Lezione 2: Allineamento di sequenze. BLAST e CLUSTALW

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 2: Allineamento di sequenze. BLAST e CLUSTALW"

Transcript

1 Lezione 2: Allineamento di sequenze BLAST e CLUSTALW

2 Allineamento di sequenze

3 Allineamenti L avvento della genomica moderna permette di analizzare le similitudini e le differenze tra organismi a livello del loro DNA e del loro corredo proteico completo ( informazioni evolutive, sequenze funzionali conservate, omologia tra geni ). Parallelamente, una attività comune in biologia è, data una sequenza di acidi nucleici o proteine di interesse sperimentale, di trovare sequenze simili all interno di gruppi di altre sequenze note. Molte di queste attività si possono ricondurre al problema di trovare o meno similarità tra sequenze di DNA o di amminoacidi. Ovvero, in generale, data una sequenza A (di DNA o amminoacidi) detta query e una sequenza B detta target, di allineare le due sequenze ovvero appaiare le loro singole componenti in modo da evidenziarne le zone somiglianti e quelle differenti.

4 Allineamenti Data una sequenza (DNA/proteina), ci sono oggetti simili in un certo database oppure ci sono somiglianze con altre sequenze che mi interessano? Ho trovato un nuovo gene o proteina? Un certo gene ha somiglianze con qualche altro gene nella stessa specie o in altre specie? Come posso trovare le regione di sovrapposizione tra sequenze? Come posso studiare l evoluzione di genomi di popolazioni o specie? Come posso trovare informazioni sul tipo di fold, sulla famiglia, sulla funzione di una certa proteina? allineamento di sequenze

5 Allineamenti Un tipico risultato di una procedura di allineamento è il seguente: Conservation in GABPA promoter region reveals functional Err-α motif. Asterisks denote conserved bases. The yellow box marks the experimentally validated Err- α binding site. Xie et al., Nature 2005

6 Allineamenti L operazione di allineamento però non è banale da realizzare. Allineare trovare le corrispondenze, posizione per posizione, tra due o più sequenze. A priori, ci sono molti modi di allineare due sequenze. Supponiamo di voler allineare le due sequenze di DNA ACGTCTAG ed ACTCTAG: DOMANDA: Quale è l allineamento (statisticamente) migliore?

7 Allineamenti Oppure supponiamo di voler allineare la sequenza TCTAG con una sequenza di DNA molto lunga: se partiamo da una sequenza abbastanza piccola e la vogliamo allineare con una sequenza abbastanza lunga, potremmo sempre ottenere un accordo perfetto tra elementi appaiati delle due stringhe se permettiamo un numero arbitrario di gaps. DOMANDA: Ma quale di questi allineamenti è quello (statisticamente) più significativo?

8 Allineamenti Concentrandosi all inizio sul problema di allineare coppie di sequenze, possiamo distinguere tra: - allineamento globale si cercano similarità sull intera - allineamento locale sequenza si cercano corte regioni ad alta similarità comprese dentro le sequenze di partenza Gli algoritmi e i metodi di allineamento sono simili, ma non uguali tra sequenze di DNA e proteine (escluse ulteriori considerazioni strutturali: cfr parte di proteomica del corso). Ad ogni procedura di allineamento corrisponde in generale un significato dal punto di vista evolutivo. Ad esempio, le inserzioni / delezioni / gaps degli esempi precedenti che significato biologico potrebbero avere?

9 Allineamenti Concentrandosi all inizio sul problema di allineare coppie di sequenze, possiamo distinguere tra: - allineamento globale si cercano similarità sull intera - allineamento locale sequenza si cercano corte regioni ad alta similarità comprese dentro le sequenze di partenza Gli algoritmi e i metodi di allineamento sono simili, ma non uguali tra sequenze di DNA e proteine (escluse ulteriori considerazioni strutturali: cfr parte di Zamma). Ad ogni procedura di allineamento corrisponde in generale un significato dal punto di vista evolutivo. Ad esempio, le inserzioni / delezioni / gaps degli esempi precedenti che significato biologico potrebbero avere?

10 Toy example Vogliamo allineare la sequenza WHAT con la sequenza WHY. Vogliamo in oltre determinare l allineamento più significativo. Per fare questo, costruiamo delle regole per costruire ogni possibile allineamento e per assegnare un punteggio (score) ad ognuno di essi. regola (algoritmo) per costruire tutti i possibili allineamenti regola (algoritmo) per assegnare uno score S ad ogni allineamento prendere l allineamento con score massimo Regole ad es: Allineamento ad es:

11 Toy example Più in generale: costruzione della matrice di allineamento della sequenza WHAT con la sequenza WHY: La matrice descrive tutti i possibili allineamenti della sequenza target con la sequenza query. Un particolare allineamento è un percorso nella matrice.

12 Toy example Ogni passo da un elemento della matrice ad una altro corrisponde ad uno spostamento su un nuovo elemento di una od entrambe le sequenze. Ad ogni passo, possiamo scrivere nell elemento di matrice lo score fino a quel punto. Il migliore allineamento è il percorso che genera lo score più alto, arrivando in basso a destra nella matrice, ovvero avendo usato tutte le lettere a disposizione di query e di target (allineamento globale).

