Information Extraction

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Information Extraction"

Transcript

1 UNIVERSITÀ DEGLI STUDI DI BARI Facoltà di Scienze Matematiche, Fisiche e Naturali Dipartimento di Informatica Information Extraction Prof. Giovanni Semeraro Dott. Pasquale Lops Dott. Marco Degemmis Corso di Gestione della Conoscenza d Impresa Anno Accademico Information Extraction (IE) è il task che consiste nel localizzare informazioni specifiche all interno di documenti espressi in linguaggio naturale. OBIETTIVI Sviluppo di metodologie in grado di elaborare il testo dei documenti Estrazione di concetti che consentono di descrivere il contenuto dei documenti Rappresentazione strutturata delle informazioni estratte Line Eikvil, 1999 Information Extraction from World Wide Web: a survey Information Extraction 2 1

2 Information Retrieval (IR) Task che consiste nel ritrovare documenti rilevanti in relazione alle specifiche esigenze dell utente un sistema per IR è usato per memorizzare informazioni passibili di elaborazione, ricerca, recupero e distribuzione a differenti popolazioni di utenti. Salton G., McGill M.J. Introduction to Modern Information Retrieval. McGrawHill, Information Extraction 3 IR vs. IE IR Seleziona un set di documenti rilevanti da vaste collezioni Il testo è una raccolta disordinata di parole IE Estrae informazioni rilevanti da documenti È interessata alla struttura del testo SONO TECNICHE COMPLEMENTARI PER IL TEXT PROCESSING Information Extraction 4 2

3 Esempio di rappresentazione TEMPLATE SLOTVALUE Document Iama a Windows NT software engineer seeking a permanent position in a small quiet town miles from New York City. Ihaveovernineteen years of experience in all aspects of development of application software, with recent focus on design and implementation of systems involving multithreading, client/server architecture, and antipiracy. For the past 5 years, I have implemented Win NT services in Visual C++. I also have designed and implemented applications in Java. Before working with Win NT, I programmed in C under OpenVMS for 5 years. TITLE: LOCATION: LANGUAGE: PLATFORM: AREA: YEARS OF OF EXPERIENCE: Windows NT NT software engineer New New York City Visual C++, C, C, Java Win Win NT, NT, OpenVMS multithreading, client/server, antipiracy years Information Extraction 5 IE: motivazioni Due fattori hanno contribuito in maniera decisiva allo sviluppo dell IE nell ultimo decennio: Information Overflow Message Understanding Conference Information Extraction 6 3

4 Information Overflow Negli ultimi anni si è registrata una crescita esponenziale del volume di dati testuali disponibili online e offline. Questo fenomeno si è scontrato con l assenza di sistemi efficienti per la gestione di grandi quantità di dati non strutturati. Difficoltà nel selezionare informazioni utili dalla massa di informazioni proveniente da sorgenti di testo distribuite ed eterogenee Information Extraction 7 MUC: la storia (1) Verso la fine degli anni 80 il governo USA sponsorizzò il progetto MUC per valutare e migliorare lo stato dell arte nel campo dell IE. Diversi laboratori di ricerca accademici ed industriali furono impegnati nello sviluppo di sistemi per l IE in domini specifici. Costituì un primo tentativo di ottenere una valutazione quantitativa delle prestazioni di un sistema per l IE basandosi su rigorose procedure di test. Information Extraction 8 4

5 MUC: la storia (2) A ciascun testo appartenente al corpus di valutazione fu associato un template codificato a mano e progettato per contenere tutte le informazioni rilevanti incorporate nel documento sorgente. L obiettivo era quello di progettare sistemi che fossero in grado di generare i template senza nessuna assistenza umana. Information Extraction 9 Il risultato Il progetto ha dimostrato che: È possibile realizzare sistemi completamente automatizzati Le prestazioni in alcuni task specifici sono paragonabili a quelle di un esperto umano Information Extraction 10 5

6 Information Extraction: strategie Knowledge Engineering Le regole di estrazione sono costruite manualmente basandosi sulla conoscenza del dominio applicativo Automatic Training Per apprendere le regole di estrazione un algoritmo di training è eseguito su un corpus di documenti annotati per evidenziare le informazioni di interesse Information Extraction 11 Knowledge Engineering Approach Garantisce il controllo del processo di costruzione delle regole di estrazione Determina una forte dipendenza dal grado di abilità dall ingegnere della conoscenza che costruisce le regole Rende laborioso il processo di sviluppo dei sistemi Information Extraction 12 6

7 Automatic Training Approach Consente uno sviluppo più rapido dei sistemi Richiede uno sforzo minore nell adattare i sistemi ad un nuovo dominio applicativo Necessita della disponibilità di un volume soddisfacente di documenti di training Information Extraction 13 Le fasi di un sistema per IE documento Analisi locale del testo Analisi lessicale Riconoscimento dei nomi Fase di estrazione dei singoli fatti dal testo Analisi sintattica Pattern matching Analisi del discorso Analisi di coreferenza Integrazione dei fatti estratti al fine di ampliarli o produrne di nuovi Inferenza Generazione dei template Template estratti Traduzione nel formato di output richiesto Information Extraction 14 7

8 Esame delle singole fasi Le fasi del processo saranno analizzate illustrandone i risultati sul frammento di testo: Sam Schwarts retired as executive vice president of the famous hot dog manufacturer, Hupplewhite Inc. He will be succeeded by Harry Himmelfarb Information Extraction 15 Analisi Lessicale documento Analisi locale del testo Analisi lessicale Riconoscimento dei nomi Analisi sintattica Pattern matching Analisi lessicale Analisi del discorso Analisi di coreferenza Inferenza Generazione dei template consente di assegnare opportune proprietà alle singole parole o alle espressioni idiomatiche del testo Template estratti Information Extraction 16 8

