Metodi matematici II 15 luglio 2003 MM.II Prova Generale - Test Vecchio Ordinamento, 5 luglio Metodi matematici II 5 luglio TEST (Vecchio ordinamento) Cognome Nome Matricola Rispondere alle dodici domande sbarrando la casella che si ritiene

Dettagli

Risparmio, investimenti e sistema finanziario

Risparmio, investimenti e sistema finanziario Risparmio, investimenti e sistema finanziario Una relazione fondamentale per la crescita economica è quella tra risparmio e investimenti. In un economia di mercato occorre individuare meccanismi capaci

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quinta INDIRIZZO AFM-SIA-RIM-TUR UdA n. 1 Titolo: LE FUNZIONI DI DUE VARIABILI E L ECONOMIA Utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni

Dettagli

Rischi in Finanza. Rischi finanziari. Rischi puri. Rischi sistematici. Rischi non sistematici

Rischi in Finanza. Rischi finanziari. Rischi puri. Rischi sistematici. Rischi non sistematici Rischi in Finanza Rischi puri Rischi finanziari Rischi sistematici Rischi non sistematici Rischi non sistematici I rischi non sistematici sono rischi specifici Tipologie di rischi specifico più frequenti:

Dettagli

Applicazioni dell'analisi in più variabili a problemi di economia

Applicazioni dell'analisi in più variabili a problemi di economia Applicazioni dell'analisi in più variabili a problemi di economia La diversità tra gli agenti economici è alla base della nascita dell attività economica e, in generale, lo scambio di beni e servizi ha

Dettagli

Modello di Stigliz e Weiss (1981)

Modello di Stigliz e Weiss (1981) Modello di Stigliz e Weiss (1981) Esposizione a cura di: Roberto Stefano Nicola Esistenza di un ampia varietà di modelli che portano alla definizione del razionamento del credito: TUTTI HANNO LO SCOPO

Dettagli

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1

LA VALUTAZIONE DI PORTAFOGLIO. Giuseppe G. Santorsola 1 LA VALUTAZIONE DI PORTAFOGLIO Giuseppe G. Santorsola 1 Rendimento e rischio Rendimento e rischio di un singolo titolo Rendimento e rischio di un portafoglio Rendimento ex post Media aritmetica dei rendimenti

Dettagli

Capitolo IV. I mercati finanziari

Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 2 I MERCATI FINANZIARI OBIETTIVO: SPIEGARE COME SI DETERMINANO I TASSI DI INTERESSE E COME LA BANCA CENTRALE PUO INFLUENZARLI LA DOMANDA DI MONETA DETERMINAZIONE DEL TASSO

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa Prof. Gianmaria Martini Offerta dell impresa La decisione di un impresa a riguardo della quantità

Dettagli

GUIDA ALLA LETTURA DELLE SCHEDE FONDI

GUIDA ALLA LETTURA DELLE SCHEDE FONDI GUIDA ALLA LETTURA DELLE SCHEDE FONDI Sintesi Descrizione delle caratteristiche qualitative con l indicazione di: categoria Morningstar, categoria Assogestioni, indice Fideuram. Commenti sulla gestione

Dettagli

L analisi degli investimenti

L analisi degli investimenti Corso di Laurea in Produzione dell Edilizia Corso di Economia e Gestione delle Imprese 9^ lezione L analisi degli investimenti 3 maggio 2005 Prof. Federico Della Puppa - A.A. 2004-2005 Dalla teoria alla

Dettagli

CAPITOLO 10 I SINDACATI

CAPITOLO 10 I SINDACATI CAPITOLO 10 I SINDACATI 10-1. Fate l ipotesi che la curva di domanda di lavoro di una impresa sia data da: 20 0,01 E, dove è il salario orario e E il livello di occupazione. Ipotizzate inoltre che la funzione

Dettagli

Modelli finanziari per i tassi di interesse

Modelli finanziari per i tassi di interesse MEBS Lecture 3 Modelli finanziari per i tassi di interesse MEBS, lezioni Roberto Renò Università di Siena 3.1 Modelli per la struttura La ricerca di un modello finanziario che descriva l evoluzione della