13 Toy example 1) 2) Con queste regole la matrice di allineamento completa per il nostro esempio WHAT / WHY è:

14 Toy example 1) 2) Con queste regole la matrice di allineamento completa per il nostro esempio WHAT / WHY è:

15 Toy example 1) 2) Con queste regole la matrice di allineamento completa per il nostro esempio WHAT / WHY è:

16 Allineamento globale: formalismi In generale un allineamento globale si può scrivere come: - date due sequenze A e B di simboli, non necessariamente della stessa lunghezza ma scritte nello stesso alfabeto Scrivere una successione del tipo: le sequenze sono allineate secondo la loro lunghezza. Si inseriscono gaps se hanno lunghezze diverse. Needleman e Wunsch (1970)

17 Allineamento globale: formalismi In particolare: se le lettere ai e bj allineate sono uguale si ha una identity, altrimenti si ha un mismach. Se devo allungare l allineamento ho un indel. Lo score per aver allineato le prime i lettere di A con le prime j lettere di B è: Calcolato in maniera ricorsiva a partire da:

18 Allineamento locale Proteine con la stessa funzione possono presentare degli allineamenti di sequenza reciproci poco significativi, a causa di piccole zone di similarità racchiuse dentro zone di apparente forte diversità e/o lunghezze molto diverse. In questo casi è preferibile cercare degli allineamenti locali, cioe corti allineamenti contenuti all interno delle sequenze più lunghe (Smith e Waterman, 1981). La tecnica per calcolare allineamenti locali è sempre basata sulla costruzione di una matrice di allineamento, e cercando poi il percorso con lo score più alto. Solo che nel caso dell allineamento locale: il percorso migliore attraverserà solo parte della matrice non c è richiesta di allineare le stringhe agli estremi.

19 Allineamento locale: esempio Trovare il migliore allineamento locale e il massimo score di allineamento date le due sequenze A =ACCTAAGG e B = GGCTCAATCA.

20 Numero dei possibili allineamenti globali Date due sequenze di lunghezza m ed n per calcolarne il migliore allineamento globale, abbiamo calcolato 3 score per andare in (n-1)(m-1) celle e poi prenderne il massimo quindi circa 4mn operazioni un singolo allineamento globale è una operazione di classe O(mn). Ma quanti sono i possibili allineamenti globali? Se supponiamo per semplicità che m ~ n è possibile dimostrare che: Questo numero è gigantesco!!!!

21 Numero dei possibili allineamenti globali Supponiamo ad esempio di avere: Supponiamo ad esempio di avere: Il Sole pesa circa 1.99 x 1033 grammi. Ogni grammo contiene circa 12 x tra protoni, elettroni e neutroni, per cui il Sole contiene circa 24 x particelle elementari. ci vorrebbero 400 stelle come il Sole per contenere tante particelle elementari quanti sono gli allineamenti di due sequenze di 100 caratteri.

22 Regole di scoring (DNA) Lo scoring delle singole mosse in un allineamento deve essere fissato all inizio una volta per tutte in una scoring matrix una scelta precisa di un modello evolutivo per il nostro allineamento. Nei casi precedenti, le regole di scoring usate si possono riassumere in:

23 Regole di scoring (DNA) Sono però possibili scelte diverse. Studi di mutazioni su geni omologhi hanno indicato che le transizioni (A G, G A, C T, or T C) capitano in media con una frequenza doppia delle transversioni (A T, T A, A C, G T, etc). Quindi un modello di allineamento più sensato potrebbe utilizzare degli scores diversi per transizioni o per transversioni (e.s. sequenze simili hanno la tendenza ad avere transizioni, per cui il loro peso statistico dovrebbe essere inferiore). Una scoring matrix più realistica allora potrebbe essere:

24 Regole di scoring (DNA) Analogamente sorge il problema di come esattamente valutare lo scoring dei gaps (successioni di indels). Fino ad adesso abbiamo usato la regola semplice: come score per un gap di lunghezza k. Tuttavia è noto, per esempio che i gaps appaiono più facilmente in successione che isolati (cfr. biochimica). Inoltre, come altro esempio, delezioni di uno o due nucleotidi in regioni protein-coding in genere sono estremamente dannosi, mentre delezioni o inserzioni di gruppi di 3 nucleotidi lo sono di meno (frameshift). Un approccio potrebbe essere allora usare una regola del tipo: che ha l effetto di avere una alta penalità per aprire un primo gap α e una penalità inferiore per allargare un gap (-β per ogni base in più nel gap, con α < β).

