Sistemi di acquisizione dati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi di acquisizione dati"

Transcript

1 Sistemi di acquisizione dati - 1 Sistemi di acquisizione dati 1 - Configurazioni tipiche Generalità L impiego di tecniche numeriche per la rappresentazione dei segnali consente la successiva elaborazione in modo potente e flessibile. Nei sistemi di acquisizione dati il segnale associato alla grandezza fisica viene sottoposto dapprima a un processo di campionamento (circuiti sample & hold) e di quantizzazione (convertitori AD). Queste due operazioni sono comuni a ogni tipo di segnale e sono caratterizzate, rispettivamente, dalla velocità di campionamento e dalla risoluzione del convertitore AD. Il trattamento dell informazione numerica avviene mediante dispositivi logici. Tali dispositivi possono essere dedicati a una specifica applicazione e, in questo caso, svolgono solo i compiti previsti in sede di progetto, oppure possono impiegare architetture programmabili, in modo da consentire l assegnazione di diverse funzioni di misura allo stesso hardware. In questo secondo caso, spesso, lo strumento viene identificato con la procedura di elaborazione dell informazione contenuta nei dati acquisiti. Bisogna tuttavia tener presente che, comunque, la qualità della misura rimane essenzialmente legata all attendibilità e all accuratezza dei dati campionati. Sistema di misura a ingresso singolo Un sistema di misura digitale prevede, di norma, una fase di condizionamento preliminare del segnale in ingresso, al fine di renderlo idoneo alla successiva fase di campionamento e conversione in forma numerica. I dispositivi di condizionamento del segnale sono di natura molto diversa, in relazione al tipo di segnale da trattare. Alcuni casi significativi saranno esaminati nel seguito. Lo schema di un canale di acquisizione a ingresso singolo è rappresentato in Fig.1.1: i compiti di gestione della misura sono assegnati a un microprocessore, che fornisce il segnale di campionamento al circuito di sample & hold e successivamente il comando di inizio della conversione (start) al convertitore AD. Fig Sistema di misura a un canale.

2 Sistemi di acquisizione dati - 2 Quest ultimo, completata la conversione, restituisce al processore il controllo della procedura tramite il segnale End of Conversion, EOC. La velocità di campionamento, con la quale può essere interrogato il segnale d ingresso, è limitata dalla durata di tutti questi compiti. Infatti, deve consentire l immagazzinamento del dato nel campionatore S&H (tempo di acquisizione), la successiva conversione nel dispositivo ADC (tempo di conversione), il trasferimento del numero in una opportuna area di memoria del sistema. Pertanto sarà importante stabilire la frequenza di campionamento f c massima consentita, conoscendo i tempi necessari per l esecuzione di tutte queste operazioni. Sistemi di misura a più ingressi Qualora il sistema di misura sia a più ingressi è presente un elemento nuovo, il circuito multiplexer (vedi Fig.1.2), che ha il compito di collegare ciclicamente il campionatore S&H e il convertitore AD ai diversi canali in ingresso CH0, CH1,... CH(N-1). Fig Sistema multicanale con multiplexer. Per un sistema di acquisizione dati che presenta, in generale, N canali in ingresso, detta f c la frequenza di campionamento massima alla quale può operare il gruppo S&H e ADC, consegue che la massima frequenza con cui potrà essere campionato il canale i-esimo risulta f i =f c /N. Questo risultato vale solo in prima approssimazione, ammettendo trascurabile il tempo di commutazione del multiplexer da un canale al successivo. Nella realtà, anche considerando i problemi legati allo slew-rate del Sample & Hold nel passaggio tra un canale e il successivo, si dovrà assumere per la massima frequenza di campionamento su ciascun canale f i un valore inferiore a f c /N. Campionamento simultaneo Nel sistema considerato in Fig.1.2 i campioni dei diversi canali risultano presi in sequenza e pertanto non è possibile disporre di campioni simultanei di più forme d onda. D altra parte certe applicazioni richiedono un campionamento simultaneo. Questa esigenza può essere soddisfatta con lo schema di Fig.1.3, impiegando tanti campionatori S&H quanti sono i canali in ingresso, pilotati dallo stesso segnale di controllo. In tal modo gli N campioni di un acquisizione risultano sincroni, mentre rimane comunque sequenziale la conversione AD. Tale soluzione non consente evidentemente di superare i limiti sulla massima frequenza di campionamento per il canale i-esimo, che rimane pari a quella stabilita nel caso precedente: f i <f c /N.

3 Sistemi di acquisizione dati - 3 Fig Sistema a campionamento simultaneo. Nella Fig.1.4 sono rappresentate le sequenze temporali dei campioni ottenuti campionando un gruppo di N canali, CH0, CH1... CH(N-1), ciascuno ogni T c secondi. La Fig.1.4A si riferisce al caso in cui è presente un solo campionatore S&H (vedi lo schema di Fig.1.2). In tal caso si nota, in ciascun gruppo di canali CH0, CH1... CH(N-1), il ritardo t che il campione del generico canale ha rispetto a quello del canale precedente. Per esempio il ritardo del campione di CH1 rispetto a quello di CH0, e così via. Il ritardo t è il tempo minimo necessario per effettuare la conversione AD e passare al canale successivo. La Fig.1.4B si riferisce invece allo schema a blocchi di Fig.1.3, con tanti campionatori S&H quanti sono i canali in ingresso (campionamento simultaneo). In tal caso tutti i campioni del gruppo di canali, CH0, CH1... CH(N-1), sono presi contemporaneamente. Fig Campionamento multiplo. Si è detto che il campionamento simultaneo di più canali può assumere rilevanza in certe applicazioni. Si consideri, ad esempio, la misura della potenza attiva, ottenuta campionando i segnali di tensione v(t) e di corrente i(t). Poiché la determinazione della potenza è fatta in forma discreta, si ha la seguente approssimazione numerica: 1 P = T T 1 v( t) i( t) dt N p N p j= 1 v( t ) i( t ) j j (1.1) dove N p è il numero di punti prelevati dal canale di tensione o di corrente in un periodo. Qualora non si realizzi il campionamento simultaneo dei due canali, come nel caso di Fig.1.4A, il multiplexer commuta alternativamente dapprima sul canale di tensione e successivamente sul canale di corrente. In tal modo, la sequenza dei campioni di corrente