9 Analisi Lessicale: tokens TOKEN: elemento che può corrispondere ad una parola, un numero, un simbolo di punteggiatura oppure qualsiasi altra unità in grado di essere passata alla fase di elaborazione successiva. TOKENIZZATORE: dispositivo che segmenta un flusso di input in una sequenza ordinata di token. Information Extraction 17 Analisi Lessicale: terminologia PARTOFSPEECH TAG: ruolo grammaticale assunto da una determinata parola. ANALIZZATORE MORFOLOGICO: programma che utilizza un lexicon per classificare i vari token. Associa ad un token tutti i possibili partofspeech che può assumere. LEXICON: database lessicale (specifico per una particolare lingua) che indica i possibili partofspeech di una parola. PARTOFSPEECH TAGGER: disambiguatore di partofspeech. Information Extraction 18 9

10 Riconoscimento dei nomi documento Analisi locale del testo Analisi lessicale Riconoscimento dei nomi Riconoscimento dei nomi Analisi sintattica Pattern matching Analisi del discorso Analisi di coreferenza Inferenza Generazione dei template Template estratti L obiettivo di questa fase è quello di identificare nomi ed altre strutture lessicali speciali (date, importi), usando pattern (espressioni regolari) rappresentati in termini di partofspeech, caratteristiche sintattiche ed ortografiche. Information Extraction 19 Riconoscimento dei nomi: esempio I nomi propri potrebbero essere identificati da: Un titolo che precede un nome Mr. Herrington David Un suffisso John Smith Jr. Una iniziale puntata all interno di una sequenza di nomi Humble T. Hopp Information Extraction 20 10

11 Riconoscimento dei nomi: risultato [ name type: person Sam Schwarts] retired as executive vice president of the famous hot dog manufacturer, [ name type: company Hupplewhite Inc.] He will succeeded by [ name type: person Harry Himmelfarb] Information Extraction 21 Analisi Sintattica (1) documento Analisi locale del testo Analisi lessicale Analisi sintattica Riconoscimento dei nomi Analisi sintattica Pattern matching Analisi del discorso Analisi di coreferenza identificazione di legami sintattici elementari fra i diversi elementi di una frase Inferenza Generazione dei template Template estratti Information Extraction 22 11

12 Analisi Sintattica (2) Si rinuncia alla determinazione del completo albero sintattico di interpretazione della frase in favore di una interpretazione locale dei sintagmi di una porzione della frase stessa. SINTAGMA: parola o insieme di parole che abbiano un significato logico Information Extraction 23 Analisi Sintattica (3) Ritornando all esempio iniziale, l applicazione della fase di partial parsing consente l individuazione dei gruppi verbali e delle frasi nominali: [ np entity: e1 Sam Schwarts] [ vg retired] as [ np entity: e2 executive vice president] of [ np entity: e3 the famous hot dog manufacturer], [ np entity: e4 Hupplewhite Inc.] [ np entity: e5 He] [ vg will succeeded] by [ np entity: Harry Himmelfarb] e6 Information Extraction 24 12

13 Analisi Sintattica (4) A ciascun gruppo nominale il sistema assegna una entità semantica: Entity e1 Entity e2 Entity e3 Entity e4 Entity e5 Entity e6 Type: person name: Sam Schwarts Type: position value: executive vice president Type: manufacturer Type: company name: Hupplewhite Inc. Type: person Type: person name: Harry Himmelfarb Information Extraction 25 Analisi Sintattica (5) Aggregazione dei gruppi in costrutti sintattici più ampi: Sam Schwarts retired as executive vice president of the famous hot dog manufacturer, Hupplewhite Inc. He will be succeeded by Harry Himmelfarb <position> of <company> Information Extraction 26 13

14 Analisi Sintattica (6) [ np entity: e1 Sam Schwarts] [ vg retired] as [ np entity: e2 executive vice president of the famous hot dog manufacturer], [ np entity: e3 Hupplewhite Inc.] [ np entity: e5 He] [ vg will succeeded] by [ np entity: e6 Harry Himmelfarb] Entity e1 Type: person name: Sam Schwarts Entity e2 Type: position value: executive vice president company: e3 Entity e3 Type: manufacturer name: Hupplewhite Inc. Entity e5 Entity e6 Type: person Type: person name: Harry Himmelfarb Information Extraction 27 Pattern Matching documento Analisi locale del testo Analisi lessicale Pattern Matching Riconoscimento dei nomi Analisi sintattica Pattern matching Analisi del discorso Analisi di coreferenza L obiettivo è l estrazione di eventi o relazioni rilevanti per lo scenario di interesse Inferenza Generazione dei template Template estratti Information Extraction 28 14

15 Pattern Matching: esempio Scenario: eventi di successione nel management. <person> retires as <position> <person> is succeded by <person> Il risultato della fase di scenario pattern matching èun testo marcato con eventi. Information Extraction 29 Pattern Matching: esempio [ clause event: e7 Sam Schwarts retired as executive vice president of the famous hot dog manufacturer, Hupplewhite Inc.] [ clause event: e8 He will succeeded by Harry Himmelfarb] <person> retires as <position> Information Extraction 30 15

16 Pattern Matching: esempio [ clause event: e7 Sam Schwarts retired as executive vice president of the famous hot dog manufacturer, Hupplewhite Inc.] [ clause event: e8 He will succeeded by Harry Himmelfarb] <person> is succeded by <person> Information Extraction 31 Pattern Matching: esempio Entity e1 Type: person name: Sam Schwarts Entity e2 Type: position value: executive vice president company: e3 Entity e3 Entity e5 Entity e6 Type: manufacturer name: Hupplewhite Inc. Type: person Type: person name: Harry Himmelfarb Entity e7 Type: leavejob person: e1 position: e2 Entity e8 Type: succeed person1: e6 person2: e5 Information Extraction 32 16

17 Analisi di Coreferenza documento Analisi locale del testo Analisi lessicale Riconoscimento dei nomi Analisi sintattica Pattern matching Analisi di coreferenza Analisi del discorso Analisi di coreferenza Inferenza Ha come obiettivo la risoluzione dei riferimenti dei pronomi Generazione dei template Template estratti Information Extraction 33 Analisi di Coreferenza [ clause event: e7 Sam Schwarts retired as executive vice president of the famous hot dog manufacturer, Hupplewhite Inc.] [ clause event: e8 He will succeeded by Harry Himmelfarb] Information Extraction 34 17