25 Regole di scoring (proteine) Per gli amminoacidi le regole di accoppiamento sono più complesse: Nucleotidi: identità AGGCTGACCTGGGAAGGGAAACTCTCAAAACCAT AGGATGAGCT-GGAAGGATA-CTCTCAAAAACAT *** *** ** ******* ** ******** *** Amminoacidi: identità + somiglianza VLSSADKTNVKAAWGKVGAHAGEYGAEALERMFL VLSAADKANIKAAW-KVGGQAGDHGAEALERMPL ***:*** *:**** ***: **: ******** *

26 Regole di scoring (proteine) Per gli amminoacidi le regole di accoppiamento sono più complesse: Nucleotidi: identità AGGCTGACCTGGGAAGGGAAACTCTCAAAACCAT AGGATGAGCT-GGAAGGATA-CTCTCAAAAACAT *** *** ** ******* ** ******** *** Amminoacidi: identità + somiglianza VLSSADKTNVKAAWGKVGAHAGEYGAEALERMFL VLSAADKANIKAAW-KVGGQAGDHGAEALERMPL ***:*** *:**** ***: **: ******** *

27 Regole di scoring (proteine) Le scoring matrix degli amminoacidi sono più complesse di quelle per i nucleotidi. Sono delle tabelle che danno per ciascuna coppia di aa, un valore che indica il loro grado di similarità (informazione sulla probabilità che un aa si sostitutisca ad un altro durante l evoluzione). Si ottengono con metodi statistici assegnando a ciascuna coppia un valore che riflette la frequenza con cui l uno si sostituisce all altro in famiglie di proteine omologhe. Di solito si utilizzano due tipi di matrici: 1) Matrici PAM 2) Matrici BLOSUM

28 Regole di scoring (proteine) Matrici PAM (Point Accepted Mutation) (M. Dayhoff 1978) Due sequenze sono definite ad 1PAM di distanza se per convertire l una nell altra, c è stata in media 1 mutazione accettata ogni 100 aa. Accettata = non ha cambiato la funzione della proteina o comunque non è stata letale per l organismo Per ottenere i valori da inserire nella matrice si utilizzano inizialmente sequenze molto simili: Poi da questi valori si estrapolano le frequenze attese per seq. più divergenti. Utilizzando tante coppie di sequenze ad 1 PAM di distanza, ci aspettiamo solo l 1% di differenze: a questo punto ricaviamo le frequenze di sostituzione attese di ciascuna coppia di aa. Abbiamo così costruito la matrice PAM1.

29 Regole di scoring (proteine) Se due sequenze sono filogeneticamente distanti è opportuno usare matrici PAM con indici più alti, e viceversa. Le matrici PAM si possono costruire in maniera iterativa e classificare: PAM % identità % 99% 75% 60% 50% 25% 20%

30 Regole di scoring (proteine) Se due sequenze sono filogeneticamente distanti è opportuno usare matrici PAM con indici più alti, e viceversa. Le matrici PAM si possono costruire in maniera iterativa e classificare: PAM % identità % 99% 75% 60% 50% 25% 20%

31 Regole di scoring (proteine) Matrici BLOSUM (BLOcks SUbstitution Matrices) (Henikoff and Henikoff 1992) Derivano dalla banca dati BLOCKS contenente gli allineamenti delle regioni più conservate di famiglie di proteine. Per ogni tipo di matrice BLOSUM si eliminano tutte le sequenze che hanno una percentuale di identità superiore ad una soglia. BLOSUM62 = derivata da un allineamento in cui le sequenze che abbiano più del 62% di amminoacidi identici vengono considerate come identiche

32 Regole di scoring (proteine) Matrici BLOSUM (BLOcks SUbstitution Matrices) (Henikoff and Henikoff 1992) Derivano dalla banca dati BLOCKS contenente gli allineamenti delle regioni più conservate di famiglie di proteine. Blosum6 Per ogni tipo di matrice BLOSUM si eliminano tutte le sequenze2 che hanno una percentuale di identità superiore ad una soglia. BLOSUM62 = derivata da un allineamento in cui le sequenze che abbiano più del 62% di amminoacidi identici vengono considerate come identiche

33 Regole di scoring (proteine) L utilizzo della matrice di similarita appropriata per ciascuna analisi e importante per avere buoni risultati negli allineamenti. poco divergenti molto divergenti BLOSUM80 BLOSUM62 BLOSUM45 PAM1 PAM120 PAM250

34 Allineamenti multipli Una estensione immediata dell allineamento a coppie è quello di estendere la procedura a N > 2 sequenze. GTTTTGTGTGAAAGGAGTATACCATGAGATGAGATGACCACCAATCATTTC GTTTTGTGTGTGAGGAGTATTCCAAGGGATGAGTTGACCACCAATCATTTC RIHSGEKPFECPNCKKRFSHSGSYSSHMSSKKCISLILVNGRNRALLKTl RIHSGEKPYECPNCKKRFSHSGSYSSHISSKKCIGLISVNGRMRNNIKTRIHSGEKPFGCDNCGKRFSHSGSFSSHMTSKKCISMGLKLNNNRALLKRl RIHSGEKPFECQQCHKRFSHSGSYSSHMSSKKCV IHSGEKPYECPNCKKRFSHSGSYSSHISSKKCISLIPVNGRPRTGLKTNN

35 Allineamenti multipli Un allineamento multiplo si costruisce usando in maniera ricorsiva algoritmi simili a quelli usati per gli allineamenti a coppie ancora più calcoli dell allineamento pairwise!!! Si ottengono prima tutti i possibili allineamenti di coppia e si registra il punteggio di ciascuno. Si selezionano le sequenze più simili tra loro formando quindi clusters di sequenze allineate (costituiti da 2 o più sequenze il cui allineamento sia stato precedentemente fissato) Poi si continua aggiungendo le altre sequenze al cluster precedentemente ottenuto e così via fino ad includere tutte le sequenze considerate.