4 Sistemi di acquisizione dati - 4 risulta spostata, rispetto alla sequenza dei campioni di tensione, di un ritardo temporale pari all intervallo t. In tal modo si presenta un errore aggiuntivo nella valutazione della potenza attiva, oltre a quello dovuto alla discretizzazione dei segnali nel tempo e nelle ampiezze. Se, come caso particolare, lavoriamo alla massima velocità possibile per il sistema, il ritardo t tende a coincidere con il tempo di campionamento T c. Nel caso di campionamento simultaneo, invece, come mostrato in Fig.1.4B, le sequenze di campioni di tensione e corrente sono acquisite senza alcuno sfasamento reciproco (cioè ciascun campione di corrente i k è effettivamente contemporaneo al corrispondente campione di tensione v k ) e quindi nessun errore viene aggiunto nel calcolo della potenza. Sistemi veloci di acquisizione Per ottenere un campionamento simultaneo su più canali e allo stesso tempo aumentare la velocità di campionamento sul singolo canale, si può adottare lo schema di Fig.1.5, dove è presente sia un S&H che un ADC per ciascun ingresso. Il multiplexer digitale conterrà tutta la memoria necessaria per gestire il flusso dei dati. Fig Sistema di acquisizione veloce. Schede di acquisizione dati plug-in I sistemi di acquisizione dati vengono spesso realizzati mediante schede plug-in. Tali schede si montano direttamente negli slot di espansione di cui sono normalmente dotati i personal computer e possono costituire un alternativa economica agli strumenti tradizionali autonomi (stand alone). In particolare sfruttano per l elaborazione le risorse hardware e software dei comuni PC. Il mercato offre numerose possibilità di scelta, con caratteristiche, prestazioni e costi che spaziano in un campo assai vasto. Di solito tutte le schede plug-in accettano ingressi sia analogici che digitali. Spesso forniscono anche uscite sia analogiche che digitali. Il numero di canali analogici in ingresso è almeno otto, (tipicamente sedici), configurabili sia in single-ended che in differenziale. La frequenza di campionamento varia fra i 50kHz e 1MHz. La risoluzione dei modelli più economici è di 12 bit, mentre si arriva a 16 bit nelle schede più sofisticate. Normalmente esiste un compromesso fra velocità di campionamento e risoluzione. 2 - Oscilloscopio digitale Fra i sistemi di acquisizione dati si può comprendere anche l oscilloscopio digitale (Digitizing Oscilloscope). Questo strumento, assai diffuso e versatile, costituisce infatti un sistema particolarmente veloce di acquisizione dati: converte in forma numerica i segnali analogici

5 Sistemi di acquisizione dati - 5 applicati ai suoi ingressi, caricandoli quindi nella memoria del sistema, da cui vengono prelevati per le successive elaborazioni e per la visualizzazione su un monitor. Per tale motivo si parla anche di oscilloscopio digitale a memoria (Digital Storage Oscilloscope). Poiché i dati sono memorizzati, la loro visualizzazione e l eventuale analisi possono avvenire in un tempo successivo. Pertanto in tale oscilloscopio i requisiti di banda per il sistema di visualizzazione sono molto meno stringenti di quanto avviene per l oscilloscopio analogico. Possono quindi essere impiegati tubi a raggi catodici a deflessione magnetica e display VGA oppure, negli strumenti più moderni, display LCD. La possibilità di memorizzare le forme d onda è particolarmente utile quando si debbano visualizzare fenomeni molto lenti oppure eventi singoli (dove di norma sono carenti gli oscilloscopi analogici). Il passaggio al mondo digitale consente inoltre di effettuare in modo automatico diverse operazioni di misura (periodo, frequenza, valore medio, valore efficace, valore massimo, ecc.) e in molti casi di svolgere elaborazioni più complesse, come l analisi in frequenza con la Trasformata Rapida di Fourier (FFT). Schema a blocchi e specifiche Lo schema a blocchi di un oscilloscopio digitale a memoria a due canali è riportato in Fig.2.1. Il segnale analogico, opportunamente condizionato da uno stadio di ingresso che ne realizza, per esempio, l amplificazione o l attenuazione, viene inviato al sistema di acquisizione, composto dal campionatore S&H e dal convertitore AD. L oscilloscopio digitale, come quello analogico, privilegia le specifiche di velocità rispetto all accuratezza. Pertanto si impiegano prevalentemente convertitori flash a 8-9 bit, con velocità di campionamento che possono andare da circa 100 MSample/s fino ad alcune decine di gigasample al secondo. A questo proposito è bene sottolineare che un limite alla massima frequenza del segnale rappresentabile può essere imposto sia dal rispetto del teorema del campionamento (che, come di vedrà in un apposito capitolo, limita il campo teorico di frequenze a metà della velocità di campionamento, anche se nella pratica si considera accettabile un range di frequenze ancora più ridotto) sia dalla banda passante analogica dei circuiti di condizionamento (espressa normalmente in megahertz o gigahertz). Entrambe queste caratteristiche dovranno quindi essere valutate per stabilire se un dato oscilloscopio è adatto per una determinata applicazione. Il segnale digitalizzato viene memorizzato in una memoria RAM, dalla quale viene poi prelevato per la successiva visualizzazione. La dimensione di questa memoria è un altra caratteristica molto importante per valutare la qualità di uno strumento. Infatti una memoria estesa consente di visualizzare una porzione di segnale più lunga, a parità di frequenza di campionamento, oppure di campionare con frequenza maggiore, a parità di tempo di osservazione. Tipicamente la dimensione della memoria varia da poche migliaia ad alcune decine di milioni di Byte. La memoria è di tipo FIFO (First In First Out) ed è costantemente mantenuta piena, eliminando ad ogni nuovo campionamento il dato più vecchio per far posto all ultimo. La rappresentazione della forma d onda dipende invece dal verificarsi della condizione di trigger. Il significato del trigger è in fondo simile a quello dell oscilloscopio analogico, ma il funzionamento è assai differente. Infatti, mentre nello strumento analogico l evento di trigger attiva lo sweep del fascio elettronico, in quello digitale esso assume il significato di punto al quale ancorare la rappresentazione visiva del segnale sul monitor. Questa caratteristica consente, prelevando le opportune porzioni di dati dalla memoria, di avere informazioni sul segnale non solo dopo il verificarsi dell evento di trigger, ma anche per gli istanti che lo

6 Sistemi di acquisizione dati - 6 precedono (pretrigger). Il vantaggio di tale potenzialità si rivela quando interessa sapere cosa è accaduto immediatamente prima dell evento di trigger. Un esempio può essere il caso in cui si voglia analizzare un fenomeno di guasto in un circuito e a tale evento è stato associato il segnale di trigger. La sezione di trigger di un oscilloscopio digitale può inoltre essere ben più sofisticata di quella dell oscilloscopio analogico. Infatti, oltre alla classica possibilità di far scattare il trigger quando il segnale da visualizzare passa attraverso uno specifico livello (trigger level) con una specificata pendenza (trigger slope), possono essere impostati modi di funzionamento diversi, legati, per esempio, alla durata di un certo evento o al verificarsi di più condizioni contemporaneamente. Fig Schema a blocchi dell oscilloscopio digitale a due canali. Come nel caso analogico, il trigger può essere interno o esterno: nel primo caso l evento di trigger è stabilito dal segnale stesso che si desidera visualizzare (CH1 o CH2), nel secondo caso è determinato appunto da un segnale esterno (EXT). Alcune considerazioni meritano le diverse modalità di campionamento possibili. Campionamento in tempo reale Il campionamento in tempo reale (real time sampling) è la forma più intuitiva. I campioni vengono acquisiti in forma sequenziale a intervalli di tempo uniformemente spaziati (Fig.2.2), e la visualizzazione è legata all evento di trigger,. Questa tecnica consente di operare altrettanto bene sia con segnali ripetitivi che con segnali di durata finita o eventi singoli (single-shot event). Fig Esempio di campionamento in tempo reale. Se il segnale in ingresso è ripetitivo, l evento di trigger attiverà l inizio della rappresentazione visiva sempre nello stesso punto della forma d onda e le successive acquisizioni, dopo ogni evento di trigger, aggiorneranno il contenuto della memoria e quindi l immagine sul monitor. Se si analizza l evento singolo, viceversa, l acquisizione verrà arrestata dopo il primo evento di trigger. I dati acquisiti, caricati in una memoria digitale, potranno essere visualizzati per tutto il tempo necessario, anche quando l evento si è concluso.