18 Confronto: Pattern Matching Entity e1 Type: person name: Sam Schwarts Entity e2 Type: position value: executive vice president company: e3 Entity e3 Entity e5 Entity e6 Entity e7 Entity e8 Type: manufacturer name: Hupplewhite Inc. Type: person Type: person name: Harry Himmelfarb Type: leavejob person: e1 position: e2 Type: succeed person1: e6 person2: e5 Information Extraction 35 Confronto: Analisi di Coreferenza Entity e1 Type: person name: Sam Schwarts Entity e2 Type: position value: executive vice president company: e3 Entity e3 Entity e6 Entity e7 Entity e8 Type: manufacturer name: Hupplewhite Inc. Type: person name: Harry Himmelfarb Type: leavejob person: e1 position: e2 Type: succeed person1: e6 person2: e1 Information Extraction 36 18

19 Inferenza documento Analisi locale del testo Analisi lessicale Riconoscimento dei nomi Analisi sintattica Pattern matching Analisi del discorso Analisi di coreferenza Inferenza Riunisce mediante meccanismi inferenziali informazioni relative ad uno stesso evento presenti in frasi diverse Inferenza Generazione dei template Template estratti Information Extraction 37 Inferenza: esempio Meccanismi inferenziali possono essere implementati tramite i sistemi a produzione: leavejob(xperson,yjob) AND succeed(zperson, Xperson) > startjob(zperson, Yjob) startjob (Xperson,Yjob) AND succeed(xperson, Zperson) > leavejob(zperson, Yjob) Information Extraction 38 19

20 Generazione dei Template documento Analisi locale del testo Analisi lessicale Riconoscimento dei nomi Analisi sintattica Pattern matching Analisi del discorso Analisi di coreferenza Inferenza Generazione dei template Costruzione dei template di output: strutture a frame con slot da riempire con i valori estratti Generazione dei Template Template estratti Information Extraction 39 Esempio EVENT: PERSON: POSITION: COMPANY: leavejob Sam Schwarts executive vice president Hupplewhite Inc. EVENT: PERSON: POSITION: COMPANY: startjob Harry Himmelfarb executive vice president Hupplewhite Inc. Information Extraction 40 20

21 Valutazione R = # True positive # True positive+# False negative IR: misura della frazione dell informazione ritrovata correttamente IE: misura della frazione dell informazione estratta correttamente Information Extraction 41 Valutazione P = # True positive # True positive+# False positive IR: misura della frazione dell informazione ritrovata che risulta corretta IE: si può interpretare come misura della frazione dell informazione estratta che risulta corretta Information Extraction 42 21

22 Alcuni sistemi Autoslog (1993) Riloff, E. Automatically constructing a dictionary for information extraction tasks. Proceedings of the 11th National Conference of Artificial Intelligence (AAAAI93). LIEP (1995) Huffman, S. Learning information extraction patterns from examples. IJCAI95 Workshop on new approaches to learning for natural language processing. Information Extraction 43 Alcuni sistemi PALKA (1995) Kim, J.; Moldovan, D. Acquisition of linguistic patterns for knowledgebased information extraction. IEEE Transactions on Knowledge and Data Engineering 7(5): HASTEN (1995) Krupka, G. Description of the SRA system as used for MUC6. Proceedings of the 6th Message Understanding Conference. CRYSTAL (1995) Soderland, S.; Fisher, D.; Aseltine, J.; Lehnert, W. Crystal: Inducing a conceptual dictionary. Proceedings of the 14th International Joint Conference on Atificial Intelligence (IJCAI95). Information Extraction 44 22

23 Alcuni sistemi RAPIER (1997) Califf, M.; Mooney, R. Relational learning of patternmatch rules for information extraction. ACL97 Workshop on Natural Language Learning. SRV (1998) Freitag, D. Information Extraction fron html: Application of a general learning approach. Proceedings of the 15th Conference on Artificial Intelligence (AAAI98). WHISK (1998) Soderland, S. Learning information extraction rules for semistructured and free text. Machine learning, vol. 34 (Special issue on Natural Language Learning), no. 1/3, pp , Information Extraction 45 23

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testualilezione

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testualilezione Text mining ed analisi di dati codificati in linguaggio naturale Analisi esplorative di dati testualilezione 2 Le principali tecniche di analisi testuale Facendo riferimento alle tecniche di data mining,

Dettagli

Ambienti di sviluppo integrato

Ambienti di sviluppo integrato Ambienti di sviluppo integrato Un ambiente di sviluppo integrato (IDE - Integrated Development Environment) è un ambiente software che assiste i programmatori nello sviluppo di programmi Esso è normalmente

Dettagli

Intalio. Leader nei Sistemi Open Source per il Business Process Management. Andrea Calcagno Amministratore Delegato

Intalio. Leader nei Sistemi Open Source per il Business Process Management. Andrea Calcagno Amministratore Delegato Intalio Convegno Open Source per la Pubblica Amministrazione Leader nei Sistemi Open Source per il Business Process Management Navacchio 4 Dicembre 2008 Andrea Calcagno Amministratore Delegato 20081129-1

Dettagli

Lessico settoriale e lessico comune nell estrazione di terminologia specialistica da corpora di dominio

Lessico settoriale e lessico comune nell estrazione di terminologia specialistica da corpora di dominio Francesca Bonin Felice Dell Orletta* Simonetta Montemagni* Giulia Venturi* (*Istituto di Linguistica Computazionale Antonio Zampolli - ILC- CNR, Dipartimento di Informatica, Università di Pisa) Lessico

Dettagli

LA TECHNOLOGY TRANSFER PRESENTA SUZANNE ROBERTSON MASTERING THE REQUIREMENTS PROCESS COME COSTRUIRE IL SISTEMA CHE IL VOSTRO UTENTE DESIDERA