36 BLAST e CLUSTALW

37 Software per allineamenti In pratica, nel momento in cui ho bisogno di eseguire un allineamento di sequenze, ricerco un opportuno software che risolva il mio problema. seq1 seq2 seq DB tool allineamento similarità di sequenza tool lista di proteine simili alla query

38 Software per allineamenti Nella maggioranza dei casi però non avrò a che fare con software che eseguono gli algoritmi di allineamento esatto visti in precedenza, ma con versione euristiche degli stessi maggiore velocità. Es: una tipica ricerca di similarità sul database delle sequenze dell NCBI, richiede l analisi di un numero di sequenze > e che cresce in continuazione in maniera esponenziale.

39 Software per allineamenti Sono state sviluppate moltissime tecniche per incrementare la velocità degli algoritmi di allineamento. Es. di un possibile trucco : scomposizione di query e target in k-mers Supponiamo di aver una stringa di query I Questa può essere separata in una serie di (overlapping) 8-mers: Idea: se ho una sequenza target l assenza di uno qualunque degli 8-mers implica che I # J prima di allineare due sequenze posso esplorare il loro contenuto di k-mers (seeds) e decidere velocemente se le sequenze possono (potenzialmente) essere molto simili. Se sì le allineo, altrimenti continuo.

40 Software per allineamenti Noi faremo esperienza con 2 software per allineamento: BLAST e CLUSTALW

41 BLAST BLAST (Basic Local Alignment and Search Tool) è una suite di programmi sviluppata presso NCBI (Altschul et al., 1990) per l allineamento veloce di una sequenza query con database anche di grandi dimensioni e di identificare target con una precisa significanza statistica. BLAST usa un approccio euristico che approssima l algoritmo di SmithWaterman, dando dei risultati meno accurati ma in media almeno 50 volte più veloci non c'è la sicurezzza di ottenere il migliore allineamento.

42 BLAST The BLAST algorithm is a heuristic search method that seeks words of length W (default = 3 in blastp) that score at least T when aligned with the query and scored with a substitution matrix. Words in the database that score T or greater are extended in both directions in an attempt to fina a locally optimal ungapped alignment or HSP (high scoring pair) with a score of at least S or an E value lower than the specified threshold. HSPs that meet these criteria will be reported by BLAST, provided they do not exceed the cutoff value specified for number of descriptions and/or alignments to report.

43 NCBI BLAST

44 NCBI BLAST

45 NCBI BLAST

46 CLUSTALW

47 CLUSTALW

48 CLUSTALW

49 CLUSTALW

Informatica e biotecnologie II parte

Informatica e biotecnologie II parte Informatica e biotecnologie II parte Analisi di sequenze: allineamenti CGCTTCGGACGAAATCGCATCAGCATACGATCGCATGCCGGGCGGGATAAC CGAAATCGCATCAGCATACGATCGCATGC Bioinformatica La Bioinformatica è una disciplina

Dettagli

Bioinformatica e Biologia Computazionale per la Medicina Molecolare

Bioinformatica e Biologia Computazionale per la Medicina Molecolare Facoltà di Ingegneria dell Informazione Laurea Specialistica e Magistrale in Ingegneria Informatica Facoltà di Ingegneria dei Sistemi Laurea Magistrale in Ingegneria Biomedica Dipartimento di Elettronica

Dettagli

BLAST. W = word size T = threshold X = elongation S = HSP threshold

BLAST. W = word size T = threshold X = elongation S = HSP threshold BLAST Blast (Basic Local Aligment Search Tool) è un programma che cerca similarità locali utilizzando l algoritmo di Altschul et al. Anche Blast, come FASTA, funziona: 1. scomponendo la sequenza query

Dettagli

Quarta lezione. 1. Ricerca di omologhe in banche dati. 2. Programmi per la ricerca: FASTA BLAST

Quarta lezione. 1. Ricerca di omologhe in banche dati. 2. Programmi per la ricerca: FASTA BLAST Quarta lezione 1. Ricerca di omologhe in banche dati. 2. Programmi per la ricerca: FASTA BLAST Ricerca di omologhe in banche dati Proteina vs. proteine Gene (traduzione in aa) vs. proteine Gene vs. geni

Dettagli

4. Ricerca di sequenze in banche dati e allineamento multiplo

4. Ricerca di sequenze in banche dati e allineamento multiplo 4. Ricerca di sequenze in banche dati e allineamento multiplo Collegatevi al sito www.ncbi.nlm.nih.gov/blast. Apparirà una pagina nella quale le versioni di BLAST disponibili sono organizzate in base al

Dettagli

Applicazioni biotecnologiche in systems biology

Applicazioni biotecnologiche in systems biology Applicazioni biotecnologiche in systems biology Lezione #6 Dr. Marco Galardini AA 2012/2013 Gene regulation analysis Lezione #6 Dr. Marco Galardini AA 2012/2013 Regolazione genica Elementi molecolari e

Dettagli

ESERCITAZIONE 3. OBIETTIVO: Ricerca di omologhe mediante i programmi FASTA e BLAST

