CORSO DI FISICA TECNICA e SISTEMI ENERGETICI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI FISICA TECNICA e SISTEMI ENERGETICI"

Transcript

1 CORSO DI FISICA TECNICA e SISTEMI ENERGETICI Esercitazione 2 Proff. P. Silva e G. Valenti - A.A. 2009/2010 Ottimizzazione di un gruppo frigorifero per il condizionamento Dati di impianto: Potenza frigorifera 1000 kw Condensazione ad aria, temperatura ambiente esterno di progetto: 35 C Temperatura dell ambiente da condizionare: 25 C Temperatura di evaporazione del fluido frigorifero: 10 C Rendimento di secondo principio del ciclo frigorifero: 0.55 Ore annue equivalenti = 1000 Costo elettricità = 0.15 /kwh Costi di capitale ripartiti come quota fissa secca in 4 anni Dati per l aria ambiente esterno: c p,ae = kj / kg K MM AE = 28.9 kg / kmol Si ricerchino i valori ottimali dal punto di vista economico di: temperatura di condensazione aumento di temperatura dell aria nel condensatore velocità dell aria ambiente esterno attraverso il condensatore (v AE ) in base ai costi di: investimento compressore investimento condensatore investimento ventilatori esercizio per elettricità consumata dal compressore esercizio per elettricità consumata dai ventilatori Per la determinazione delle condizioni operative del condensatore: coefficiente di scambio interno: hi = 2000 W/m 2 K coefficiente di scambio esterno (aria): he = 50 v 0.4 AE W/m 2 K efficienza dell alettatura: 0.7; S e /S i = 23 perdite di pressione aria: p = 12 v 1.62 AE Pa rendimento ventilatori = 0.6 Per la determinazione dei costi di investimento (formule empiriche in base all esperienza): compressore = 200 / kw elettrico condensatore = 150 / m 2 (superficie di scambio) + 50 / m 2 (superficie frontale) ventilatori = 20 / (m 3 /s di aria) + 25 / kw elettrico Costruire infine 3 diagrammi che esprimono l andamento dei costi totali in funzione delle variabili di progetto, fissando ogni volta uno dei parametri al valore di ottimo e facendo variare gli altri due. Versione 26 dicembre

2 Premessa Nella presente esercitazione un impianto frigorifero deve essere ottimizzato da un punto di vista economico. Più nel dettaglio, con una procedura numerica devono essere trovati i valori delle tre variabili indipendenti (temperatura di condensazione, temperatura di uscita dell aria dal condensatore e velocità dell aria attraverso il medesimo), all interno del loro campo di esistenza, che restituiscano il minor costo annuale, costo che è pari alla somma dell incidenza dell investimento sul singolo anno dei quattro considerati e del costo dell energia elettrica assorbita annualmente. Il metodo suggerito per risolvere l esercitazione è quello di implementare i modelli in Excel e di adoperare la funzione Risolutore, la quale permette la ricerca numerica vincolata di un minimo di una funzione obiettivo, che in questo caso è il costo annuale. Come ogni ricerca numerica, bisognerà assegnare un valore di primo tentativo ragionevole e poi avviare la funzione. Si consiglia in generale di costruire un documento Excel ordinato mettendo all inizio i dati del problema, poi le celle delle tre variabili indipendenti con a lato i rispettivi limiti di esistenza e le equazioni che verranno qui di seguito esposte. Si ricorda di evidenziare sempre le unità di misura. 1 Analisi termodinamica 1.1 Bilanci complessivi Le variabili indipendenti del problema sono: la temperatura di condensazione del fluido frigorigeno, [ C]; la temperatura dell aria ambiente esterno uscente dal condensatore, [ C]; la velocità con cui la suddetta aria attraversa il condensatore, [m/s]. Il [adimensionale], dall acronimo inglese di Coefficient Of Performance, del ciclo ideale di Carnot operante tra la temperatura di evaporazione, [ C] nota, e quella di condensazione vale: ove la temperatura a numeratore deve essere espressa in K. Il del ciclo reale è calcolabile da quello del ciclo ideale attraverso il rendimento di secondo principio del ciclo frigorifero, [adimensionale]: Dal valore noto della potenza frigorifera, [kw], e grazie alla definizione di, la potenza trasferita al fluido frigorigeno dal compressore è valutabile come: La potenza termica ceduta dal fluido frigorigeno all aria dell ambiente esterno attraverso il condensatore, [kw], risulta essere: Versione 26 dicembre

3 1.2 Condensatore (del fluido frigorigeno) Il diagramma di scambio termico è mostrato in figura. Nella trattazione seguente verrà però trascurato il desurriscaldamento del fluido frigorigeno, linea tratteggiata, cioè si assumerà che l intero scambio termico lato fluido frigorigeno avvenga a temperatura costante. Temperatura, C Desurriscaldamento (qui trascurato) ΔT 1 T COND T AE,u Fluido frigorigeno Aria ambiente esterno T COND ΔT 2 T AE,i Potenza termica condensatore, kw Il vincolo su : è che sia strettamente superiore alla temperatura dell aria ambiente esterno, e, a sua volta, il vincolo su è che sia intermedia tra le precedenti: La differenza di temperatura media logaritmica, [ C], vale: ove e Pertanto, una volta fissate la temperatura di condensazione e quella di uscita dell aria ambiente esterno dal condensatore, le differenza di temperatura media logaritmica è anch essa fissata. Versione 26 dicembre

4 Il coefficiente di scambio termico complessivo tra il fluido frigorigeno e l aria esterna, [W/(m 2 K)], vale: ove tutti i termini sono specificati nel testo dell esercitazione, ad eccezione del coefficiente di scambio termico convettivo lato aria, [W/( m 2 K)], che è legato alla velocità dell aria ambiente esterno tramite la correlazione: Il vincolo su è che sia strettamente positivo: Dunque, fissata anche la velocità dell aria esterna, la superficie di scambio termico interna del condensatore, [m 2 ], è calcolabile da: ove le unità di misura devono essere coerenti. 1.3 Ventilatore (dell aria ambiente esterno attraverso il condensatore) L aria esterna è forzata attraverso lo scambiatore da un ventilatore. La portata massica di aria esterna, [kg/s], è valutata dal bilancio di energia scritto per essa: La portata volumetrica ad essa corrispondente, [m 3 /s], è: ove [kg/m 3 ] è la densità dell aria. Poiché il ventilatore impone delle variazioni di pressione modeste, la densità varia nel processo in modo trascurabile. Quindi essa è stimata dall equazione di gas ideale scritta alle condizioni dell ambiente esterno: con la pressione ambiente esterno, tipicamente uguale a Pa, la costante universale dei gas, uguale a 8314 J/(kmol K), e la massa molare dell aria definita nel testo. La superficie frontale del condensatore lato esterno, cioè la sezione di attraversamento dell aria esterna, [m 2 ],è legata alla portata volumetrica ed alla velocità tramite: Versione 26 dicembre