7 Sistemi di acquisizione dati - 7 Come detto, la banda passante effettivamente utilizzabile in queste condizioni operative è la più piccola tra quella imposta da teorema del campionamento (essendo f c = 1/ T la frequenza di campionamento) e quella derivante dal comportamento dei circuiti analogici. Nella maggior parte degli oscilloscopi sono disponibili diverse possibilità per ricostruire, a partire dai campioni acquisiti, una forma d onda continua sullo schermo. Campionamento in tempo equivalente Oltre al campionamento in tempo reale, si adotta spesso il campionamento in tempo equivalente (equivalent time sampling). Questa è una tecnica che presenta dei vantaggi, ma anche delle limitazioni. Infatti è applicabile solo a segnali strettamente ripetitivi e richiede una base dei tempi estremamente stabile. In sostanza, la porzione di forma d onda mostrata a monitor non viene ricostruita prelevando i campioni in successione, nell arco dell intervallo visualizzato, bensì viene costruita analizzando più intervalli, sfruttando appunto la periodicità del segnale e la stabilità del trigger. Esistono due modalità di campionamento in tempo equivalente: sequenziale e casuale. In Fig.2.3 è presentato un esempio di campionamento in tempo equivalente di tipo sequenziale. Al verificarsi del primo evento di trigger si preleva il primo campione. Al secondo evento di trigger si attende per un tempo esattamente controllato T prima di prelevare il secondo campione. Fig Esempio di campionamento in tempo equivalente (sequenziale). Tale intervallo T è quello che competerebbe al campionamento in real time, ma che, essendo troppo breve, non può essere sostenuto continuativamente dal sistema di campionamento e conversione AD. Pertanto, al verificarsi di ogni evento di trigger il ritardo viene incrementato (2 T, 3 T, ecc.) in modo che risulti correttamente campionata tutta la porzione di segnale che si desidera visualizzare. Naturalmente la ricostruzione avverrà con il contributo di campioni prelevati in molte porzioni successive del segnale. In Fig.2.3 tale porzione è stata assunta, per semplicità pari al periodo T del segnale. In sostanza, se il segnale è ripetitivo, è possibile visualizzare la forma d onda anche prelevando i campioni ad una velocità più bassa. Il vantaggio di tale metodo è che si possono impiegare convertitori AD e memorie caratterizzati da velocità operative molto più basse, o reciprocamente visualizzare segnali molto più veloci. Infatti la frequenza di campionamento effettiva risulta f c,eff =1/ T, dove il valore minimo per T non è imposto dalla velocità sistema di acquisizione (che è invece chiamato a lavorare con periodo di campionamento T+ T), bensì dalla stabilità della base dei tempi o da fenomeni di jitter. Più spesso, in queste condizioni di funzionamento sono i circuiti analogici di ingresso a imporre il limite di frequenza.

8 Sistemi di acquisizione dati - 8 La ricostruzione della forma d onda avviene prelevando i dati dalla memoria e disponendo i punti direttamente sullo schermo, se questi sono sufficientemente numerosi, altrimenti elaborando preliminarmente i dati con opportuni algoritmi. Nel caso del campionamento in tempo equivalente di tipo casuale il trigger non svolge direttamente il suo compito. I campioni sono presi a intervalli regolari dettati normalmente dalla massima velocità di campionamento possibile, in modo non correlato con l evento di trigger. Si otterranno così campioni precedenti e seguenti l evento di trigger (Fig.2.4). Tuttavia, viene misurato il tempo che intercorre fra il generico campione e l evento di trigger più vicino. Questo tempo viene associato al campione per la successiva visualizzazione del segnale sullo schermo. In tal modo è possibile per il microprocessore del sistema ricostruire una sequenza ordinata di campioni in funzione degli intervalli temporali che li separano dal trigger e rappresentare in tal modo sul monitor la forma d onda corretta. Con questo modo di procedere si ha il vantaggio di poter visualizzare anche le fasi di pretrigger, funzionalità non disponibile col campionamento equivalente di tipo sequenziale I limiti in frequenza dipendono anche in questo caso dalla stabilità del clock, dal jitter e dalla banda passante analogica. Fig Esempio di campionamento in tempo equivalente (casuale). 3 - Strumentazione virtuale e programmabile Strumenti virtuali In questo contesto è opportuno dare un cenno alla strumentazione virtuale. Basandosi sui sistemi di acquisizione dati, si ottengono sequenze campionate che, sotto opportune condizioni dettate soprattutto dal teorema del campionamento e a meno del disturbo di quantizzazione, contengono tutta l informazione associata ai segnali analogici da cui derivano. Poiché l informazione di interesse può essere estratta con opportuni algoritmi, la funzione di misura è implementata tramite il software. In particolare, per le schede di acquisizione dati di tipo plug-in sono disponibili dei programmi che consentono di riprodurre sullo schermo di un computer il pannello frontale di ogni strumento di misura tradizionale. Tale pannello (virtuale) conterrà gli organi di selezione e controllo nonché i dispositivi di indicazione e presentazione tipici di uno strumento classico. Su questi sarà possibile agire con il mouse del computer per gestire la misura. Questa modalità d impiego delle schede di acquisizione e del software ha portato allo sviluppo degli strumenti virtuali, così chiamati in quanto in realtà non esistono, ma i risultati che si ottengono sono uguali a quelli ottenibili con gli strumenti tradizionali. Alcune applicazioni di strumenti virtuali verranno presentate durante le Esercitazioni.

9 Sistemi di acquisizione dati - 9 Comunicazione fra strumenti La comunicazione fra strumenti programmabili di tipo stand-alone o fra questi e i computer avviene mediante supporti fisici (cavi e interfacce, ecc.) e secondo protocolli (trasmissioni sincrone o asincrone, ecc.) che ormai costituiscono degli standard. In tutti i casi si trasmettono segnali digitali, tipicamente binari, sia in forma seriale che parallela. Fra i tipi di interfacce e di protocolli più diffusi si ricorda l interfaccia seriale RS-232 e quella parallela IEEE 488. L interfaccia IEEE 488 Un interfaccia di comunicazione molto diffusa nel campo della strumentazione è la IEEE 488. Questa interfaccia venne introdotta nel 1967 dalla Hewlett-Packard per collegare i propri strumenti ai propri computer e venne chiamata HP-IB (Hewlett-Packard Interface Bus). Successivamente venne riconosciuta dall IEEE (Institute of Electrical and Electronic Engineers) con il nome di IEEE 488 e dall ANSI (American National Standards Institute). Divenuta uno standard di fatto e adottata diffusamente da tutti i costruttori di strumentazione, è nota anche col nome di GPIB (General Purpose Interface Bus). Un apparecchiatura che comunica in GPIB rispetta una gerarchia in base alla quale può assumere tre ruoli: Controller, Talker (parlatore) e Listener (ascoltatore). L interfaccia, di tipo parallelo, è costituita fisicamente da 25 conduttori: - 8 linee dati (DIO1-DIO8) che trasferiscono sia dati che messaggi di comando. - 3 linee di handshake, che controllano in forma asincrona il flusso di dati. NRFD (Not Ready for Data) NDAC (Not Data Accepted) DAV (Data Valid) - 5 linee per la gestione generale del flusso di informazioni attraverso il collegamento: IFC (Interface Clear) ATN (Attention) SRQ (Service Request) REN (Remote Enable) EOI (End or Identify) Vi sono poi 7 pin per i collegamenti a massa più uno per lo schermo. I comandi e i dati vengono trasmessi normalmente con il codice ASCII (American Standard Code for Information Interchange) a 7 bit; La massima velocità di trasferimento è di 1Mbyte/s. La distanza massima fra le apparecchiature è di 20m, mentre le apparecchiature collegabili sono al massimo 15. Per rendere omogenea la programmazione dell interfaccia GPIB i maggiori produttori mondiali di strumentazione (Hewlett-Packard, Tektronix, Fluke, Kiethley, Bruel & Kajaer, Racal Dana, Wavetek) hanno costituito, nel 1990, un Consorzio per la definizione e l adozione di un set di comandi standard per la strumentazione programmabile, detto SCPI (Standard Command for Programmable Instrumentation). In tal modo la stessa funzione viene svolta da strumenti diversi, di costruttori diversi, con lo stesso comando. Ciò semplifica notevolmente la programmazione e consente il riutilizzo del software già sviluppato. A tale riguardo, peraltro, gli stessi costruttori rendono disponibili vaste librerie di programmi sofisticati e flessibili per la gestione delle misure.