ESERCITAZIONE 3. OBIETTIVO: Ricerca di omologhe mediante i programmi FASTA e BLAST ESERCITAZIONE 3 OBIETTIVO: Ricerca di omologhe mediante i programmi FASTA e BLAST L'esercitazione prevede l'utilizzo di risorse web per effettuare ricerche di similarità con la proteina GRB2 (growth factor

Dettagli

Riconoscimento e recupero dell informazione per bioinformatica

Riconoscimento e recupero dell informazione per bioinformatica Riconoscimento e recupero dell informazione per bioinformatica Clustering: similarità Manuele Bicego Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Definizioni preliminari

Dettagli

Una proteina nella rete: Introduzione alla bioinformatica

Una proteina nella rete: Introduzione alla bioinformatica Una proteina nella rete: Introduzione alla bioinformatica L era genomica ha assistito ad una crescita esponenziale delle informazioni biologiche rese disponibili dai progressi nel campo della biologia

Dettagli

Bioinformatica (1) Introduzione. Dott. Alessandro Laganà

Bioinformatica (1) Introduzione. Dott. Alessandro Laganà Bioinformatica (1) Introduzione Dott. Alessandro Laganà Dott. Alessandro Laganà Martedi 15.30 16.30 Studio Assegnisti - 1 Piano (Davanti biblioteca) Dipartimento di Matematica e Informatica (Città Universitaria)

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Algoritmi di Allineamento

Algoritmi di Allineamento Algoritmi di Allineamento CORSO DI BIOINFORMATICA Corso di Laurea in Biotecnologie Università Magna Graecia Catanzaro Outline Similarità Allineamento Omologia Allineamento di Coppie di Sequenze Allineamento

Dettagli

Bioinformatica ed applicazioni di bioinformatica strutturale!

Bioinformatica ed applicazioni di bioinformatica strutturale! Bioinformatica ed applicazioni di bioinformatica strutturale! Bioinformatica! Le banche dati! Programmi per estrarre ed analizzare i dati! I numeri! Cellule nell uomo! Geni nell uomo! Genoma umano Il dogma

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Z-score. lo Z-score è definito come: Z-score = (opt query - M random)/ deviazione standard random

Z-score. lo Z-score è definito come: Z-score = (opt query - M random)/ deviazione standard random Z-score lo Z-score è definito come: Z-score = (opt query - M random)/ deviazione standard random è una misura di quanto il valore di opt si discosta dalla deviazione standard media. indica di quante dev.

Dettagli

Componenti di un sistema KNOWLEDGE-BASED

Componenti di un sistema KNOWLEDGE-BASED Componenti di un sistema KNOWLEDGE-BASED DYNAMIC DATABASE PROBLEM FORMALIZATION CONTROL STRATEGY IL DATABASE DESCRIVE LA SITUAZIONE CORRENTE NELLA DETERMINAZIONE DELLA SOLUZIONE AL PROBLEMA. LA FORMALIZZAZIONE

Dettagli

Varianti Macchine di Turing

Varianti Macchine di Turing Varianti Macchine di Turing Esistono definizioni alternative di macchina di Turing. Chiamate Varianti. Tra queste vedremo: MdT a più nastri e MdT non deterministiche. Mostriamo: tutte le varianti ragionevoli

Dettagli

Tesi di Laurea di Mauro Baluda matr. 038208

Tesi di Laurea di Mauro Baluda matr. 038208 Università degli Studi di Milano Bicocca Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Algoritmi per l'allineamento di Sequenze Tesi di Laurea di matr. 038208 Relatore:

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

Interpretazione astratta

Interpretazione astratta Interpretazione astratta By Giulia Costantini (819048) e Giuseppe Maggiore (819050) Contents Interpretazione astratta... 2 Idea generale... 2 Esempio di semantica... 2 Semantica concreta... 2 Semantica

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Sequence Alignment Algorithms

Sequence Alignment Algorithms Sequence Alignment Algorithms Algoritmi per l Allineamento di Sequenze Relatore: Prof. Giancarlo Mauri Correlatore: Prof. Gianluca Della Vedova Tesi di Laurea di: Mauro Baluda Matricola 038208 Part of

Dettagli

Banche Dati Secondarie. geni trascritti proteine profili strutture

Banche Dati Secondarie. geni trascritti proteine profili strutture Banche Dati Secondarie geni trascritti proteine profili strutture definizione Banca dati il cui contenuto deriva da una banca dati primaria DB sec DB primario informazione PROSITE SWISS Prot patterns Profiles

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011 RAPPRESENTAZIONE DEI NUMERI BINARI Corso di Fondamenti di Informatica AA 2010-2011 Prof. Franco Zambonelli Numeri interi positivi Numeri interi senza segno Caratteristiche generali numeri naturali (1,2,3,...)