5 La potenza elettrica assorbita dal motore elettrico, [kw], che trascina il ventilatore è: ove, come indicato nel testo, la prevalenza fornita dal ventilatore al flusso di aria è quella necessaria a vincere le perdite di carico attraverso il condensatore, [Pa], cioè: 1.4 Compressore (del fluido frigorigeno) Assumendo per semplicità che il motore elettrico che trascina il compressore del fluido frigorigeno è ideale, si può scrivere che la potenza elettrica necessaria per il funzionamento del compressore è: 2 Analisi economica 2.1 Costo dell investimento Il costo di investimento del condensatore, [ ], è secondo il testo dell esercitazione: mentre quello del ventilatore, [ ]: ed infine quello del compressore, [ ]: Complessivamente, il costo di investimento del gruppo frigorifero, [ ]: 2.2 Costo operativo dell elettricità assorbita annualmente Il ventilatore del condensatore ed il compressore sono trascinati da due motori elettrici distinti. Il costo dell energia elettrica da loro assorbita in un anno viene stimato con il concetto di ore equivalenti di funzionamento. In generale, per un componente che consuma elettricità, indicando con [kwh/anno] l elettricità da esso assorbita annualmente e [kw e ] la sua potenza elettrica nominale, si definisce il numero di ore equivalenti di funzionamento, [h/anno]: Numericamente le ore equivalenti differiscono dalle ore effettive di funzionamento perché, nella realtà, un sistema opera a carichi parziali e a condizioni differenti da quelle di riferimento. Le ore equivalenti indicano, pertanto, quante ore in anno il sistema dovrebbe funzionare costantemente a carico nominale per consumare il quantitativo di energia che consuma effettivamente nell anno. Versione 26 dicembre

6 Dunque, chiamando [ /kwh e ] il costo specifico dell energia elettrica, il costo annuale dell elettricità assorbita dal gruppo frigorifero, [ /anno], è: ove: e: 2.3 Costo totale annuo Il costo totale annuo del frigorifero, [ /anno], suddividendo in quote fisse secche l investimento su quattro anni di funzionamento, è dunque: Tale costo risulta essere dipendente dalle tre variabili, e ed è la funzione obiettivo da minimizzare all interno del campo di esistenza delle variabili stesse. I valori delle tre variabili così trovati sono detti di ottimo economico. 2.4 Grafici E richiesto di costruire tre grafici per verificare i valori di ottimo economico trovati. Da un punto di vista operativo per ognuno dei tre grafici: fissare alternativamente una delle tre variabili al valore di ottimo economico trovato; assegnare parametricamente ad una seconda variabile dei valori, tra cui anche quello ottimo; diagrammare il costo annuale in funzione della terza variabile. Ad esempio, la figura di seguito riporta l andamento qualitativo di in funzione di fissati: Versione 26 dicembre

7 c FRIGO, /anno (T AE,u ) 2 (T AE,u ) 1 (T AE,u ) ottimo T COND =(T COND ) ottimo (c FRIGO ) ottimo (v AE ) ottimo v AE, m/s 3 Considerazioni generali E importante capire l effetto di ognuna delle variabili indipendenti sui parametri del gruppo frigorifero e, da ultimo, sui termini che compongono il costo annuale: ed inoltre: ed infine: Versione 26 dicembre

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA LAUREA MAGISTRALE IN INGEGNERIA MECCANICA A.A 2012-13 - CORSO DI SISTEMI ENERGETICI LM Prof. Emanuele MARTELLI Prova scritta del 26-02-2013 Allegare alle soluzioni

Dettagli

CAPITOLO 6 CENTRALI FRIGORIFERE

CAPITOLO 6 CENTRALI FRIGORIFERE CAPITOLO 6 CENTRALI FRIGORIFERE Cap. 6 1 MACCHINE FRIGORIFERE LE MACCHINE FRIGORIFERE SI UTILIZZANO PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A BASSA TEMPERATURA E QUINDI PER REFRIGERARE L UTENZA STESSA

Dettagli

FISICA TECNICA - A.A. 99/00

FISICA TECNICA - A.A. 99/00 Termo-fluidodinamica applicata - 1 a Interprova del 30.3.2000 Cognome Nome Anno di Corso Matricola 1 T1=200 C p1=7,0 bar m1=40 kg/s 2 A2=25 cm 2 T2=40,0 C p2=7,0 bar 3 V3=0,060 m 3 /s p3=7,0 bar Q A) Due

Dettagli

Esercizi sui Motori a Combustione Interna

Esercizi sui Motori a Combustione Interna Esercizi sui Motori a Combustione Interna 6 MOTORE 4TEMPI AD ACCENSIONE COMANDATA (Appello del 08.0.000, esercizio N ) Un motore ad accensione comandata a 4 tempi di cilindrata V 000 cm 3, funzionante

Dettagli

Corso di Termofluidodinamica

Corso di Termofluidodinamica Corso di Termofluidodinamica Modulo di Termodinamica Tecnica A.A. 2014-2015 - Esercizi di preparazione alla prima prova intermedia Problema N. 1 Un serbatoio deve essere dimensionato per contenere 200

Dettagli

Guida all acquisto. Pompa di calore per la produzione di acqua calda sanitaria

Guida all acquisto. Pompa di calore per la produzione di acqua calda sanitaria Guida all acquisto Beni per l Efficienza Energetica attraverso il Mercato Elettronico produzione di acqua calda sanitaria (Dicembre 2012) Acquisti in Rete della P.A. Guida all acquisto Pagina 1 di 6 1

Dettagli

CAPITOLO 13 CENTRALI FRIGORIFERE

CAPITOLO 13 CENTRALI FRIGORIFERE CAPITOLO 13 CENTRALI FRIGORIFERE Cap. 13 1 MACCHINE FRIGORIFERE LE MACCHINE FRIGORIFERE SI UTILIZZANO PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A BASSA TEMPERATURA E QUINDI PER REFRIGERARE L UTENZA STESSA