Sistemi di acquisizione dati

Sistemi di acquisizione dati Sistemi di acquisizione dati - 1 Sistemi di acquisizione dati 1 - Configurazioni tipiche Generalità L impiego di tecniche numeriche per la rappresentazione dei segnali consente la successiva elaborazione

Dettagli

Sistemi di acquisizione dati

Sistemi di acquisizione dati Sistemi di acquisizione dati - 1 Sistemi di acquisizione dati 1 - Configurazioni tipiche Generalità L impiego di tecniche numeriche per la rappresentazione dei segnali consente la successiva elaborazione

Dettagli

Oscilloscopio digitale

Oscilloscopio digitale Oscilloscopio digitale - 1 Oscilloscopio digitale 1 - Schema a blocchi e specifiche L oscilloscopio digitale (Digitizing Oscilloscope) è uno strumento, assai diffuso e versatile, che converte in forma

Dettagli

Sistemi di acquisizione dati

Sistemi di acquisizione dati Sistemi di acquisizione dati - 1 Sistemi di acquisizione dati 1 - Configurazioni tipiche Generalità L impiego di tecniche numeriche per la rappresentazione dei segnali consente la successiva elaborazione

Dettagli

Esercitazioni di Misure per la Bioingegneria e l Habitat e Strumentazioni Elettroniche A.A

Esercitazioni di Misure per la Bioingegneria e l Habitat e Strumentazioni Elettroniche A.A Esercitazioni di Misure per la Bioingegneria e l Habitat e Strumentazioni Elettroniche A.A. 2008-2009 Presentazione Docente: Massimo Piotto Contatti: massimo.piotto@ieiit.cnr.it Tel: 050 2217657 Ricevimento:

Dettagli

Acquisizione Dati. Introduzione

Acquisizione Dati. Introduzione UNIVERSITÀ DEGLI STUDI DI CAGLIARI Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali Corso di Sperimentazione sulle Macchine Acquisizione Dati Introduzione Introduzione In campo scientifico

Dettagli

Componenti di un sistema di acquisizione dati

Componenti di un sistema di acquisizione dati Componenti di un sistema di acquisizione dati Ingresso analogico Trasduzione e condizionamento del segnale Campionamento e Conversione A/D Elaborazione del segnale x(t) u(t) Grandezza fisica Grandezza

Dettagli

LabVIEW BUS IEEE-488 Gianfranco Miele

LabVIEW BUS IEEE-488 Gianfranco Miele Corso di laurea magistrale in Ingegneria delle Telecomunicazioni LabVIEW BUS IEEE-488 Gianfranco Miele g.miele@unicas.it Standard IEEE-488 Interfaccia standard per il controllo della strumentazione Nasce

Dettagli

QUINTA LEZIONE: LO STANDARD IEEE-488

QUINTA LEZIONE: LO STANDARD IEEE-488 Corso di Sistemi Automatici di Misura QUINTA LEZIONE: LO STANDARD IEEE-488 Vantaggi: Flessibilità; Lo standard IEEE-488 BUS STANDARD Si evita di dovere riprogettare parte delle schede utilizzate ad ogni

Dettagli

Strumentazione tradizionale vs. strumentazione virtuale

Strumentazione tradizionale vs. strumentazione virtuale Strumentazione tradizionale vs. strumentazione virtuale Strumento tradizionale: OPERATORE STRUMENTO interazione diretta tramite pannello di controllo e sistema di visualizzazione Strumento virtuale: OPERATORE

Dettagli

CAPITOLO L oscilloscopio numerico (cenni)

CAPITOLO L oscilloscopio numerico (cenni) CAPITOLO 15 15.1 L oscilloscopio numerico (cenni) Lo strumento che permette di visualizzare un segnale nel dominio del tempo viene genericamente denominato oscilloscopio. Quando l andamento temporale è

Dettagli

Analizzatore di spettro. Generalità sull analisi spettrale. Analizzatori a scansione. Analizzatori a doppia conversione. Analizzatore di spettro

Analizzatore di spettro. Generalità sull analisi spettrale. Analizzatori a scansione. Analizzatori a doppia conversione. Analizzatore di spettro Analizzatore di spettro Analizzatore di spettro Analizzatori a scansione Analizzatori a doppia conversione 2 2006 Politecnico di Torino 1 Obiettivi della lezione Metodologici come eseguire l analisi spettrale

Dettagli

Campionamento. Campionamento: problema

Campionamento. Campionamento: problema Posizione del problema uniforme Ricostruzione Teorema del campionamento Significato della formula di ricostruzione Sistema di conversione A/D sample & hold quantizzazione Sistema di conversione D/A : problema

Dettagli

Acquisizione digitale dei segnali

Acquisizione digitale dei segnali Acquisizione digitale dei segnali Rodolfo Taccani Dipartimento di ingegneria ed architettura Presentazione elaborata dalle lezione del prof. Cigada - POLIMI Contenuti Conversione analogico/digitale (A/D)

Dettagli

SISTEMI DI ACQUISIZIONE

SISTEMI DI ACQUISIZIONE SISTEMI DI ACQUISIZIONE Introduzione Lo scopo dei sistemi di acquisizione dati è quello di controllo delle grandezze fisiche sia nella ricerca pura, nelle aziende e, per i piccoli utenti. I vantaggi sono:

Dettagli

Capitolo Acquisizione dati con PC

Capitolo Acquisizione dati con PC Capitolo 2 Acquisizione dati con PC 2.1 Generalità 2.2 Sistema di acquisizione dati analogici monocanale con PC, per segnali lentamente variabili 2.3 Sistema di acquisizione dati analogici multicanale

Dettagli

Sistemi di acquisione dati (1)