LA TECHNOLOGY TRANSFER PRESENTA SUZANNE ROBERTSON MASTERING THE REQUIREMENTS PROCESS COME COSTRUIRE IL SISTEMA CHE IL VOSTRO UTENTE DESIDERA LA TECHNOLOGY TRANSFER PRESENTA SUZANNE ROBERTSON MASTERING THE REQUIREMENTS PROCESS COME COSTRUIRE IL SISTEMA CHE IL VOSTRO UTENTE DESIDERA ROMA 20-22 OTTOBRE 2014 RESIDENZA DI RIPETTA - VIA DI RIPETTA,

Dettagli

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

Informatica. Scopo della lezione

Informatica. Scopo della lezione 1 Informatica per laurea diarea non informatica LEZIONE 1 - Cos è l informatica 2 Scopo della lezione Introdurre le nozioni base della materia Definire le differenze tra hardware e software Individuare

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

Introduzione Perché ti può aiutare la Smart Data Capture?

Introduzione Perché ti può aiutare la Smart Data Capture? 01 Introduzione Perché ti può aiutare la Smart Data Capture? Gestisci ogni giorno un elevato numero di fatture e documenti? Se hai un elevato numero di fatture da registrare, note di credito e documenti

Dettagli

F O R M A T O E U R O P E O

F O R M A T O E U R O P E O F O R M A T O E U R O P E O P E R I L C U R R I C U L U M V I T A E INFORMAZIONI PERSONALI Nome Indirizzo Laura Bacci, PMP Via Tezze, 36 46100 MANTOVA Telefono (+39) 348 6947997 Fax (+39) 0376 1810801

Dettagli

COME FRODE. la possibilità propri dati. brevissimo. Reply www.reply.eu

COME FRODE. la possibilità propri dati. brevissimo. Reply www.reply.eu FRAUD MANAGEMENT. COME IDENTIFICARE E COMB BATTERE FRODI PRIMA CHE ACCADANO LE Con una visione sia sui processi di business, sia sui sistemi, Reply è pronta ad offrire soluzioni innovative di Fraud Management,

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Il buon nome - Chiavi di risposta e classificazione degli item Item Risposta corretta Ambito di valutazione Processi

Dettagli

Business Intelligence. Il data mining in

Business Intelligence. Il data mining in Business Intelligence Il data mining in L'analisi matematica per dedurre schemi e tendenze dai dati storici esistenti. Revenue Management. Previsioni di occupazione. Marketing. Mail diretto a clienti specifici.

Dettagli

CRITERI DI VALUTAZIONE ITALIANO PRIMO BIENNIO

CRITERI DI VALUTAZIONE ITALIANO PRIMO BIENNIO CRITERI DI VALUTAZIONE ITALIANO PRIMO BIENNIO Voti RAGGIUNGIMENTO OBIETTIVI DESCRITTORI Fino a 3 Del tutto insufficiente Assenza di conoscenze. Errori ortografici e morfo-sintattici numerosi e gravi. 4

Dettagli

AOT Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Unified Process. Prof. Agostino Poggi

AOT Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Unified Process. Prof. Agostino Poggi AOT Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Unified Process Prof. Agostino Poggi Unified Process Unified Software Development Process (USDP), comunemente chiamato

Dettagli

Istituto Tecnico Commerciale Indirizzo AFM articolazione SIA PERCHE???

Istituto Tecnico Commerciale Indirizzo AFM articolazione SIA PERCHE??? Istituto Tecnico Commerciale Indirizzo AFM articolazione SIA PERCHE??? Opportunità di lavoro: ICT - Information and Communication Technology in Azienda Vendite Acquisti Produzione Logistica AFM SIA ICT

Dettagli

- transitivi Gianni ha colpito Pietro Ha mangiato (la pasta)

- transitivi Gianni ha colpito Pietro Ha mangiato (la pasta) Teoria tematica Ogni predicato ha una sua struttura argomentale, richiede cioè un certo numero di argomenti che indicano i partecipanti minimalmente coinvolti nell attività/stato espressi dal verbo stesso.

Dettagli

Analisi di massima: L utente dovrà inserire un numero limite, e tramite vari calcoli verrà stampato a video la sequenza.

Analisi di massima: L utente dovrà inserire un numero limite, e tramite vari calcoli verrà stampato a video la sequenza. Relazione tecnica Fibonacci ANDENA GIANMARCO Traccia: Creare un algoritmo che permetta, dato un valore intero e positivo, di stabilire la sequenza utilizzando la regola di fibonacci dei numeri fino al

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Curriculum Vitae di ENRICO NARDELLI

Curriculum Vitae di ENRICO NARDELLI Curriculum Vitae di ENRICO NARDELLI (Versione Abbreviata) Ultimo Aggiornamento: 24 Febbraio 2011 1 Posizioni Enrico Nardelli si è laureato nel 1983 in Ingegneria Elettronica (110/110 con lode) presso l

Dettagli

ISTITUTO COMPRENSIVO STATALE di BORGORICCO SUGGERIMENTI PER LA COMPILAZIONE DEL P.D.P. PER ALUNNI CON DISTURBI SPECIFICI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO STATALE di BORGORICCO SUGGERIMENTI PER LA COMPILAZIONE DEL P.D.P. PER ALUNNI CON DISTURBI SPECIFICI DI APPRENDIMENTO SUGGERIMENTI PER LA COMPILAZIONE DEL P.D.P. PER ALUNNI CON DISTURBI SPECIFICI DI APPRENDIMENTO Il documento va compilato in forma digitale per poter ampliare gli spazi dello schema (ove necessario) e togliere

Dettagli

CAPITOLO CAPIT Tecnologie dell ecnologie dell info inf rmazione e controllo

CAPITOLO CAPIT Tecnologie dell ecnologie dell info inf rmazione e controllo CAPITOLO 8 Tecnologie dell informazione e controllo Agenda Evoluzione dell IT IT, processo decisionale e controllo Sistemi di supporto al processo decisionale Sistemi di controllo a feedback IT e coordinamento