Dettagli

Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale Termodinamica

Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale Termodinamica Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale 2012-2013 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas (! = 1,29 ed R * = 190 J/(kg"K)) si espande da 5 bar e 90 C ad

Dettagli

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl SOLUZIONI problemi cap.9 9.1 (a) Assimiliamo l aria a un gas perfetto con calori specifici costanti a temperatura ambiente: Trasformazione 1-2: compressione isoentropica. Trasformazione 2-3: somministrazione

Dettagli

CORSO DI FISICA TECNICA e SISTEMI ENERGETICI. Proff. P. Silva e G. Valenti - A.A. 2009/2010 Calcolo di un Generatore di Vapore

CORSO DI FISICA TECNICA e SISTEMI ENERGETICI. Proff. P. Silva e G. Valenti - A.A. 2009/2010 Calcolo di un Generatore di Vapore CORSO DI FISICA TECNICA e SISTEMI ENERGETICI Esercitazione 1 Proff. P. Silva e G. Valenti - A.A. 2009/2010 Calcolo di un Generatore di Vapore Un generatore di vapore è alimentato con gas naturale avente

Dettagli

Esercitazione 2 Ciclo a vapore a recupero

Esercitazione 2 Ciclo a vapore a recupero Esercitazione 2 Ciclo a vapore a recupero Lo scopo di questa esercitazione è la progettazione di un ciclo a recupero: l impianto è composto da un ciclo a vapore ad un livello di pressione che utilizza

Dettagli

Esercitazione di Fisica Tecnica

Esercitazione di Fisica Tecnica Anno Accademico 2016-2017 Prof. Ing. L. Maffei 1 Anno Accademico 2016-2017 - PARTE 1 Grandezze e unità di misura Consumi energetici 2 Grandezze e unità di misura 3 Convertire le seguenti misure usando

Dettagli

Relazione di Sistemi Energetici: Calcolo semplificato del rendimento di una caldaia con e senza "air-heater" rigenerativo.

Relazione di Sistemi Energetici: Calcolo semplificato del rendimento di una caldaia con e senza air-heater rigenerativo. Relazione di Sistemi Energetici: Calcolo semplificato del rendimento di una caldaia con e senza "air-heater" rigenerativo. Palagiano, Riccardo matricola 792668 Ostojic, Roberto matricola 811142 Perucchini,

Dettagli

CAPITOLO 13 CENTRALI FRIGORIFERE

CAPITOLO 13 CENTRALI FRIGORIFERE CAPITOLO 13 CENTRALI FRIGORIFERE Cap. 13 1 MACCHINE FRIGORIFERE LE MACCHINE FRIGORIFERE SI UTILIZZANO PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A BASSA TEMPERATURA E QUINDI PER REFRIGERARE L UTENZA STESSA

Dettagli

Trasformatore monofase

Trasformatore monofase Prova in corto circuito La prova in corto circuito permette di determinare il valore degli elementi circuitali connessi in serie al trasformatore ideale e cioè le reattanze di dispersione X 1d, X d e le

Dettagli

6. Determinare il titolo del vapor d acqua che ad 8,00 bar ha un entalpia specifica di 2000 kj/kg.

6. Determinare il titolo del vapor d acqua che ad 8,00 bar ha un entalpia specifica di 2000 kj/kg. ESERCIZI DI FISICA TECNICA TERMODINAMICA APPLICATA Termodinamica degli stati 1. Utilizzando il piano pt e le tabelle A.3 del vapor d acqua saturo, si dica quali sono le fasi presenti nei sistemi costituiti

Dettagli

PRODUZIONEDI ENERGIA TERMICA CON POMPE DI CALORE AD ACQUA DI FALDA LA PRODUZIONE DI ACQUA SANITARIA

PRODUZIONEDI ENERGIA TERMICA CON POMPE DI CALORE AD ACQUA DI FALDA LA PRODUZIONE DI ACQUA SANITARIA PRODUZIONEDI ENERGIA TERMICA CON POMPE DI CALORE AD ACQUA DI FALDA LA PRODUZIONE DI ACQUA SANITARIA OBIETTIVI DELL INDAGINE Approfondire il problema della produzione di acqua calda sanitaria Le prime due

Dettagli

Esercizi sulle Macchine Operatrici Idrauliche

Esercizi sulle Macchine Operatrici Idrauliche Esercizi sulle Macchine Operatrici Idrauliche 17 CAVITAZIONE POMPE (Appello del 06.12.02, esercizio N 1) Testo Una pompa invia una portata Q = 16 dm 3 /s di acqua ad un serbatoio sopraelevato di 8 m. In

Dettagli

UNIVERSITÀ DEGLI STUDI DI BRESCIA

UNIVERSITÀ DEGLI STUDI DI BRESCIA UNIVERSITÀ DEGLI STUDI DI BRESCIA ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario) SEZIONE B - Seconda

Dettagli

Politecnico di Milano Dipartimento di Ingegneria Aerospaziale

Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Dipartimento di Ingegneria Aerospaziale Corso di Impianti e Sistemi Aerospaziale IMPIANTO DI CONDIZIONAMENTO Alessandro Daniele Galluzzi Giugno 2016 1. Premessa. La presente relazione

Dettagli

Componenti impianto frigorifero. Certificazione Frigoristi Regolamento CE n.842/2006

Componenti impianto frigorifero. Certificazione Frigoristi Regolamento CE n.842/2006 Componenti impianto frigorifero Certificazione Frigoristi Regolamento CE n.842/2006 Il CIRCUITO FRIGORIFERO 23/04/2013 2 In natura il calore fluisce da un corpo più caldo ad un corpo più freddo CORPO CALDO

Dettagli

Frigorifero CICLO FRIGORIFERO-TEORIA L = Q C - Q F. Coefficiente di prestazione

Frigorifero CICLO FRIGORIFERO-TEORIA L = Q C - Q F. Coefficiente di prestazione Frigorifero CICLO FRIGORIFERO-TEORIA Frigorifero: dispositivo a funzionamento ciclico composto da: (Fig. 1) un insieme di sorgenti di calore ad alta temperatura, T i, un insieme di sorgenti a più bassa

Dettagli

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale.

FISICA. isoterma T f. T c. Considera il ciclo di Stirling, in cui il fluido (=sistema) è considerato un gas ideale. Serie 10: ermodinamica X FISICA II liceo Esercizio 1 Ciclo di Carnot Considera il ciclo di Carnot, in cui il fluido (=sistema) è considerato un gas ideale. Si considerano inoltre delle trasformazioni reversibili.