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

Tempo e rischio Tempo Rischio

Tempo e rischio Tempo Rischio Il Valore Attuale Tempo e rischio Tempo: i 100 euro di oggi valgono di meno dei 100 euro di domani perché i primi possono essere investiti nel mercato dei capitali e fruttare un tasso di interesse r. Rischio:

Dettagli

Il calore nella Finanza

Il calore nella Finanza Il calore nella Finanza Franco Moriconi Università di Perugia Facoltà di Economia Perugia, 12 Novembre 2008 Quotazioni FIAT Serie giornaliera dal 6/11/2007 al 6/11/2008 F. Moriconi, Il calore nella Finanza

Dettagli

DOMANDE a risposta multipla (ogni risposta esatta riceve una valutazione di due; non sono previste penalizzazioni in caso di risposte non corrette)

DOMANDE a risposta multipla (ogni risposta esatta riceve una valutazione di due; non sono previste penalizzazioni in caso di risposte non corrette) In una ora rispondere alle dieci domande a risposta multipla e a una delle due domande a risposta aperta, e risolvere l esercizio. DOMANDE a risposta multipla (ogni risposta esatta riceve una valutazione

Dettagli

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione: 1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

TEORIE DI INVESTIMENTO

TEORIE DI INVESTIMENTO TEORIE DI INVESTIMENTO di Roberto Cornetti 1 TEORIE STOCASTICHE NON FINANZIARIE ESAMINATE Hartman (1972) Abel (1983) (1984) Pindyck (1982) (1991) (1993) Questi modelli analizzano l effetto prodotto da

Dettagli

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta

Economia Aperta. In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta. Analizziamo i mercati finanziari in economia aperta Economia Aperta In questa lezione: Analizziamo i mercati dei beni e servizi in economia aperta Analizziamo i mercati finanziari in economia aperta 158 Economia aperta applicata ai mercati dei beni mercati

Dettagli

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale

Finanza Aziendale. Lezione 13. Introduzione al costo del capitale Finanza Aziendale Lezione 13 Introduzione al costo del capitale Scopo della lezione Applicare la teoria del CAPM alle scelte di finanza d azienda 2 Il rischio sistematico E originato dalle variabili macroeconomiche

Dettagli

Il concetto di rischio

Il concetto di rischio Il concetto di rischio Il rischio si presenta in forma simmetrica: vi è la possibilità di ottenere un risultato inferiore a quello più probabile ma anche di ottenere un risultato superiore. Si può guardare

Dettagli

Economia monetaria e creditizia. Slide 5

Economia monetaria e creditizia. Slide 5 Economia monetaria e creditizia Slide 5 Poiché le attività finanziarie sono sostituibili e le loro funzioni cambiano nel tempo non è facile dare una definizione univoca di moneta, ovvero di quali attività

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

ECONOMIA URBANA. Valeria Costantini Facoltà di Architettura, Università Roma Tre. Contatti: costanti@uniroma3.it

ECONOMIA URBANA. Valeria Costantini Facoltà di Architettura, Università Roma Tre. Contatti: costanti@uniroma3.it ECONOMIA URBANA Valeria Costantini Facoltà di Architettura, Università Roma Tre Contatti: costanti@uniroma3.it LA MACROECONOMIA Economia Urbana 2 L economia aperta Per economia aperta si intende l insieme

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

La gestione del rischio di interesse e di mercato. Giuseppe Squeo

La gestione del rischio di interesse e di mercato. Giuseppe Squeo La gestione del rischio di interesse e di mercato Giuseppe Squeo 1 Il rischio di interesse: modalità esposizione Le modalità di esposizione al rischio di interesse sono: rischio di riprezzamento, quando

Dettagli

I titoli obbligazionari

I titoli obbligazionari I titoli obbligazionari 1 Tipologie di titoli La relazione di equivalenza consente di attribuire un valore oggi ad importi monetari disponibili ad una data futura. In particolare permettono di determinare

Dettagli

Domande di riepilogo

Domande di riepilogo QuickTime e un decompressore sono necessari per visualizzare quest'immagine. Economia e organizzazione aziendale II UNITÁ C ANALISI DI BILANCIO: REDDITIVITÀ E FINANZA Lezione 4 Scelte finanziarie manageriali

Dettagli