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

BPEL: Business Process Execution Language

BPEL: Business Process Execution Language Ingegneria dei processi aziendali BPEL: Business Process Execution Language Ghilardi Dario 753708 Manenti Andrea 755454 Docente: Prof. Ernesto Damiani BPEL - definizione Business Process Execution Language

Dettagli

La Visione Artificiale: Controllo di Qualità, Fotogrammetria e Realtà Virtuale

La Visione Artificiale: Controllo di Qualità, Fotogrammetria e Realtà Virtuale La Visione Artificiale: Controllo di Qualità, Fotogrammetria e Realtà Virtuale D. Prattichizzo G.L. Mariottini F. Moneti M. Orlandesi M. Fei M. de Pascale A. Formaglio F. Morbidi S. Mulatto SIRSLab Laboratorio

Dettagli

Linguistica Generale

Linguistica Generale Linguistica Generale Docente: Paola Monachesi Aprile-Maggio 2003 Contents 1 La linguistica e i suoi settori 2 2 La grammatica come mezzo per rappresentare la competenza linguistica 2 3 Le componenti della

Dettagli

12.5 UDP (User Datagram Protocol)

12.5 UDP (User Datagram Protocol) CAPITOLO 12. SUITE DI PROTOCOLLI TCP/IP 88 12.5 UDP (User Datagram Protocol) L UDP (User Datagram Protocol) é uno dei due protocolli del livello di trasporto. Come l IP, é un protocollo inaffidabile, che

Dettagli

Energy risk management

Energy risk management Il sistema di supporto alle tue decisioni Energy risk management Un approccio orientato agli attori M.B.I. Srl, Via Francesco Squartini 7-56121 Pisa, Italia - tel. 050 3870888 - fax. 050 3870808 www.powerschedo.it

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello della Web Application 5 3 Struttura della web Application 6 4 Casi di utilizzo della Web

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

THUN con ARIS: dall'ottimizzazione dei processi verso l enterprise SOA

THUN con ARIS: dall'ottimizzazione dei processi verso l enterprise SOA SAP World Tour 2007 - Milano 11-12 Luglio 2007 THUN con ARIS: dall'ottimizzazione dei processi verso l enterprise SOA Agenda Presentazione Derga Consulting Enterprise SOA Allineamento Processi & IT Il

Dettagli

Processi ITIL. In collaborazione con il nostro partner:

Processi ITIL. In collaborazione con il nostro partner: Processi ITIL In collaborazione con il nostro partner: NetEye e OTRS: la piattaforma WÜRTHPHOENIX NetEye è un pacchetto di applicazioni Open Source volto al monitoraggio delle infrastrutture informatiche.

Dettagli

Windows Compatibilità

Windows Compatibilità Che novità? Windows Compatibilità CODESOFT 2014 é compatibile con Windows 8.1 e Windows Server 2012 R2 CODESOFT 2014 Compatibilità sistemi operativi: Windows 8 / Windows 8.1 Windows Server 2012 / Windows

Dettagli

ITALIANO - ASCOLTARE E PARLARE

ITALIANO - ASCOLTARE E PARLARE O B I E T T I V I M I N I M I P E R L A S C U O L A P R I M A R I A E S E C O N D A R I A D I P R I M O G R A D O ITALIANO - ASCOLTARE E PARLARE Ascoltare e comprendere semplici consegne operative Comprendere

Dettagli

Sistemi Web-Based - Terminologia. Progetto di Sistemi Web-Based Prof. Luigi Laura, Univ. Tor Vergata, a.a. 2010/2011

Sistemi Web-Based - Terminologia. Progetto di Sistemi Web-Based Prof. Luigi Laura, Univ. Tor Vergata, a.a. 2010/2011 Sistemi Web-Based - Terminologia Progetto di Sistemi Web-Based Prof. Luigi Laura, Univ. Tor Vergata, a.a. 2010/2011 CLIENT: il client è il programma che richiede un servizio a un computer collegato in

Dettagli

DBMS (Data Base Management System)

DBMS (Data Base Management System) Cos'è un Database I database o banche dati o base dati sono collezioni di dati, tra loro correlati, utilizzati per rappresentare una porzione del mondo reale. Sono strutturati in modo tale da consentire

Dettagli

Le Reti Informatiche

Le Reti Informatiche Le Reti Informatiche modulo 10 Prof. Salvatore Rosta www.byteman.it s.rosta@byteman.it 1 Nomenclatura: 1 La rappresentazione di uno schema richiede una serie di abbreviazioni per i vari componenti. Seguiremo

Dettagli

Copyright Università degli Studi di Torino, Progetto Atlante delle Professioni 2009 IT PROCESS EXPERT

Copyright Università degli Studi di Torino, Progetto Atlante delle Professioni 2009 IT PROCESS EXPERT IT PROCESS EXPERT 1. CARTA D IDENTITÀ... 2 2. CHE COSA FA... 3 3. DOVE LAVORA... 4 4. CONDIZIONI DI LAVORO... 5 5. COMPETENZE... 6 Quali competenze sono necessarie... 6 Conoscenze... 8 Abilità... 9 Comportamenti

Dettagli

How to Develop Accessible Linux Applications

How to Develop Accessible Linux Applications How to Develop Accessible Linux Applications Sharon Snider Copyright 2002 IBM Corporation v1.1, 2002-05-03 Diario delle Revisioni Revisione v1.1 2002-05-03 Revisionato da: sds Convertito in DocBook XML

Dettagli

APPLICAZIONE WEB PER LA GESTIONE DELLE RICHIESTE DI ACQUISTO DEL MATERIALE INFORMATICO. Francesco Marchione e Dario Richichi

APPLICAZIONE WEB PER LA GESTIONE DELLE RICHIESTE DI ACQUISTO DEL MATERIALE INFORMATICO. Francesco Marchione e Dario Richichi APPLICAZIONE WEB PER LA GESTIONE DELLE RICHIESTE DI ACQUISTO DEL MATERIALE INFORMATICO Francesco Marchione e Dario Richichi Istituto Nazionale di Geofisica e Vulcanologia Sezione di Palermo Indice Introduzione...