Dettagli

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche.

il ciclo di Ericsson (1853) caratterizzato da due isoterme e due isobare; il ciclo di Reitlinger (1873) con due isoterme e due politropiche. 16 Il ciclo di Stirling Il coefficiente di effetto utile per il ciclo frigorifero di Carnot è, in base alla (2.9): T min ɛ =. (2.31) T max T min Il ciclo di Carnot è il ciclo termodinamico che dà il maggior

Dettagli

Macchine termiche e frigoriferi

Macchine termiche e frigoriferi Macchine termiche e frigoriferi Una macchina termica grazie ad una sequenza di trasformazioni termodinamiche di una data sostanza, produce lavoro utilizzabile. Una macchina lavora su di un ciclo di trasformazioni

Dettagli

Il trasporto di energia termica: le interfacce solido-fluido e il trasporto convettivo. Principi di Ingegneria Chimica Ambientale

Il trasporto di energia termica: le interfacce solido-fluido e il trasporto convettivo. Principi di Ingegneria Chimica Ambientale Il trasporto di energia termica: le interfacce solido-fluido e il trasporto convettivo Principi di Ingegneria Chimica Ambientale 1 Il Coefficiente di Scambio Termico Consideriamo l interfaccia fra un solido

Dettagli

turb new unico turbo frigo turbo fl RefrigeratorI di liquido equipaggiati con compressori centrifughi bi-stadio a levitazione magnetica

turb new unico turbo frigo turbo fl RefrigeratorI di liquido equipaggiati con compressori centrifughi bi-stadio a levitazione magnetica 89 turb RefrigeratorI di liquido equipaggiati con compressori TURBO centrifughi unico new frigo fl potenza frigorifera 260,0 1840,0 kw compressori centrifughi refrigerante R134a ventilatori assiali (serie

Dettagli

REFRIGERAZIONE. Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (<8 C)

REFRIGERAZIONE. Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (<8 C) Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (

Dettagli

ENERGIA TERMICA E PROCESSI INDUSTRIALI

ENERGIA TERMICA E PROCESSI INDUSTRIALI ENERGIA TERMICA E PROCESSI INDUSTRIALI Valter Biolchi INDICE ENERGIA TERMICA E PROCESSI INDUSTRIALI INTRODUZIONE 5 PRIMA DI INIZIARE 9 DISSIPARE, RAFFREDDARE, RISCALDARE, RECUPERARE,, TERMOREGOLARE 13

Dettagli

5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente.

5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente. 5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente. Si vuole effettuare il dimensionamento di un riscaldatore d aria con fluidi in controcorrente

Dettagli

CAPITOLO 4 CICLO FRIGORIFERO

CAPITOLO 4 CICLO FRIGORIFERO CAPITOLO 4 CICLO FRIGORIFERO Cap. 4 1 CICLO FRIGORIFERO IL CICLO FRIGORIFERO SI UTILIZZA PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A TEMPERATURA PIU BASSA RISPETTO ALL AMBIENTE PER IL SECONDO PRINCIPIO

Dettagli

Figura 1 Trasformazione proibita dal Secondo Principio

Figura 1 Trasformazione proibita dal Secondo Principio ENUNCIATO DEL SECONDO PRINCIPIO DELLA TERMODINAMICA Si dice sorgente di calore o serbatoio di calore alla temperatura θ un corpo che si trovi uniformemente alla temperatura θ e sia in condizioni di scambiare

Dettagli

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale 4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di un compressore assiale. Con riferimento alla

Dettagli

SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 luglio Proff. Consonni S., Chiesa P., Martelli E.

SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 luglio Proff. Consonni S., Chiesa P., Martelli E. SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 luglio 2013 Proff. Consonni S., Chiesa P., Martelli E. Tempo a disposizione: 2 ore Avvertenze per lo svolgimento del tema d esame: 1)

Dettagli

Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna

Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna Ciclo termodinamico ideale Joule (Brayton) Ciclo termodinamico ideale Holzwarth Schema

Dettagli

LIBRETTO DI CENTRALE (IMPIANTO?)

LIBRETTO DI CENTRALE (IMPIANTO?) Oggetto: Proposta di Revisione della bozza (N.018rev5) del Libretto di REGISTRO DELL APPARECCHIATURA 1 LIBRETTO DI CENTRALE (IMPIANTO?) OBBLIGATORIO PER LE APPARECCHIATURE DI CLIMATIZZAZIONE AD ALIMENTAZIONE

Dettagli

SERIE SWP. Scaldacqua a pompa di calore SWP L acqua calda costa meno, finalmente. + Efficienza + Risparmio + Benessere

SERIE SWP. Scaldacqua a pompa di calore SWP L acqua calda costa meno, finalmente. + Efficienza + Risparmio + Benessere SERIE SWP Scaldacqua a pompa di calore SWP L acqua calda costa meno, finalmente. + Efficienza + Risparmio + Benessere Scaldacqua a pompa di calore SWP AERMEC tutta l acqua calda che vuoi, ad altissima

Dettagli

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5 Fluidi 1 Stati di aggregazione della materia 2 Densità (II) n La densità assoluta è definita dal rapporto tra la massa M di una sostanza omogenea ed il suo volume V: d = M / V n Nel sistema internazionale

Dettagli

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1

GAS IDEALI E MACCHINE TERMICHE. G. Pugliese 1 GAS IDEALI E MACCHINE TERMICHE G. Pugliese 1 Proprietà dei gas 1. Non hanno forma né volume proprio 2. Sono facilmente comprimibili 3. Le variabili termodinamiche più appropriate a descrivere lo stato

Dettagli

Cognome: Nome: Matricola: CFU TERMOTECNICA 1. A.A febbraio 2010 ESERCIZI NUMERICI. tot. sec m sec = 1. S sec. ζ prim

Cognome: Nome: Matricola: CFU TERMOTECNICA 1. A.A febbraio 2010 ESERCIZI NUMERICI. tot. sec m sec = 1. S sec. ζ prim TERMOTECNICA 1 I PROBLEMA A.A. 2009-2010 12 febbraio 2010 ESERCIZI NUMERICI In un impianto monotubo (cfr disegno) sul ramo secondario è presente un corpo scaldante da 3,0 kw nel quale entra acqua a 90

Dettagli

La scelta del canale aria: un momento importante

La scelta del canale aria: un momento importante La scelta del canale aria: un momento importante L ottenimento di condizioni ambientali prestabilite passa attraverso il controllo di parametri quali: temperatura, umidità, velocità e purezza dell aria.