Sistemi di acquisione dati (1) Sistemi anche molto complessi: Sistemi di acquisione dati (1) mux elab. demux controllo Svolgono le funzioni di più di uno strumento di misura Comprendono sensori, sistemi di condizionamento dei segnali,

Dettagli

Dispense delle Esercitazioni dei moduli:

Dispense delle Esercitazioni dei moduli: Dispense delle Esercitazioni dei moduli: Misure per la Bioingegneria e l Habitat e Strumentazioni Elettroniche A.A. 2003 2004 Introduzione Gli strumenti elettronici tradizionali sono degli oggetti costituiti,

Dettagli

Esercitazione Strumentazione virtuale

Esercitazione Strumentazione virtuale Esercitazione Strumentazione virtuale - 1 Esercitazione Strumentazione virtuale 1 - Oggetto Introduzione alla strumentazione virtuale. LabView: il pannello frontale e il diagramma a blocchi. Esempi: generatore

Dettagli

Oscilloscopio Analogico: - rappresentazione di ;

Oscilloscopio Analogico: - rappresentazione di ; Oscilloscopio Oscilloscopio Analogico: rappresentazione di ; il segnale è inviato alle p.d.v.; lavora alla velocità del segnale; evento di trigger riferimento temporale; segnali periodici o ripetitivi).

Dettagli

Capitolo IX. Convertitori di dati

Capitolo IX. Convertitori di dati Capitolo IX Convertitori di dati 9.1 Introduzione I convertitori di dati sono circuiti analogici integrati di grande importanza. L elaborazione digitale dei segnali è alternativa a quella analogica e presenta

Dettagli

Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi

Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi Esercizio C2.1 - Acquisizione dati: specifiche dei blocchi È dato un segnale analogico avente banda 2 khz e dinamica compresa tra -2 V e 2V. Tale segnale deve essere convertito in segnale digitale da un

Dettagli

Il tema proposto può essere risolto seguendo due ipotesi:

Il tema proposto può essere risolto seguendo due ipotesi: Per la trattazione delle tecniche TDM, PM e Trasmissione dati si rimanda alle schede 41, 42, 43, 44, 45, 46, 47 e 48 del libro Le Telecomunicazioni del Prof. F. Dell Aquila. Il tema proposto può essere

Dettagli

Necessità di attivare la scansione orizzontale con un certo ritardo (delay) rispetto all evento di trigger.

Necessità di attivare la scansione orizzontale con un certo ritardo (delay) rispetto all evento di trigger. Base dei tempi ritardata Necessità di attivare la scansione orizzontale con un certo ritardo (delay) rispetto all evento di trigger. base dei tempi ordinaria (non ritardata) Oscilloscopio p.9/38 Base dei

Dettagli

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA 1 Fondamenti di segnali Fondamenti e trasmissione TLC Campionamento e quantizzazione di un segnale analogico Si consideri il segnale x(t) campionato con passo

Dettagli

Esercitazione Strumentazione virtuale

Esercitazione Strumentazione virtuale Esercitazione Strumentazione virtuale - 1 Esercitazione Strumentazione virtuale 1 - Oggetto Introduzione alla strumentazione virtuale. LabView: il pannello frontale e il diagramma a blocchi. Esempi: generatore

Dettagli

Contatori Elettronici frequenzimetri

Contatori Elettronici frequenzimetri Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Contatori Elettronici frequenzimetri Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

Caratteristiche di un PC

Caratteristiche di un PC Caratteristiche di un PC 1 Principali porte presenti sui personal computer PC Una porta è il tramite con la quale i dispositivi (periferiche o Device ) vengono collegati e interagiscono con il personal

Dettagli

6. ACQUISIZIONE DIGITALE DEI SEGNALI

6. ACQUISIZIONE DIGITALE DEI SEGNALI 6. ACQUISIZIONE DIGITALE DEI SEGNALI La realtà fisica macroscopica è analogica Attualmente sono sempre più utilizzati sistemi digitali per il calcolo numerico, per l acquisizione, l elaborazione e la trasmissione

Dettagli

Dialogo tra strumentazione elettronica e calcolatore mediante protocollo IEEE-488

Dialogo tra strumentazione elettronica e calcolatore mediante protocollo IEEE-488 Università degli studi di Padova Facoltà di Ingegneria Corso di Dialogo tra strumentazione elettronica e calcolatore mediante protocollo IEEE-488 M.Bertocco 1 Comunicazione tra calcolatore e strumentazione

Dettagli

SEGNALE ANALOGICO. Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo

SEGNALE ANALOGICO. Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo ACQUISIZIONE SEGNALE ANALOGICO 6 5 4 3 2 t Un segnale analogico ha un ampiezza che varia in maniera continua nel tempo CONVERTITORE A/D Dispositivo che realizza la conversione tra i valori analogici del

Dettagli

Architettura del Calcolatore

Architettura del Calcolatore Giuseppe Manco Lezione 3 17 Ottobre 2003 Architettura del calcolatore Il calcolatore è uno strumento programmabile per la rappresentazione, la memorizzazione e l elaborazione delle informazioni un calcolatore

Dettagli

Oscilloscopio Analogico: - rappresentazione di ;

Oscilloscopio Analogico: - rappresentazione di ; Oscilloscopio Oscilloscopio Analogico: rappresentazione di ; il segnale è inviato alle p.d.v.; lavora alla velocità del segnale; evento di trigger riferimento temporale; segnali periodici o ripetitivi).

Dettagli

Oscilloscopio Rappresentazione dell andamento temporale di tensioni

Oscilloscopio Rappresentazione dell andamento temporale di tensioni Oscilloscopio p.1/35 Oscilloscopio Rappresentazione dell andamento temporale di tensioni % &. # - 0. / # + + + + + + ' * $ % & % ) "! $ ' Oscilloscopio p.2/35 Tubo a raggi catodici ' ' ' ' ' ' ' ! ' %&

Dettagli

Problematiche Interfacciamento

Problematiche Interfacciamento Corso di Misure per la Automazione e la Produzione Industriale (Studenti Ingegneria Elettrica e Meccanica V anno Vecchio Ordinamento) Misure per la Automazione e la Qualità (Studenti Ingegneria Elettrica

Dettagli

Introduzione I contatori sono dispositivi fondamentali nell elettronica digitale e sono utilizzati per:

Introduzione I contatori sono dispositivi fondamentali nell elettronica digitale e sono utilizzati per: INTRODUZIONE AI CONTATORI Introduzione I contatori sono dispositivi fondamentali nell elettronica digitale e sono utilizzati per: o Conteggio di eventi o Divisione di frequenza o Temporizzazioni Principi

Dettagli

Maturità Elettronica e Telecomunicazioni TEMA DI ELETTRONICA

Maturità Elettronica e Telecomunicazioni TEMA DI ELETTRONICA Maturità Elettronica e Telecomunicazioni TEMA DI ELETTRONICA Testo Un sistema elettronico di registrazione e visualizzazione dell attività elettrica del cuore è realizzato secondo lo schema a blocchi riportato

Dettagli

Oscilloscopio L oscilloscopio a raggi catodici è certamente uno strumento importante del laboratorio elettronico.