Dettagli

MODULO DI ISCRIZIONE - ENROLMENT FORM

MODULO DI ISCRIZIONE - ENROLMENT FORM Under the Patronage of Comune di Portofino Regione Liguria 1ST INTERNATIONAL OPERA SINGING COMPETITION OF PORTOFINO from 27th to 31st July 2015 MODULO DI ISCRIZIONE - ENROLMENT FORM Direzione artistica

Dettagli

GIMBE Gruppo Italiano per la Medicina Basata sulle Evidenze

GIMBE Gruppo Italiano per la Medicina Basata sulle Evidenze GIMBE Gruppo Italiano per la Medicina Basata sulle Evidenze Evidence-Based Medicine Italian Group Workshop Evidence-based Medicine Le opportunità di un linguaggio comune Como, 9-11 maggio 2003 Sezione

Dettagli

Panoramica su ITIL V3 ed esempio di implementazione del Service Design

Panoramica su ITIL V3 ed esempio di implementazione del Service Design Master Universitario di II livello in Interoperabilità Per la Pubblica Amministrazione e Le Imprese Panoramica su ITIL V3 ed esempio di implementazione del Service Design Lavoro pratico II Periodo didattico

Dettagli

Business Intelligence

Business Intelligence aggregazione dati Business Intelligence analytic applications query d a t a w a r e h o u s e aggregazione budget sales inquiry data mining Decision Support Systems MIS ERP data management Data Modeling

Dettagli

P.L.I.D.A. Progetto Lingua Italiana Dante Alighieri Certificazione di competenza della lingua italiana

P.L.I.D.A. Progetto Lingua Italiana Dante Alighieri Certificazione di competenza della lingua italiana P.L.I.D.A. Progetto Lingua Italiana Dante Alighieri Certificazione di competenza della lingua italiana CRITERI DI VALUTAZIONE PER LE PROVE SCRITTE L obiettivo del valutatore, nella correzione delle prove

Dettagli

Elementi di semantica denotazionale ed operazionale

Elementi di semantica denotazionale ed operazionale Elementi di semantica denotazionale ed operazionale 1 Contenuti! sintassi astratta e domini sintattici " un frammento di linguaggio imperativo! semantica denotazionale " domini semantici: valori e stato

Dettagli

Business Process Management applicato ai flussi della PA

Business Process Management applicato ai flussi della PA tecnologie vicine Business Process Management applicato ai flussi della PA Antonio Palummieri Resp. Area Mercato Luciano Sulis - BPM Solution Specialist Milano, 24 novembre 2011 Popolazione comuni: Italia

Dettagli

PROFILI ALLEGATO A. Profili professionali

PROFILI ALLEGATO A. Profili professionali ALLEGATO A Profili professionali Nei profili di seguito descritti vengono sintetizzate le caratteristiche di delle figure professionali che verranno coinvolte nell erogazione dei servizi oggetto della

Dettagli

Indessicalità / Indexicality William F. Hanks

Indessicalità / Indexicality William F. Hanks Indessicalità / Indexicality William F. Hanks Il termine indessicalità indica l onnipresente dipendenza dal contesto degli enunciati di qualunque lingua naturale, e comprende fenomeni diversissimi come

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Abstract Data Type (ADT)

Abstract Data Type (ADT) Abstract Data Type Pag. 1/10 Abstract Data Type (ADT) Iniziamo la nostra trattazione presentando una nozione che ci accompagnerà lungo l intero corso di Laboratorio Algoritmi e Strutture Dati: il Tipo

Dettagli

Sistemi avanzati di gestione dei Sistemi Informativi

Sistemi avanzati di gestione dei Sistemi Informativi Esperti nella gestione dei sistemi informativi e tecnologie informatiche Sistemi avanzati di gestione dei Sistemi Informativi Docente: Email: Sito: Eduard Roccatello eduard@roccatello.it http://www.roccatello.it/teaching/gsi/

Dettagli

Managed Services e Unified Communication & Collaboration: verso il paradigma del Cloud Computing

Managed Services e Unified Communication & Collaboration: verso il paradigma del Cloud Computing Managed Services e Unified Communication & Collaboration: verso il paradigma del Cloud Computing Claudio Chiarenza (General Manager and Chief Strategy Officer) Italtel, Italtel logo and imss (Italtel Multi-Service

Dettagli

RUP (Rational Unified Process)

RUP (Rational Unified Process) RUP (Rational Unified Process) Caratteristiche, Punti di forza, Limiti versione del tutorial: 3.3 (febbraio 2007) Pag. 1 Unified Process Booch, Rumbaugh, Jacobson UML (Unified Modeling Language) notazione

Dettagli

Il Business Process Management: nuova via verso la competitività aziendale

Il Business Process Management: nuova via verso la competitività aziendale Il Business Process Management: nuova via verso la competitività Renata Bortolin Che cosa significa Business Process Management? In che cosa si distingue dal Business Process Reingeneering? Cosa ha a che

Dettagli

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory

Sistemi Operativi. Interfaccia del File System FILE SYSTEM : INTERFACCIA. Concetto di File. Metodi di Accesso. Struttura delle Directory FILE SYSTEM : INTERFACCIA 8.1 Interfaccia del File System Concetto di File Metodi di Accesso Struttura delle Directory Montaggio del File System Condivisione di File Protezione 8.2 Concetto di File File

Dettagli

Risultati delle prove di ingresso delle classi prime e raffigurazione del profilo medio delle conoscenze e abilità degli allievi.