Dettagli

CAPITOLO 4 CICLO FRIGORIFERO

CAPITOLO 4 CICLO FRIGORIFERO CAPITOLO 4 CICLO FRIGORIFERO Cap. 4 1 CICLO FRIGORIFERO IL CICLO FRIGORIFERO SI UTILIZZA PER SOTTRARRE ENERGIA TERMICA AD UN'UTENZA A TEMPERATURA PIU BASSA RISPETTO ALL AMBIENTE PER IL SECONDO PRINCIPIO

Dettagli

Esercitazione: Dimensionamento di una valvola termostatica

Esercitazione: Dimensionamento di una valvola termostatica Corso di Impianti Meccanici Laurea Triennale e Magistrale Esercitazione: Dimensionamento di una valvola termostatica Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini PhD Ing.

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria PRIMA PROVA SCRITTA DEL 22 giugno 2011 SETTORE INDUSTRIALE TEMA N. 1 Il candidato fornisca una panoramica generale sugli scambiatori di calore, indicandone le principali tipologie e caratteristiche. Ne

Dettagli

IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido - vapore) E COMPRESSIONE A DUE STADI

IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido - vapore) E COMPRESSIONE A DUE STADI IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido - vapore) E COMPRESSIONE A DUE STADI IMPIANTO FRIGORIFERO A COMPRESSIONE DI VAPORE CON CAMERA DI SEPARAZIONE (liquido -

Dettagli

La legge dei gas perfetti

La legge dei gas perfetti La legge dei gas perfetti In condizioni normali l aria ambiente secca contiene approssimativamente 78,08% di azoto (N2), 20,94% di ossigeno (O2), 0,93% di argon (Ar), 0,04% di biossido di carbonio (CO2)

Dettagli

FISICA TECNICA (Ingegneria Medica)

FISICA TECNICA (Ingegneria Medica) NOME N. MATRICOLA N. CREDITI E-MAIL Prova di esame del 11 Febbraio 2014 1. Sia dato un ciclo frigorifero, in cui il fluido evolvente è R134a, a cui in cascata è collegato un secondo ciclo il cui fluido

Dettagli

CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO

CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO CICLO COMBINATO CON SPILLAMENTO IN TURBINA E RIGENERATORE DI TIPO CHIUSO 2J 3J 3J 1J sc 4J 2J 4J m m 1 2 4 3 1J 4 3 m 2 5 7 2 3 6 m m 1 2 m 2 5 m 1 3 6 1 7 m 1 CICLO COMBINATO CON SPILLAMENTO IN TURBINA

Dettagli

VALORE PIÙ CONVENIENTE DEL RENDIMENTO

VALORE PIÙ CONVENIENTE DEL RENDIMENTO VALORE PIÙ CONVENIENTE DEL RENDIENTO In una macchina elettrica ad un rendimento più elevato corrisponde un minor valore delle perdite e quindi un risparmio nelle spese di esercizio (in quanto minori risultano

Dettagli

LE EMISSIONI DI CO2 DEL POLITECNICO DI MILANO PRESENTAZIONE DEI RISULTATI DEL PROGETTO PILOTA 2015 E PRIMI RISULTATI DEGLI STUDI DI APPROFONDIMENTO

LE EMISSIONI DI CO2 DEL POLITECNICO DI MILANO PRESENTAZIONE DEI RISULTATI DEL PROGETTO PILOTA 2015 E PRIMI RISULTATI DEGLI STUDI DI APPROFONDIMENTO 24 maggio 2016 Giornate della Sostenibilità LE EMISSIONI DI CO2 DEL POLITECNICO DI MILANO PRESENTAZIONE DEI RISULTATI DEL PROGETTO PILOTA 2015 E PRIMI RISULTATI DEGLI STUDI DI APPROFONDIMENTO Riduzione

Dettagli

Impianto di Sollevamento Acqua

Impianto di Sollevamento Acqua CORSO DI FISICA TECNICA e SISTEMI ENERGETICI Esercitazione 3 Proff. P. Silva e G. Valenti - A.A. 2009/2010 Impianto di Sollevamento Acqua Dimensionare un impianto di sollevamento acqua in grado di soddisfare

Dettagli

Progetto di un magazzino frigorifero per la conservazione di derrate alimentari

Progetto di un magazzino frigorifero per la conservazione di derrate alimentari Progetto di un magazzino frigorifero per la conservazione di derrate alimentari Per la conservazione delle derrate alimentari in oggetto è sufficiente mantenere nell ambiente di conservazione una temperatura

Dettagli

IL CICLO DI CARNOT. Scambi di energia durante il ciclo

IL CICLO DI CARNOT. Scambi di energia durante il ciclo IL CICLO DI CNO Consideriamo un gas ideale, contenuto nel solito cilindro, che compie un ciclo di 4 trasformazioni reversibili (2 isoterme + 2 adiabatiche) rappresentate nel piano -p come in figura. cambi

Dettagli

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica

Dettagli

Un abitazione consuma circa 8 10 kwh di energia elettrica al giorno. L ente di distribuzione assicura un prelievo contemporaneo massimo pari

Un abitazione consuma circa 8 10 kwh di energia elettrica al giorno. L ente di distribuzione assicura un prelievo contemporaneo massimo pari Applicazioni del primo principio Potenza ed energia Un abitazione consuma circa 8 0 kwh di energia elettrica al giorno. L ente di distribuzione assicura un prelievo contemporaneo massimo pari (ad esempio)

Dettagli

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II)

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II) Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria himica Esercitazione 6 (FI) - 1 Gennaio 016 Scambio di materia (II) Esercizio 1 Evaporazione di acqua da una piscina Stimare la perdita

Dettagli

POLITECNICO DI TORINO

POLITECNICO DI TORINO POLITECNICO DI TORINO ESAMI DI STATO PER L ABILITAZIONE ALLA PROFESSIONE DI INGEGNERE Seconda sessione ANNO 2008 Settore INDUSTRIALE - Classe 33/S Ingegneria Energetica e nucleare Terza prova (prova pratica