Oscilloscopio L oscilloscopio a raggi catodici è certamente uno strumento importante del laboratorio elettronico. Oscilloscopio L oscilloscopio a raggi catodici è certamente uno strumento importante del laboratorio elettronico. La sua caratteristica essenziale è quella di visualizzare l andamento nel tempo dei segnali

Dettagli

Tensioni e corrente variabili

Tensioni e corrente variabili Tensioni e corrente variabili Spesso, nella pratica, le tensioni e le correnti all interno di un circuito risultano variabili rispetto al tempo. Se questa variabilità porta informazione, si parla spesso

Dettagli

T10 CONVERTITORI A/D E D/A

T10 CONVERTITORI A/D E D/A T10 CONVERTITORI A/D E D/A T10.1 Esplicitare i seguenti acronimi riguardanti i convertitori A/D e D/A: ADC.. DAC.. LSB.. SAR... S&H.. T10.2 Quanto vale l intervallo di quantizzazione in un ADC a 8 bit

Dettagli

Corso di Sistemi di Misura Distribuiti. Ing. Domenico Capriglione

Corso di Sistemi di Misura Distribuiti. Ing. Domenico Capriglione Corso di Sistemi di Misura Distribuiti Ing. Domenico Capriglione capriglione@unicas.it BUS DI COMUNICAZIONE & STANDARD IEEE-488 BUS STANDARD Vantaggi: Flessibilità; Si evita di dovere riprogettare parte

Dettagli

Per sistema di acquisizione dati, si deve intendere qualsiasi sistema in grado di rilevare e memorizzare grandezze analogiche e/o digitali.

Per sistema di acquisizione dati, si deve intendere qualsiasi sistema in grado di rilevare e memorizzare grandezze analogiche e/o digitali. Sistema di acquisizione e distribuzione dati Per sistema di acquisizione dati, si deve intendere qualsiasi sistema in grado di rilevare e memorizzare grandezze analogiche e/o digitali. Consiste nell inviare

Dettagli

Corso di Strumentazione e Misure Elettroniche 18/07/03 Prova Scritta

Corso di Strumentazione e Misure Elettroniche 18/07/03 Prova Scritta Corso di Strumentazione e Misure Elettroniche 18/07/03 Per una corretta elaborazione di un segnale, è necessario conoscerne lo spettro di frequenza, cioè almeno il modulo delle componenti sinusoidali in

Dettagli

Campionamento. * il valore del campione corrisponde all ampiezza del segnale nell istante di campionamento. Oscilloscopio p.16/31

Campionamento. * il valore del campione corrisponde all ampiezza del segnale nell istante di campionamento. Oscilloscopio p.16/31 Campionamento * Processo di conversione di una porzione (record) di segnale in un numero di valori discreti con lo scopo di memorizzarli, elaborarli, visualizzarli, ecc. * il valore del campione corrisponde

Dettagli

Segnali Numerici. Segnali Continui

Segnali Numerici. Segnali Continui Segnali Continui La descrizione dell andamento nel tempo di un fenomeno fisico è data da una funzione continua nel tempo (X) e nelle ampiezze (Y) Il segnale analogico è una serie continua di valori x e

Dettagli

Rappresentazione digitale del suono

Rappresentazione digitale del suono Rappresentazione digitale del suono Perché rappresentazione del suono Trasmettere a distanza nel tempo e nello spazio un suono Registrazione e riproduzione per tutti Elaborazione del segnale audio per

Dettagli

M272 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE

M272 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE Pag. 1/1 Sessione ordinaria 2009 Seconda prova scritta M272 ESAME DI STATO DI ISTITUTO TECNICO INDUSTRIALE CORSO DI ORDINAMENTO Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: SISTEMI ELETTRONICI AUTOMATICI

Dettagli

LSS ADC DAC. Piero Vicini A.A

LSS ADC DAC. Piero Vicini A.A LSS 2016-17 ADC DAC Piero Vicini A.A. 2016-2017 Conversione Digitale-Analogica La conversione digitale-analogica (DAC, Digital to Analog Conversion) permette di costruire una tensione V (o una corrente

Dettagli

DAQ. Triggering dei segnali

DAQ. Triggering dei segnali DAQ Triggering dei segnali Il trigger è un segnale che serve a provocare una data azione (p.es. acquisizione segnale, generazione segnale in uscita, ecc.). Il trigger è utile (necessario) se si vuole far

Dettagli

SISTEMI AUTOMATICI DI MISURA. Programma

SISTEMI AUTOMATICI DI MISURA. Programma Corso di Affidabilità e Controllo di Qualità SISTEMI AUTOMATICI DI MISURA seminario Programma CARATTERISTICHE SPECIFICHE (Riduzione dei tempi di misura e di elaborazione dei risultati. Molteplicità di

Dettagli

Analogico vs. Digitale. LEZIONE II La codifica binaria. Analogico vs digitale. Analogico. Digitale

Analogico vs. Digitale. LEZIONE II La codifica binaria. Analogico vs digitale. Analogico. Digitale Analogico vs. Digitale LEZIONE II La codifica binaria Analogico Segnale che può assumere infiniti valori con continuità Digitale Segnale che può assumere solo valori discreti Analogico vs digitale Il computer

Dettagli

Architettura dei computer

Architettura dei computer Architettura dei computer In un computer possiamo distinguere quattro unità funzionali: il processore la memoria principale (memoria centrale, RAM) la memoria secondaria i dispositivi di input/output La

Dettagli

Informatica Industriale - A - 8

Informatica Industriale - A - 8 Informatica Industriale - A - 8 - L. Mezzalira Informatica Industriale - A - 8 prof. Lorenzo MEZZALIRA Interfacciamento con segnali analogici - Cap. 8 CATENA DI MISURA TECNICHE DI CONVERSIONE A / D ELABORAZIONI

Dettagli

1) Si descriva brevemente il processo di conversione analogico-digitale di un segnale.

1) Si descriva brevemente il processo di conversione analogico-digitale di un segnale. PRIMA PROVA (Traccia 1) Ogni risposta sarà valutata con un punteggio massimo di 6 punti. 1) Si descriva brevemente il processo di conversione analogico-digitale di un segnale. 2) Dovendo installare delle

Dettagli

Conversione Analogico/Digitale

Conversione Analogico/Digitale Conversione Analogico/Digitale Le grandezze fisiche che vogliamo misurare variano con continuità in un dato intervallo ed in funzione del tempo: sono descrivibili come una funzione continua di variabile

Dettagli

FONDAMENTI DI INFORMATICA

FONDAMENTI DI INFORMATICA FONDAMENTI DI INFORMATICA CENNI ELEMENTARI AL TEOREMA DEL CAMPIONAMENTO E SPETTRO DI UN SEGNALE Prof. Alfredo Accattatis Fondamenti di Informatica - Alfredo Accattatis 2 Vi ricordate la slide introdotta

Dettagli

Elettronica digitale: cenni

Elettronica digitale: cenni Elettronica digitale: cenni VERSIONE 30.5.01 Non solo analogico La gestione di informazione prevede tipicamente fasi di elaborazione, in cui occorre calcolare funzioni ( qual è la somma di questi due valori?