Risultati delle prove di ingresso delle classi prime e raffigurazione del profilo medio delle conoscenze e abilità degli allievi. Risultati delle prove di ingresso delle classi prime e raffigurazione del profilo medio delle abilità degli allievi. I risultati sono stati raccolti in un foglio elettronico e visualizzati con grafici,

Dettagli

Progetto Didattico di Informatica Multimediale

Progetto Didattico di Informatica Multimediale Progetto Didattico di Informatica Multimediale VRAI - Vision, Robotics and Artificial Intelligence 20 aprile 2015 Rev. 18+ Introduzione Le videocamere di riconoscimento sono strumenti sempre più utilizzati

Dettagli

Università degli Studi di Parma. Facoltà di Scienze MM. FF. NN. Corso di Laurea in Informatica

Università degli Studi di Parma. Facoltà di Scienze MM. FF. NN. Corso di Laurea in Informatica Università degli Studi di Parma Facoltà di Scienze MM. FF. NN. Corso di Laurea in Informatica A.A. 2007-08 CORSO DI INGEGNERIA DEL SOFTWARE Prof. Giulio Destri http://www.areasp.com (C) 2007 AreaSP for

Dettagli

1.3c: Font BITMAP e Font SCALABILI

1.3c: Font BITMAP e Font SCALABILI Prof. Alberto Postiglione Dipartimento di Scienze della Comunicazione Facoltà di Lettere e Filosofia Università degli Studi di Salerno : Font BITMAP e Font SCALABILI Informatica Generale (Corso di Studio

Dettagli

Pronti per la Voluntary Disclosure?

Pronti per la Voluntary Disclosure? Best Vision GROUP The Swiss hub in the financial business network Pronti per la Voluntary Disclosure? Hotel de la Paix, 21 aprile 2015, ore 18:00 Hotel Lugano Dante, 22 aprile 2015, ore 17:00 Best Vision

Dettagli

Grandi dimensioni e dimensioni variabili

Grandi dimensioni e dimensioni variabili Grandi dimensioni e dimensioni variabili aprile 2012 1 Questo capitolo studia alcuni ulteriori aspetti importanti e caratteristici della gestione delle dimensioni in particolare, delle grandi dimensioni

Dettagli

Cos'é Code::Blocks? Come Creare un progetto Come eseguire un programma Risoluzione problemi istallazione Code::Blocks Che cos è il Debug e come si usa

Cos'é Code::Blocks? Come Creare un progetto Come eseguire un programma Risoluzione problemi istallazione Code::Blocks Che cos è il Debug e come si usa di Ilaria Lorenzo e Alessandra Palma Cos'é Code::Blocks? Come Creare un progetto Come eseguire un programma Risoluzione problemi istallazione Code::Blocks Che cos è il Debug e come si usa Code::Blocks

Dettagli

ARTICOLO 61 MARZO/APRILE 2013 LA BUSINESS INTELLIGENCE 1. http://www.sinedi.com

ARTICOLO 61 MARZO/APRILE 2013 LA BUSINESS INTELLIGENCE 1. http://www.sinedi.com http://www.sinedi.com ARTICOLO 61 MARZO/APRILE 2013 LA BUSINESS INTELLIGENCE 1 L estrema competitività dei mercati e i rapidi e continui cambiamenti degli scenari in cui operano le imprese impongono ai

Dettagli

Rational Unified Process Introduzione

Rational Unified Process Introduzione Rational Unified Process Introduzione G.Raiss - A.Apolloni - 4 maggio 2001 1 Cosa è E un processo di sviluppo definito da Booch, Rumbaugh, Jacobson (autori dell Unified Modeling Language). Il RUP è un

Dettagli

Cos è l Ingegneria del Software?

Cos è l Ingegneria del Software? Cos è l Ingegneria del Software? Corpus di metodologie e tecniche per la produzione di sistemi software. L ingegneria del software è la disciplina tecnologica e gestionale che riguarda la produzione sistematica

Dettagli

Applicazione: DoQui/Index - Motore di gestione dei contenuti digitali

Applicazione: DoQui/Index - Motore di gestione dei contenuti digitali Riusabilità del software - Catalogo delle applicazioni: Applicativo verticale Applicazione: DoQui/Index - Motore di gestione dei contenuti digitali Amministrazione: Regione Piemonte - Direzione Innovazione,

Dettagli

La Treebank sintattico-semantica dell italiano di SI-TAL: architettura, specifiche, risultati

La Treebank sintattico-semantica dell italiano di SI-TAL: architettura, specifiche, risultati La Treebank sintattico-semantica dell italiano di SI-TAL: architettura, specifiche, risultati Simonetta Montemagni 1 1 Istituto di Linguistica Computazionale - CNR / Consorzio Pisa Ricerche, Pisa, Italy

Dettagli

Curriculum Vitae Europass

Curriculum Vitae Europass Curriculum Vitae Europass Informazioni personali Cognome/i nome/i Castelli Flavio Email flavio.castelli@gmail.com Sito web personale http://www.flavio.castelli.name Nazionalità Italiana Data di nascita

Dettagli

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione Analisi del dominio: i sistemi per la localizzazione Definizione e implementazione del framework e risultati sperimentali e sviluppi futuri Tecniche di localizzazione Triangolazione Analisi della scena

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Le Reti di Calcolatori (parte 2) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente: Daniela

Dettagli

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare Istituto di Riabilitazione ANGELO CUSTODE PARLARE E CONTARE ALLA SCUOLA DELL INFANZIA Lo sviluppo delle abilità logico-matematiche nei bambini in età prescolare Dott.ssa Liana Belloni Dott.ssa Claudia

Dettagli

EuroColori YOUR BEST PARTNER IN COLOR STRATEGY

EuroColori YOUR BEST PARTNER IN COLOR STRATEGY EuroColori YOUR BEST PARTNER IN COLOR STRATEGY EuroColori YOUR BEST PARTNER IN COLOR STRATEGY THE FUTURE IS CLOSER Il primo motore di tutte le nostre attività è la piena consapevolezza che il colore è

Dettagli

La gestione documentale con il programma Filenet ed il suo utilizzo tramite la tecnologia.net. di Emanuele Mattei (emanuele.mattei[at]email.