Dettagli

RELAZIONE TECNICA Centrale termica stabilimento

RELAZIONE TECNICA Centrale termica stabilimento --- RELAZIONE TECNICA Centrale termica stabilimento relativa alla CLASSIFICAZIONE DEI LUOGHI CON PERICOLO DI ESPLOSIONE 1. - Dati ambientali L'emissione considerata avviene in un ambiente confinato avente

Dettagli

Dimensionamento di massima di un impianto frigorifero

Dimensionamento di massima di un impianto frigorifero Giulio Cazzoli versione 1.2 - Maggio 2014 Si chiede di effettuare il dimensionamento di massima di un ciclo frigorifero che impiega R-134a utilizzato per mantenere in temperatura un magazzino frigorifero

Dettagli

PERDITE DI CARICO CONTINUE

PERDITE DI CARICO CONTINUE PERDITE DI CARICO CONTINUE La dissipazione di energia dovuta all'attrito interno ed esterno dipende da: velocità del liquido [m/s] dal tipo di liquido e dalle pareti della vena fluida, secondo un coefficiente

Dettagli

Modello unità esterna IOKE-160T Modello unità interna a colonna MFGE-160

Modello unità esterna IOKE-160T Modello unità interna a colonna MFGE-160 SISTEMI MONO SPLIT IN POMPA DI CALORE SERIE DC INVERTER Modello unità esterna IOKE-160T Modello unità interna a colonna MFGE-160 Sistema di climatizzazione in pompa di calore con raffreddamento ad aria,

Dettagli

Aura IN. Accessori a richiesta. Certificazione. Come ordinare Aura IN?

Aura IN. Accessori a richiesta. Certificazione. Come ordinare Aura IN? Aura IN Caldaie a condensazione, a camera stagna ad altissimo rendimento adatte per il riscaldamento e la produzione di acqua calda sanitaria. Funzionamento a "tiraggio forzato tipo B23". Sistema antigelo

Dettagli

Corso di Laurea in Scienze e Tecnologie Agrarie

Corso di Laurea in Scienze e Tecnologie Agrarie Corso di Laurea in Scienze e Tecnologie Agrarie Corso di Meccanica e Meccanizzazione Agricola Prof. S. Pascuzzi 1 Richiami di termodinamica Branca della fisica che si occupa del calore, del lavoro e di

Dettagli

INDICE 1. DESCRIZIONE DELLE POMPE IDROVORE DA FORNIRE DIMENSIONAMENTO MOTORI ELETTRICI... 7

INDICE 1. DESCRIZIONE DELLE POMPE IDROVORE DA FORNIRE DIMENSIONAMENTO MOTORI ELETTRICI... 7 INDICE 1. DESCRIZIONE DELLE POMPE IDROVORE DA FORNIRE... 3 2. DIMENSIONAMENTO MOTORI ELETTRICI... 7 2 1. DESCRIZIONE DELLE POMPE IDROVORE DA FORNIRE CALCOLO DELLE PERDITE DI CARICO, PREVALENZA MANOMETRICA,

Dettagli

UNIVERSITA' DEGLI STUDI DI TRIESTE

UNIVERSITA' DEGLI STUDI DI TRIESTE A.A. 2001/02 UNIVERSITA' DEGLI STUDI DI TRIESTE CORSO DI LAUREA PROGRAMMA DEL CORSO DI DOCENTE INGEGNERIA, MECCANICA, NAVALE, dei MATERIALI, ELETTRICA FISICA TECNICA Enrico NOBILE PARTE I: TERMODINAMICA

Dettagli

Industrial instrumentation for Pressure and Temperature

Industrial instrumentation for Pressure and Temperature Industrial instrumentation for Pressure and Temperature 1 OBIETTIVI - Riduzione dei consumi di energia elettrica, rendendo più efficienti gli impianti di produzione aria compressa con pressione 7 bar.

Dettagli

Gamma di condizionatori di precisione per applicazione IN / ROW disponibili nelle seguenti versioni:

Gamma di condizionatori di precisione per applicazione IN / ROW disponibili nelle seguenti versioni: IT COOLING Gamma di condizionatori di precisione per applicazione IN / ROW disponibili nelle seguenti versioni: i. Espansione Diretta condensati ad aria: due modelli con potenza frigorifera nominale rispettivamente

Dettagli

Modello AIRCOM2MI-40 Dual Split potenziato. Modello AIRCOM2MI-40. Modello AIRCOM2MI-40

Modello AIRCOM2MI-40 Dual Split potenziato. Modello AIRCOM2MI-40. Modello AIRCOM2MI-40 CLASSE A++A++ ATTESTIAMO: In base a specifico Decreto legge: Che Tutte le componentistiche di ogni singolo pezzo di ogni unità venduta sono in deposito per 10 anni e ATTESTIAMO un utilizzo inferiore allo

Dettagli

refrigeratori condensati ad acqua, motoevaporanti, pompe di calore COLDPACK_

refrigeratori condensati ad acqua, motoevaporanti, pompe di calore COLDPACK_ refrigeratori condensati ad acqua, motoevaporanti, pompe di calore COLDPACK_ capacità frigorifera 32,2 379,3 kw capacità calorifera 29,5 414,4 kw compressori scroll refrigerante R407C microprocessore MP.COM

Dettagli

1 Ciclo Rankine inverso.

1 Ciclo Rankine inverso. 1 Ciclo Rankine inverso. Il ciclo rappresentato, detto ciclo di Rankine inverso, viene modificato attraverso lo scambiatore di calore introdotto nello schema della macchina e che permette la cessione di

Dettagli

Termodinamica applicata ai cicli frigoriferi. Certificazione Frigoristi Regolamento CE n.842/2006

Termodinamica applicata ai cicli frigoriferi. Certificazione Frigoristi Regolamento CE n.842/2006 Termodinamica applicata ai cicli frigoriferi Certificazione Frigoristi Regolamento CE n.842/2006 Termodinamica applicata ai cicli frigoriferi Parte I Ciclo frigorifero Parte II Diagrammi termodinamici

Dettagli

ixincondens 25C/IT (M) (cod. 00916360)

ixincondens 25C/IT (M) (cod. 00916360) ixincondens 25C/IT (M) (cod. 00916360) Caldaie a condensazione a camera stagna ad altissimo rendimento adatte per il riscaldamento e la produzione di acqua calda sanitaria. Corpo caldaia lamellare in alluminio

Dettagli

EVAPORAZIONE 2. Dati di progetto relativi ai vapori circolanti nell impianto:

EVAPORAZIONE 2. Dati di progetto relativi ai vapori circolanti nell impianto: EVAPORAZIONE 2 1. Una soluzione acquosa deve essere concentrata dal 10% al 25% in massa mediante un sistema di evaporazione a doppio effetto in controcorrente. Sapendo che: a) la soluzione diluita entra

Dettagli

SISTEMI DI COGENERAZIONE

SISTEMI DI COGENERAZIONE SISTEMI DI COGENERAZIONE Loro integrazione nella rete elettrica (ing. LINO GAVI - p.i. CARLO ZUANAZZI per ASM BRESCIA SpA) Torna al programma L applicazione pratica del concetto apparentemente banale di

Dettagli

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale 5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di una turbina assiale con i seguenti valori di progetto:

Dettagli

6. Calcolo di verifica per il tiraggio in un camino di geometria assegnata. Fig.1

6. Calcolo di verifica per il tiraggio in un camino di geometria assegnata. Fig.1 6. Calcolo di verifica per il tiraggio in un camino di geometria assegnata Per il sistema rappresentato in Fig.1, si verifici ce sussistano le condizioni sufficienti per il tiraggio. E noto ce in un impianto

Dettagli

Determinazione e confronto delle prestazioni di impianti geotermoelettrici

Determinazione e confronto delle prestazioni di impianti geotermoelettrici Determinazione e confronto delle prestazioni di impianti geotermoelettrici Si ipotizzi di avere una potenza geotermica disponibile pari a 600 MW. La temperatura dell'acqua di refrigerazione all'uscita

Dettagli

Modello AIRCOM3MI-78 Trial Split Superpotenziato. Modello AIRCOM3MI-78. Modello AIRCOM3MI-78

Modello AIRCOM3MI-78 Trial Split Superpotenziato. Modello AIRCOM3MI-78. Modello AIRCOM3MI-78 CLASSE A++A++ ATTESTIAMO: In base a specifico Decreto legge: Che Tutte le componentistiche di ogni singolo pezzo di ogni unità venduta sono in deposito per 10 anni e ATTESTIAMO un utilizzo inferiore allo

Dettagli

CALORIMETRO DELLE mescolanze

CALORIMETRO DELLE mescolanze CALORIMETRO DELLE mescolanze Scopo dell esperienza è la misurazione del calore specifico di un corpo solido. Il funzionamento del calorimetro si basa sugli scambi di energia, sotto forma di calore, che

Dettagli

Esercitazione 3. Esercizio 1

Esercitazione 3. Esercizio 1 Esercitazione 3 Esercizio 1 Una pompa centrifuga opera con velocità di rotazione n d = 1450 rpm. Al punto di massimo rendimento la pompa elabora una portata volumetrica pari a V d = 0.153 m 3 /s di acqua,

Dettagli

ISTRUZIONI LIBRETTO DI IMPIANTO

ISTRUZIONI LIBRETTO DI IMPIANTO ISTRUZIONI LIBRETTO DI IMPIANTO Il libretto di impianto per gli impianti di climatizzazione invernale e/o estiva è disponibile in forma cartacea o elettronica. Nel primo caso viene conservato dal responsabile

Dettagli

Recuperatore di calore controcorrente, in alluminio, con efficienza >80% Ventilatori EC, centrifughi pale indietro, a basso consumo

Recuperatore di calore controcorrente, in alluminio, con efficienza >80% Ventilatori EC, centrifughi pale indietro, a basso consumo REC-D8 300 EC Portata massima (SFP limit2016 ) 2950 m³/h con 255 Pa di pressione utile Portata massima (SFP limit2018 ) 2620 m³/h con 435 Pa di pressione utile Recuperatore di calore controcorrente, in

Dettagli

Controllo ambientale. Scopo. Assicurare ambiente di cabina sicuro, salutare e confortevole, in tutte le condizioni di volo

Controllo ambientale. Scopo. Assicurare ambiente di cabina sicuro, salutare e confortevole, in tutte le condizioni di volo Controllo ambientale 1 Scopo Assicurare ambiente di cabina sicuro, salutare e confortevole, in tutte le condizioni di volo 2 Livello di complessità Per piccoli velivoli di bassa quota: sistema di ventilazione

Dettagli

applicata sui condizionatori del Data Centre MerrillLynch & Co., Inc. CamberleySurrey(Londra)

applicata sui condizionatori del Data Centre MerrillLynch & Co., Inc. CamberleySurrey(Londra) La tecnologia ad inverter applicata sui condizionatori del Data Centre MerrillLynch & Co., Inc. CamberleySurrey(Londra) 1 L installazione 12 1260 kw frigoriferi Refrigeratori condensati ad aria, con free

Dettagli

Dati tecnici Moto-evaporanti Unità Esterne Booster HR 3.0 / 3.0 INC. / 5.2 / 7.8 / 8.3 /16.6

Dati tecnici Moto-evaporanti Unità Esterne Booster HR 3.0 / 3.0 INC. / 5.2 / 7.8 / 8.3 /16.6 Dati tecnici Moto-evaporanti Unità Esterne Booster 3.0 / 3.0 INC. / 5.2 / 7.8 / 8.3 /16.6 1 INFORMAZIONI TECNICHE 2 Modello POTENZA TERMICA EROGATA COMPRESSORI BOOSTER HUB RADIATOR 3.0 Potenza termica

Dettagli

Corso L: area gestione impianti divisione tecnica impianti tecnologici: installazione gruppo frigo con recuperatore di calore

Corso L: area gestione impianti divisione tecnica impianti tecnologici: installazione gruppo frigo con recuperatore di calore Corso L: area gestione impianti divisione tecnica impianti tecnologici: installazione gruppo frigo con recuperatore di calore Ciclo frigorifero Definizione: È un ciclo termodinamico indiretto che regola

Dettagli

Kelvin K T [K] = T [ C] + 273,16. Fahrenheit F T [ F] = 1,8 T [ C] Atmosfera atm = Pa = 760 mm Hg

Kelvin K T [K] = T [ C] + 273,16. Fahrenheit F T [ F] = 1,8 T [ C] Atmosfera atm = Pa = 760 mm Hg LE UNITA DI MISURA Temperatura Pressione Energia Potenza Costanti Celsius C Kelvin K T [K] = T [ C] + 273,16 Fahrenheit F T [ F] = 1,8 T [ C] + 32 Pascal Pa = Kg/(m s 2 ) Atmosfera atm = 101325 Pa = 760