Dettagli

MATEMATICA SCUOLE DELL INFANZIA

MATEMATICA SCUOLE DELL INFANZIA MATEMATICA SCUOLE DELL INFANZIA CAMPO DI ESPERIENZA: LA CONOSCENZA DEL MONDO (ordine, misura, spazio, tempo, natura) È l'ambito relativo all'esplorazione, scoperta e prima sistematizzazione delle conoscenze

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Algoritmi di clustering

Algoritmi di clustering Algoritmi di clustering Dato un insieme di dati sperimentali, vogliamo dividerli in clusters in modo che: I dati all interno di ciascun cluster siano simili tra loro Ciascun dato appartenga a uno e un

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Lezione 7. Allineamento di sequenze biologiche

Lezione 7. Allineamento di sequenze biologiche Lezione 7 Allineamento di sequenze biologiche Allineamento di sequenze Determinare la similarità e dedurre l omologia Allineare Definire il numero di passi necessari per trasformare una sequenza nell altra

Dettagli

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO MONTEGROTTO TERME SCUOLA PRIMARIA DISCIPLINA: MATEMATICA - CLASSE PRIMA OBIETTIVI DI APPRENDIMENTO PRIMA DELLA DISCIPLINA: MATEMATICA - CLASSE PRIMA L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali. Legge e comprende testi che coinvolgono aspetti logici e matematici.

Dettagli

3. Confronto tra due sequenze

3. Confronto tra due sequenze 3. Confronto tra due sequenze Esercizio 1: uso di DotLet Il programma DotLet è accessibile dal sito http://myhits.isb-sib.ch/cgi-bin/dotlet, dove può essere utilizzato attraverso un interfaccia utente

Dettagli

Sommario della lezione

Sommario della lezione Universitá degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/36 Sommario della lezione Ulteriori esempi di applicazione della Programmazione Dinamica Esempio di applicazione

Dettagli

Funzioni non documentate Openoffice.org. 3 Base mini-howto

Funzioni non documentate Openoffice.org. 3 Base mini-howto Funzioni non documentate Openoffice.org. 3 Base mini-howto Augusto Scatolini (webmaster@comunecampagnano.it) Ver. 1.0 gennaio 2009 Come risolvere il problema del contatore che inizia da 0 (zero) Come importare

Dettagli

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri.

Obiettivo Principale: Spiegare come la stessa cosa possa essere realizzata in molti modi diversi e come, a volte, ci siano modi migliori di altri. 6 LEZIONE: Algoritmi Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10-25 Minuti (a seconda che tu abbia dei Tangram disponibili o debba tagliarli a mano) Obiettivo Principale: Spiegare come

Dettagli

Laboratorio Matematico Informatico 2

Laboratorio Matematico Informatico 2 Laboratorio Matematico Informatico 2 (Matematica specialistica) A.A. 2006/07 Pierluigi Amodio Dipartimento di Matematica Università di Bari Laboratorio Matematico Informatico 2 p. 1/1 Informazioni Orario

Dettagli

Indirizzamento Aperto

Indirizzamento Aperto Indirizzamento Aperto Sommario Metodo di indirizzamento aperto Scansione lineare Scansione quadratica Hashing doppio Metodo di indirizzamento aperto L idea è di memorizzare tutti gli elementi nella tabella

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

CURRICOLO MATEMATICA ABILITA COMPETENZE

CURRICOLO MATEMATICA ABILITA COMPETENZE CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando

Dettagli

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1 MATEMATICA COMPETENZE Dimostra conoscenze matematiche che gli consentono di analizzare dati e fatti della realtà e di verificare l'attendibilità delle analisi quantitative e statistiche proposte da altri.

Dettagli

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA

SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA SCUOLA PRIMARIA I.C. di CRESPELLANO PROGRAMMAZIONE ANNUALE MATEMATICA ANNO SCOLASTICO 2013/2014 INSEGNANTI Gabellone, Silvagni,Damiano TRAGUARDI DELLE COMPETENZE AL TERMINE della CLASSE QUARTA Sviluppa

Dettagli

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini

Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Introduzione agli Algoritmi Genetici Prof. Beatrice Lazzerini Dipartimento di Ingegneria della Informazione Via Diotisalvi, 2 56122 PISA ALGORITMI GENETICI (GA) Sono usati per risolvere problemi di ricerca

Dettagli

L interesse nella macchina di Turing

L interesse nella macchina di Turing Aniello Murano Macchina di Turing universale e problema della fermata 6 Lezione n. Parole chiave: Universal Turing machine Corso di Laurea: Informatica Codice: Email Docente: murano@ na.infn.it A.A. 2008-2009

Dettagli

Linguaggi di programmazione

Linguaggi di programmazione Linguaggi di programmazione Programmazione L attività con cui si predispone l elaboratore ad eseguire un particolare insieme di azioni su particolari dati, allo scopo di risolvere un problema Dati Input

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Allineamento e similarità di sequenze

Allineamento e similarità di sequenze Allineamento e similarità di sequenze Allineamento di Sequenze L allineamento tra due o più sequenza può aiutare a trovare regioni simili per le quali si può supporre svolgano la stessa funzione; La similarità

Dettagli

Linkage. Lezione 4 (riprendere il testo di Genetica ) By NA

Linkage. Lezione 4 (riprendere il testo di Genetica ) By NA Linkage Lezione (riprendere il testo di Genetica ) Tipi di mappe: mappe genetiche Mappe genetiche : si basano sulla frequenza di ricombinazione fra locus identificati attraverso marcatori di varia natura:

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Macchine di Turing. a n B B. Controllo Finito

Macchine di Turing. a n B B. Controllo Finito Macchine di Turing Il modello standard di macchina di Turing era un controllo finito, un nastro di input, diviso in celle, e una testina che prende in considerazione una cella del nastro alla volta. Il