Dettagli

Sistema di acquisizione e distribuzione dati

Sistema di acquisizione e distribuzione dati Sistema di acquisizione e distribuzione dati Il sistema di acquisizione e distribuzione dati, costituito da un insieme di dispositivi elettronici, è utilizzato per l acquisizione di segnali analogici e

Dettagli

Il protocollo RS Introduzione. 1.2 Lo Standard RS-232

Il protocollo RS Introduzione. 1.2 Lo Standard RS-232 1 Il protocollo RS232 1.1 Introduzione Come noto un dispositivo di interfaccia permette la comunicazione tra la struttura hardware di un calcolatore e uno o più dispositivi esterni. Uno degli obiettivi

Dettagli

Controllo Digitale. Riassumendo. I sistemi di controllo digitale hanno alcuni vantaggi rispetto ai sistemi di controllo a tempo continuo:

Controllo Digitale. Riassumendo. I sistemi di controllo digitale hanno alcuni vantaggi rispetto ai sistemi di controllo a tempo continuo: Parte 12, 1 Motivazioni Parte 12, 2 I sistemi di controllo digitale hanno alcuni vantaggi rispetto ai sistemi di controllo a tempo continuo: Controllo Digitale Flessibilità del SW rispetto all HW Compatibilità

Dettagli

OSCILLOSCOPI DIGITALI

OSCILLOSCOPI DIGITALI OSCILLOSCOPI DIGITALI 1 Introduzione Principio di funzionamento: campionamento e conversione del segnale (campioni numerici), memorizzazione della sequenza, elaborazione e visualizzazione Innovazione tecnologica:

Dettagli

D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI

D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI 10-Jan-02-1 1 Obiettivi del gruppo di lezioni D Analisi Sistemistica di soluzioni analogiche/digitali»

Dettagli

analizzatori di stati logici 1/5

analizzatori di stati logici 1/5 analizzatori di stati logici 1/5 Analizzatori di stati logici Un analizzatore di stati logici (a.s.l.) e un sistema la cui funzione principale e quella di visualizzare l andamento temporale di segnali

Dettagli

Ogni elaboratore esegue delle operazioni sulle informazioni combinandole e trasformandole. Per processare le informazioni vengono eseguite delle

Ogni elaboratore esegue delle operazioni sulle informazioni combinandole e trasformandole. Per processare le informazioni vengono eseguite delle Tipi di Elaboratori Supercomputer Server o mainframe Desktop - Personal Computer Workstation Notebook Portatili Tascabili Palmari Terminali (stupidi/intelligenti) Ogni elaboratore esegue delle operazioni

Dettagli

Laboratorio II, modulo Conversione Analogico/Digitale (cfr.

Laboratorio II, modulo Conversione Analogico/Digitale (cfr. Laboratorio II, modulo 2 2015-2016 Conversione Analogico/Digitale (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_06.pdf e http://ens.di.unimi.it/dispensa/cap4.pdf) Conversione Analogico/Digitale

Dettagli

Ingegneria dell Informazione D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI. Analisi Sistemistica di soluzioni analogiche/digitali

Ingegneria dell Informazione D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI. Analisi Sistemistica di soluzioni analogiche/digitali Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI D SISTEMI DI ELABORAZIONE DIGITALE DEI SEGNALI 10-Jan-02-1 Obiettivi del gruppo di lezioni D Analisi Sistemistica di soluzioni analogiche/digitali»

Dettagli

Rappresentazione (Codifica Binaria dei Numeri) ed Elaborazione delle Informazioni

Rappresentazione (Codifica Binaria dei Numeri) ed Elaborazione delle Informazioni 1 LEZIONE 3 Rappresentazione (Codifica Binaria dei Numeri) ed Elaborazione delle Informazioni LA CODIFICA DEI NUMERI Obiettivo: Codifica in binario dei numeri per favorire l elaborazione da parte dei calcolatori

Dettagli

Sistemi Automatici di Misura

Sistemi Automatici di Misura Corso di Misure per la Automazione e la Produzione Industriale (Studenti Ingegneria Elettrica e Meccanica V anno Vecchio Ordinamento) Misure per la Automazione e la Qualità (Studenti Ingegneria Elettrica

Dettagli

Esempi di possibili domande d esame.

Esempi di possibili domande d esame. INFORMATICA INDUSTRIALE N.O. Esempi di possibili domande d esame. N.B. ogni prova scritta prevede indicativamente 3 o 4 domande. Indicare brevemente le operazioni svolte dal LIVELLO DI ACQUISIZIONE durante

Dettagli

Collaudo statico di un ADC

Collaudo statico di un ADC Collaudo statico di un ADC Scopo della prova Verifica del funzionamento di un tipico convertitore Analogico-Digitale. Materiali 1 Alimentatore 1 Oscilloscopio 1 Integrato ADC 0801 o equivalente Alcuni

Dettagli

Informatica per le discipline umanistiche 2

Informatica per le discipline umanistiche 2 Informatica per le discipline umanistiche 2 Rappresentazione dell informazione Rappresentazione dell informazione Informatica: studio sistematico degli algoritmi che descrivono e trasformano l informazione:

Dettagli

Convertitori Analogico-Digitali o ADC. Generalità

Convertitori Analogico-Digitali o ADC. Generalità Convertitori Analogico-Digitali o ADC ipi di convertitori Flash Ad approssimazioni successive Subranging Integratori a singola/doppia rampa, multislope Sigma delta Caratterizzazione degli ADC 1 Generalità

Dettagli

LABORATORIO DI INFORMATICA

LABORATORIO DI INFORMATICA LABORATORIO DI INFORMATICA Corso di laurea in Scienze della Formazione Primaria a.a.2014/2015 A cura del Prof. Sergio Miranda LEZIONE N.3 Architettura di Von Neumann PREMESSA Caratteristica fondamentale

Dettagli

SISTEMI DI ACQUISIZIONE DATI: SOMMARIO

SISTEMI DI ACQUISIZIONE DATI: SOMMARIO SISTEMI DI DATI: SOMMARIO Il seminario si propone di approfondire le tematiche di acquisizione dati da sensori nel settore industriale Argomenti trattati: architettura e generalità di un generico sistema

Dettagli

convertitore D/A convertitore A/D

convertitore D/A convertitore A/D n bit linee digitali N =2 n livelli range o dinamica tensione analogica d'ingresso IN IN convertitore D/A convertitore A/D OUT 1 filo linea analogica la tensione v out è quantizzata OUT n bit o N livelli

Dettagli

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione UANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA Fondamenti Segnali e Trasmissione Campionamento e quantizzazione di un segnale analogico Si consideri il segnale x(t) campionato con passo T c. Campioni del

Dettagli

Codifica dell Informazione

Codifica dell Informazione Francesco Folino CODIFICA DI DATI E ISTRUZIONI Algoritmi Istruzioni che operano su dati Per scrivere un programma è necessario rappresentare dati e istruzioni in un formato tale che l esecutore automatico

Dettagli

Laboratorio di metodi di acquisizione dati. Giorgio Maggi

Laboratorio di metodi di acquisizione dati. Giorgio Maggi Laboratorio di metodi di acquisizione dati Giorgio Maggi Sommario La conversione Digitale analogica I vari tipi di ADC L SNR e ENOB Il Time to Digital converter L Input-Output Register Il sistema di acquisizione

Dettagli

La codifica dei suoni

La codifica dei suoni La codifica dei suoni Fisicamente un suono è rappresentato come un'onda (onda sonora) che descrive la variazione della pressione dell'aria nel tempo t Sull'asse delle ascisse viene rappresentato il tempo