Dettagli

Cap. 1 Richiami di termodinamica. 1.1 Concetti base 1.2 Principio di conservazione dell energia. Cap. 2 Il bilancio exergetico

Cap. 1 Richiami di termodinamica. 1.1 Concetti base 1.2 Principio di conservazione dell energia. Cap. 2 Il bilancio exergetico III Indice IX 1 1 2 3 5 6 7 9 11 12 12 13 13 Presentazione Cap. 1 Richiami di termodinamica 1.1 Concetti base 1.2 Principio di conservazione dell energia 1.2.1 Sistema con involucro chiuso allo scambio

Dettagli

Le pompe di calore: tipologie e caratterizzazione

Le pompe di calore: tipologie e caratterizzazione Le pompe di calore: tipologie e caratterizzazione G.L. Morini Laboratorio di Termotecnica Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale Viale Risorgimento 2, 40136 Bologna

Dettagli

Unità polivalenti con compressori Scroll. Modello CMAA Capacità frigorifera 45-485 kw Capacità calorifica 50-670 kw

Unità polivalenti con compressori Scroll. Modello CMAA Capacità frigorifera 45-485 kw Capacità calorifica 50-670 kw Unità polivalenti con compressori Scroll Modello CMAA Capacità frigorifera 45-485 kw Capacità calorifica 50-670 kw Unità polivalenti CMAA Riscaldamento e raffreddamento simultanei con un singolo prodotto

Dettagli

Norma CEI 31-30 e Guida CEI 31-35 Costruzioni elettriche per atmosfere esplosive per la presenza di gas Classificazione dei luoghi pericolosi

Norma CEI 31-30 e Guida CEI 31-35 Costruzioni elettriche per atmosfere esplosive per la presenza di gas Classificazione dei luoghi pericolosi Norma CEI 31-30 e Guida CEI 31-35 Costruzioni elettriche per atmosfere esplosive per la presenza di gas Classificazione dei luoghi pericolosi 30/05/2003 1 Principi ipotesi di lavoro: E esclusa la possibilità

Dettagli

Centrali frigorifere Nuove tecnologie e risparmio energetico

Centrali frigorifere Nuove tecnologie e risparmio energetico Centrali frigorifere Nuove tecnologie e risparmio energetico Valle Salimbene Pavia, 30 marzo 2015 Le nuove strategie per risparmiare energia nella conduzione dei sistemi IT Due case studies a confronto

Dettagli

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv

Indice. Prefazione alla terza edizione italiana...xi. Ringraziamenti dell Editore...XIII. Guida alla lettura...xiv Prefazione alla terza edizione italiana...xi Ringraziamenti dell Editore...XIII Guida alla lettura...xiv 1 INTRODUZIONE E UNO SGUARDO D INSIEME...1 1.1 Introduzione alle scienze termiche...2 1.2 La termodinamica

Dettagli

Cap 21- Entropia e II Legge della Termodinamica. Entropia

Cap 21- Entropia e II Legge della Termodinamica. Entropia N.Giglietto A.A. 2005/06- Entropia nell espansione libera - 1 Cap 21- Entropia e II Legge della Termodinamica Ci sono diversi modi di esprimere la II Legge della Termodinamica. Tutte stabiliscono una limitazione

Dettagli

VIESMANN VITOCAL 200-S Pompa di calore aria/acqua, versione split da 3,0 a 10,6 kw

VIESMANN VITOCAL 200-S Pompa di calore aria/acqua, versione split da 3,0 a 10,6 kw VIESMANN VITOCAL 200-S Pompa di calore aria/acqua, versione split da 3,0 a 10,6 kw Foglio dati tecnici Articoli e prezzi: vedi listino prezzi VITOCAL 200-S Tipo AWS Pompa di calore aria/acqua con tecnologia

Dettagli

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl SOLUZIONI CAPITOLO 5 5.1 L aria nelle condizioni specificate può essere assimilata a un gas perfetto. Quindi il lavoro di variazione di volume per questa trasformazione isotermica è dato da 5.2 (a) La

Dettagli

DATI DI PROGETTO. Potenza del Data Center. Superficie Data Hall. Numero stanze 10. Superficie media stanza

DATI DI PROGETTO. Potenza del Data Center. Superficie Data Hall. Numero stanze 10. Superficie media stanza DATI DI PROGETTO Potenza del Data Center Potenza specifica Superficie Data Hall 2.550 kw 1.500 W/mq 1.700 mq Numero stanze 10 Superficie media stanza Potenza per ogni stanza Costo energia Classificazione

Dettagli

UNIVERSITÀ DEGLI STUDI DI GENOVA FACOLTÀ DI INGEGNERIA MODULO DIDATTICO N 5

UNIVERSITÀ DEGLI STUDI DI GENOVA FACOLTÀ DI INGEGNERIA MODULO DIDATTICO N 5 UNIVERSITÀ DEGLI STUDI DI GENOVA FACOLTÀ DI INGEGNERIA Esercitazioni di Fisica Tecnica Ambientale 1 CORSO DI LAUREA INGEGNERIA CIVILE EDILE E AMBIENTE E TERRITORIO (Dott. Ing. Paolo Cavalletti) MODULO

Dettagli

FISICA TECNICA N.O. prof.ssa Cinzia Buratti. (Corso di Laurea in Ingegneria Civile) (Corso di Laurea in Ingegneria per l'ambiente e il Territorio)

FISICA TECNICA N.O. prof.ssa Cinzia Buratti. (Corso di Laurea in Ingegneria Civile) (Corso di Laurea in Ingegneria per l'ambiente e il Territorio) FISICA TECNICA N.O. prof.ssa Cinzia Buratti (Corso di Laurea in Ingegneria Civile) (Corso di Laurea in Ingegneria per l'ambiente e il Territorio) TESTI CONSIGLIATI: 1. M. Felli: Lezioni di Fisica Tecnica

Dettagli

IDEALE PER SOSTITUIRE LE VECCHIE CALDAIE MURALI MANTENENDO GLI ESISTENTI RADIATORI AD ALTA TEMPERATURA

IDEALE PER SOSTITUIRE LE VECCHIE CALDAIE MURALI MANTENENDO GLI ESISTENTI RADIATORI AD ALTA TEMPERATURA IDEALE PER SOSTITUIRE LE VECCHIE CALDAIE MURALI MANTENENDO GLI ESISTENTI RADIATORI AD ALTA TEMPERATURA Il sistema è costituito da una caldaia murale a condensazione di ultima generazione e da una pompa

Dettagli