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/33 Sommario della lezione Ancora sui cammini minimi: Cammini minimi in grafi con archi di costo negativo Algoritmi

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA

TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA SCUOLA PRIMARIA DI CORTE FRANCA MATEMATICA CLASSE QUINTA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA PRIMARIA L ALUNNO SVILUPPA UN ATTEGGIAMENTO POSITIVO RISPETTO ALLA MATEMATICA,

Dettagli

Metodi per la Ricostruzione Filogenetica. Giuliana Allegrucci riproduzione vietata

Metodi per la Ricostruzione Filogenetica. Giuliana Allegrucci riproduzione vietata Metodi per la Ricostruzione Filogenetica Ricostruire una filogenesi significa trovare la migliore stima delle relazioni evolutive storiche fra entità tassonomiche usando i dati disponibili. I dati di base

Dettagli

un nastro di carta prolungabile a piacere e suddiviso in celle vuote o contenenti al più un unico carattere;

un nastro di carta prolungabile a piacere e suddiviso in celle vuote o contenenti al più un unico carattere; Algoritmi 3 3.5 Capacità di calcolo Il matematico inglese Alan Turing (1912-1954) descrisse nel 1936 un tipo di automi, oggi detti macchine di Turing, e fornì una della prime definizioni rigorose di esecuzione

Dettagli

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico Processo di risoluzione di un problema ingegneristico 1. Capire l essenza del problema. 2. Raccogliere le informazioni disponibili. Alcune potrebbero essere disponibili in un secondo momento. 3. Determinare

Dettagli

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA

MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA MATEMATICA PRIMO BIENNIO CLASSE PRIMA DELLA SCUOLA PRIMARIA COMPETENZA 1 UTILIZZARE CON SICUREZZA LE TECNICHE E LE PROCEDURE DI CALCOLO ARITMETICO SCRITTO E MENTALE CON RIFERIMENTO A CONTESTI REALI Stabilire

Dettagli

Cluster. Vicino alla temperatura critica gli spin formano grandi gruppi (cluster)

Cluster. Vicino alla temperatura critica gli spin formano grandi gruppi (cluster) Cluster Vicino alla temperatura critica gli spin formano grandi gruppi (cluster) all interno di ogni gruppo è molto improbabile riuscire a flippare uno spin perché ci sarebbe una grande perdita di energia,

Dettagli

FASTA: Lipman & Pearson (1985) BLAST: Altshul (1990) Algoritmi EURISTICI di allineamento

FASTA: Lipman & Pearson (1985) BLAST: Altshul (1990) Algoritmi EURISTICI di allineamento Algoritmi EURISTICI di allineamento Sono nati insieme alle banche dati, con lo scopo di permettere una ricerca per similarità rapida anche se meno accurata contro le migliaia di sequenze depositate. Attualmente

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

per immagini guida avanzata Uso delle tabelle e dei grafici Pivot Geometra Luigi Amato Guida Avanzata per immagini excel 2000 1

per immagini guida avanzata Uso delle tabelle e dei grafici Pivot Geometra Luigi Amato Guida Avanzata per immagini excel 2000 1 Uso delle tabelle e dei grafici Pivot Geometra Luigi Amato Guida Avanzata per immagini excel 2000 1 Una tabella Pivot usa dati a due dimensioni per creare una tabella a tre dimensioni, cioè una tabella

Dettagli

Traccia delle lezioni svolte in laboratorio Excel 2003. Excel 2003 Excel 2010

Traccia delle lezioni svolte in laboratorio Excel 2003. Excel 2003 Excel 2010 Traccia delle lezioni svolte in laboratorio Excel 2003 Excel 2003 Excel 2010 INTRODUZIONE A EXCEL EXCEL è un programma di Microsoft Office che permette di analizzare grandi quantità di dati (database)

Dettagli

CURRICOLO MATEMATICA CLASSE 1^

CURRICOLO MATEMATICA CLASSE 1^ CURRICOLO CLASSE 1^ COMPETENZE CHIAVE: Competenze di base in matematica Classe 1^ Contare oggetti o eventi, a voce e mentalmente Leggere e scrivere i numeri naturali in notazione decimale avendo consapevolezza

Dettagli

Determinare la sequenza del DNA

Determinare la sequenza del DNA Corso di Laurea in Chimica e Tecnologie Farmaceu9che a.a. 2014-2015 Università di Catania Determinare la sequenza del DNA Sequenziamento Sanger, NGS e Bioinforma9ca Stefano Forte Sequenziare significa

Dettagli

Tesi di Laurea Specialistica. Elaborazione di dati bioinformatici attraverso l uso di Particle Swarm Optimization

Tesi di Laurea Specialistica. Elaborazione di dati bioinformatici attraverso l uso di Particle Swarm Optimization Università degli Studi di Genova Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Specialistica in Informatica Anno Accademico 2009/2010 Tesi di Laurea Specialistica Elaborazione di dati

Dettagli

SISTEMA INTERNAZIONALE DI UNITÀ

SISTEMA INTERNAZIONALE DI UNITÀ LE MISURE DEFINIZIONI: Grandezza fisica: è una proprietà che può essere misurata (l altezza di una persona, la temperatura in una stanza, la massa di un oggetto ) Misurare: effettuare un confronto tra

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

CURRICOLO MATEMATICA - CLASSE QUINTA -

CURRICOLO MATEMATICA - CLASSE QUINTA - CURRICOLO MATEMATICA - CLASSE QUINTA - COMPETENZA NUCLEO FONDANTE OBIETTIVI DI APPRENDIMENTO CONTENUTI TRAGUARDI NUMERI 1.a) Indicare il valore posizionale delle cifre nei numeri decimali b) comporre e

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

MATEMATICA CLASSE PRIMA

MATEMATICA CLASSE PRIMA CLASSE PRIMA L alunno/a si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di ricorrere a una calcolatrice. Contare oggetti o eventi, a voce e mentalmente,

Dettagli

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria.