Dettagli

Lotto n 6. Scheda Tecnica SAD001. Fornitura di apparecchiature per il Laboratorio Solare Fotovoltaico

Lotto n 6. Scheda Tecnica SAD001. Fornitura di apparecchiature per il Laboratorio Solare Fotovoltaico Lotto n 6 SAD001 Fornitura di apparecchiature per il Laboratorio Solare Fotovoltaico A) stema di controllo e acquisizione dati multicanale stema di controllo e acquisizione dati multicanale stema di controllo

Dettagli

LabVIEW. Introduzione. Laboratory Virtual Instrument Engineering Workbench. Esempio di pannello frontale. Misure Elettroniche 1

LabVIEW. Introduzione. Laboratory Virtual Instrument Engineering Workbench. Esempio di pannello frontale. Misure Elettroniche 1 LabVIEW Laboratory Virtual Instrument Engineering Workbench h In molte applicazioni di test e misura è importante poter controllare la strumentazione per mezzo di un calcolatore. L applicativo software

Dettagli

primi passi di STEFANO LOVATI CONVERTITORI

primi passi di STEFANO LOVATI CONVERTITORI primi passi di STEFANO LOVATI CONVERTITORI ANALOGICO-DIGITALI Questo articolo ha lo scopo di fornire una panoramica sulle caratteristiche dei convertitori analogico-digitali, componenti elettronici di

Dettagli

La logica Cuniberti cucchi-vol.1 Segnali elettrici. Segnale analogico

La logica Cuniberti cucchi-vol.1 Segnali elettrici. Segnale analogico La logica Cuniberti cucchi-vol.1 Segnali elettrici I segnali elettrici, di tensione o di corrente, sono grandezze che variano in funzione del tempo; in base al loro andamento, o forma d onda, possono essere

Dettagli

Architettura di un elaboratore. Rappresentazione dell informazione digitale

Architettura di un elaboratore. Rappresentazione dell informazione digitale Architettura di un elaboratore Rappresentazione dell informazione digitale Rappresentazione dell informazione digitale L informatica è la scienza della rappresentazione e dell elaborazione dell informazione.

Dettagli

Fondamenti di Informatica B

Fondamenti di Informatica B Fondamenti di Informatica B Lezione n. 8 Alberto Broggi Gianni Conte A.A. 2005-2006 Fondamenti di Informatica B DESCRIZIONE LIVELLO REGISTRO REGISTER TRANSFER LEVEL (RTL) I MODULI BASE RTL STRUTTURE DI

Dettagli

Tecnologie dei Sistemi di Automazione

Tecnologie dei Sistemi di Automazione Facoltà di Ingegneria Tecnologie dei Sistemi di Automazione Prof. Gianmaria De Tommasi Lezione 2 Architetture dei dispositivi di controllo e Dispositivi di controllo specializzati Corso di Laurea Codice

Dettagli

Misure di frequenza e di tempo

Misure di frequenza e di tempo Misure basate sul conteggio di impulsi Misure di frequenza e di tempo - 1 Misure di frequenza e di tempo 1 - Contatori universali Schemi e circuiti di riferimento Per la misura di frequenza e di intervalli

Dettagli

INTRODUZIONE AL CONTROLLO DIGITALE

INTRODUZIONE AL CONTROLLO DIGITALE INTRODUZIONE AL CONTROLLO DIGITALE Prima della rivoluzione digitale l implementazione hardware degli elementi di controllo e dei trasduttori era basata sull uso di componenti idraulici, pneumatici e di

Dettagli

Lab. Sistemi - Classe 5Bn A. S. 2000/2001 ITIS Primo Levi - Torino AA.AA. STANDARD SERIALE DI COMUNICAZIONE: RS232 Lo standard seriale di

Lab. Sistemi - Classe 5Bn A. S. 2000/2001 ITIS Primo Levi - Torino AA.AA. STANDARD SERIALE DI COMUNICAZIONE: RS232 Lo standard seriale di STANDARD SERIALE DI COMUNICAZIONE: RS232 Lo standard seriale di interfacciamento è stato introdotto al fine di collegare dispositivi remoti a bassa velocità con un calcolatore centrale. In questo genere

Dettagli

Conversione A/D e D/A

Conversione A/D e D/A Conversione A/D e D/A Per convertire un segnale analogico (continuo nel tempo e nelle ampiezze) in uno digitale occorrono due operazioni di discretizzazione: Campionamento: discretizzazione nel dominio

Dettagli

3.3 COLLEGAMENTO DEGLI STRUMENTI AL PC

3.3 COLLEGAMENTO DEGLI STRUMENTI AL PC CAPITOLO 3 3.3 COLLEGAMENTO DEGLI STRUMENTI AL PC Come già detto più volte il banco è completamente controllabile da PC. Tutti gli strumenti sono dotati di una interfaccia standard ( RS232 e/o GPIB ) che

Dettagli

Filtri lineari non ricorsivi (FIR)

Filtri lineari non ricorsivi (FIR) Filtri lineari non ricorsivi (FIR) I filtri FIR (Finite Impulse Response) sono circuiti ad anello aperto, cioè senza reazione tra ingresso ed uscita. Le sue caratteristiche principali sono: uscita è sempre

Dettagli

UNIVERSITAÀ DEGLI STUDI DI PISA. Tesi di Laurea di Primo Livello D ONDA ARBITRARIE DDS CON MICROCONTROLLORE. RELATORI Prof.

UNIVERSITAÀ DEGLI STUDI DI PISA. Tesi di Laurea di Primo Livello D ONDA ARBITRARIE DDS CON MICROCONTROLLORE. RELATORI Prof. UNIVERSITAÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA Tesi di Laurea di Primo Livello GENERATORE DI FORME D ONDA ARBITRARIE DDS CON MICROCONTROLLORE RELATORI Prof.

Dettagli

ADC integrato - Schema e piedinatura di riferimento

ADC integrato - Schema e piedinatura di riferimento ADC integrato - Schema e piedinatura di riferimento I convertitori AD sono disponibili come circuiti integrati in diversi modelli, che differiscono fra loro per prezzo, prestazioni e utilizzi. Al loro

Dettagli

Le principali architetture dei Convertitori Analogico/Digitale

Le principali architetture dei Convertitori Analogico/Digitale Le principali architetture dei Convertitori Analogico/Digitale 1 Principali architetture di convertitori A/D ADC a scala; ADC ad integrazione a rampa semplice, doppia e multipla; ADC ad approssimazioni

Dettagli

I sistemi di acquisizione dati

I sistemi di acquisizione dati I sistemi di acquisizione dati 1 I sistemi di acquisizione dati I sistemi di acquisizione dati utilizzano la componentistica vista sino ad ora per consentire l acquisizione multicanale. Per ogni canale

Dettagli

CONVERSIONE ANALOGICO-DIGITALE E DIGITALE-ANALOGICA

CONVERSIONE ANALOGICO-DIGITALE E DIGITALE-ANALOGICA CONVERSIONE ANALOGICO-DIGITALE E DIGITALE-ANALOGICA Università di Palermo Elettronica digitale II Giuseppe Caruso 1 ELABORAZIONE ANALOGICA O DIGITALE DEI SEGNALI Elaborazione analogica Trasduttore d ingresso

Dettagli