INTRODUZIONE. Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. Capitolo 7 - Operatori Morfologici per Immagini Binarie INTRODUZIONE Gli operatori della morfologia binaria sono operatori fra insiemi definiti a partire dell immagine binaria. L immagine binaria, I, viene

Dettagli

Le sequenze consenso

Le sequenze consenso Le sequenze consenso Si definisce sequenza consenso una sequenza derivata da un multiallineamento che presenta solo i residui più conservati per ogni posizione riassume un multiallineamento. non è identica

Dettagli

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione 4 LEZIONE: Programmazione su Carta a Quadretti Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10 Minuti Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione SOMMARIO:

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 1) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

Riproduzione Crossover Mutazione

Riproduzione Crossover Mutazione Algoritmi Genetici Sono algoritmi di ricerca basati sui principi evolutivi della selezione naturale e della genetica, che implicano la sopravvivenza degli elementi migliori e lo scambio di informazioni

Dettagli

Sorgenti autorevoli in ambienti hyperlinkati.

Sorgenti autorevoli in ambienti hyperlinkati. Sorgenti autorevoli in ambienti hyperlinkati. La qualità di un metodo di ricerca richiede la valutazione umana dovuta alla soggettività inerente alla nozione di rilevanza. I motori di ricerca correnti,

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.

Dettagli

Struttura logica di un programma

Struttura logica di un programma Struttura logica di un programma Tutti i programmi per computer prevedono tre operazioni principali: l input di dati (cioè l inserimento delle informazioni da elaborare) il calcolo dei risultati cercati

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Programmi. Algoritmi scritti in un linguaggio di programmazione

Programmi. Algoritmi scritti in un linguaggio di programmazione Programmi Algoritmi scritti in un linguaggio di programmazione Sistema operativo:programma supervisore che coordina tutte le operazioni del calcolatore Programmi applicativi esistenti Sistemi di videoscrittura

Dettagli

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o Sommario Sintesi di macchine a stati finiti 1 Realizzazione del ST M. avalli 2 utoma minimo di SM completamente specificate 6th June 2007 3 Ottimizzazione di SM non completamente specificate Sommario ()

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

VALORE DELLE MERCI SEQUESTRATE

VALORE DELLE MERCI SEQUESTRATE La contraffazione in cifre: NUOVA METODOLOGIA PER LA STIMA DEL VALORE DELLE MERCI SEQUESTRATE Roma, Giugno 2013 Giugno 2013-1 Il valore economico dei sequestri In questo Focus si approfondiscono alcune

Dettagli

Programmazione dinamica

Programmazione dinamica Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)

Dettagli

Database. Si ringrazia Marco Bertini per le slides

Database. Si ringrazia Marco Bertini per le slides Database Si ringrazia Marco Bertini per le slides Obiettivo Concetti base dati e informazioni cos è un database terminologia Modelli organizzativi flat file database relazionali Principi e linee guida

Dettagli

E il server più utilizzato, permette di tracciare tutte le operazioni che svolge e di impostare alcuni parametri importanti per il risultato finale.

E il server più utilizzato, permette di tracciare tutte le operazioni che svolge e di impostare alcuni parametri importanti per il risultato finale. Homology modelling L omology modeling delle proteine è il tipo di predizione di struttura terziaria più semplice ed affidabile. Viene richiesta soltanto una (o più) sequenze di riferimento su cui modellare

Dettagli

ABILITA' CONOSCENZE OBIETTIVI FORMATIVI

ABILITA' CONOSCENZE OBIETTIVI FORMATIVI OBIETTIVI SPECIFICI DI APPRENDIM. IL NUMERO Riconoscere i numeri naturali nei loro aspetti cardinali e ordinali RICONOSCIAMO I NUMERI Memoria Abilità linguistiche Decifrazione percettivo-motoria Distinguere

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Le query. Lezione 6 a cura di Maria Novella Mosciatti

Le query. Lezione 6 a cura di Maria Novella Mosciatti Lezione 6 a cura di Maria Novella Mosciatti Le query Le query sono oggetti del DB che consentono di visualizzare, modificare e analizzare i dati in modi diversi. Si possono utilizzare query come origine

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: V. Lonati Progetto Il faccendiere valido per gli appelli di giugno e luglio 2012 1 Il problema Un faccendiere vuole depositare ingenti quantità di denaro

Dettagli

Informatica. Rappresentazione dei numeri Numerazione binaria

Informatica. Rappresentazione dei numeri Numerazione binaria Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione

Dettagli