La gestione documentale con il programma Filenet ed il suo utilizzo tramite la tecnologia.net. di Emanuele Mattei (emanuele.mattei[at]email. La gestione documentale con il programma Filenet ed il suo utilizzo tramite la tecnologia.net di Emanuele Mattei (emanuele.mattei[at]email.it) Introduzione In questa serie di articoli, vedremo come utilizzare

Dettagli

Tiziano Bettati, Maria Teresa Pacchioli Centro Ricerche Produzioni Animali

Tiziano Bettati, Maria Teresa Pacchioli Centro Ricerche Produzioni Animali Il Divulgatore n.10/2002 Sicurezza alimentare PARTENDO DALLA DOP Tr@ce.pig è un progetto di tracciabilità della filiera del suino pesante utilizzato come materia prima per i Prosciutti di Parma a Denominazione

Dettagli

LA TECHNOLOGY TRANSFER PRESENTA JEN UNDERWOOD ADVANCED WORKSHOP ROMA 6 MAGGIO 2015 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231

LA TECHNOLOGY TRANSFER PRESENTA JEN UNDERWOOD ADVANCED WORKSHOP ROMA 6 MAGGIO 2015 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 LA TECHNOLOGY TRANSFER PRESENTA JEN UNDERWOOD ADVANCED ANALYTICS WORKSHOP ROMA 6 MAGGIO 2015 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 info@technologytransfer.it www.technologytransfer.it ADVANCED ANALYTICS

Dettagli

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input

Problem Management. Obiettivi. Definizioni. Responsabilità. Attività. Input Problem Management Obiettivi Obiettivo del Problem Management e di minimizzare l effetto negativo sull organizzazione degli Incidenti e dei Problemi causati da errori nell infrastruttura e prevenire gli

Dettagli

UML: Class Diagram. Ing. Orazio Tomarchio Orazio.Tomarchio@diit.unict.it

UML: Class Diagram. Ing. Orazio Tomarchio Orazio.Tomarchio@diit.unict.it UML: Class Diagram Ing. Orazio Tomarchio Orazio.Tomarchio@diit.unict.it Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università di Catania Class Diagram Forniscono una vista strutturale

Dettagli

Il bambino sordo e il suo diritto a crescere bilingue

Il bambino sordo e il suo diritto a crescere bilingue Italian Il bambino sordo e il suo diritto a crescere bilingue The Italian translation of The right of the deaf child to grow up bilingual by François Grosjean University of Neuchâtel, Switzerland Translated

Dettagli

1. Che cos è. 2. A che cosa serve

1. Che cos è. 2. A che cosa serve 1. Che cos è Il Supplemento al diploma è una certificazione integrativa del titolo ufficiale conseguito al termine di un corso di studi in una università o in un istituto di istruzione superiore corrisponde

Dettagli

Corso di Informatica

Corso di Informatica CdLS in Odontoiatria e Protesi Dentarie Corso di Informatica Prof. Crescenzio Gallo crescenzio.gallo@unifg.it L Informatica!2 Informatica Il termine informatica deriva dal francese Informatique Inform(ation

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. PROPOSTE di TIROCINI/TESI di LAUREA - Prof. Patrizia Scandurra

UNIVERSITÀ DEGLI STUDI DI BERGAMO. PROPOSTE di TIROCINI/TESI di LAUREA - Prof. Patrizia Scandurra PROPOSTE di TIROCINI/TESI di LAUREA - Prof. Patrizia Scandurra A seguire alcune proposte di tirocini/tesi in tre ambiti dell ingegneria del software (non del tutto scorrelati): (1) Model-driven driven

Dettagli

Come si prepara una presentazione

Come si prepara una presentazione Analisi Critica della Letteratura Scientifica 1 Come si prepara una presentazione Perché? 2 Esperienza: Si vedono spesso presentazioni di scarsa qualità Evidenza: Un lavoro ottimo, presentato in modo pessimo,

Dettagli

Manipolazione di testi: espressioni regolari

Manipolazione di testi: espressioni regolari Manipolazione di testi: espressioni regolari Un meccanismo per specificare un pattern, che, di fatto, è la rappresentazione sintetica di un insieme (eventualmente infinito) di stringhe: il pattern viene

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Didattiche con la LIM

Didattiche con la LIM Didattiche con la LIM Modelli e prospettive Luca Ferrari Dipartimento di Scienze dell Educazione, Università di Bologna Index 1. Scenario 2. Definizione e caratteristiche 3. Un modello didattico problematico

Dettagli

Introduzione alla Programmazione ad Oggetti in C++

Introduzione alla Programmazione ad Oggetti in C++ Introduzione alla Programmazione ad Oggetti in C++ Lezione 1 Cosa è la Programmazione Orientata agli Oggetti Metodologia per costruire prodotti software di grosse dimensioni che siano affidabili e facilmente

Dettagli

Stefano Perna. Informazioni Personali. Obiettivi Professionali. Posizione attuale. Healthcare Pre-Sales e Project Management.

Stefano Perna. Informazioni Personali. Obiettivi Professionali. Posizione attuale. Healthcare Pre-Sales e Project Management. Stefano Perna Informazioni Personali Residenza Viale Spartaco, 91 00174 Roma Telefono (+39) 320 6974861 (+39) 340 2267281 Email perna.stefano@gmail.com Sito http://www.stefanoperna.it Luogo e Data di nascita

Dettagli

PMI. Management Maturity Model, OPM3 Second Edition 2008

PMI. Management Maturity Model, OPM3 Second Edition 2008 Nuovi standard PMI, certificazioni professionali e non solo Milano, 20 marzo 2009 PMI Organizational Project Management Maturity Model, OPM3 Second Edition 2008 Andrea Caccamese, PMP Prince2 Practitioner

Dettagli

LICEO DELLE SCIENZE UMANE LICEO ECONOMICO SOCIALE. PROGRAMMA ESAMI INTEGRATIVI/IDONEITA' DI INGLESE (1, 2, 3 e 4 anno) CLASSE PRIMA

LICEO DELLE SCIENZE UMANE LICEO ECONOMICO SOCIALE. PROGRAMMA ESAMI INTEGRATIVI/IDONEITA' DI INGLESE (1, 2, 3 e 4 anno) CLASSE PRIMA (1, 2, 3 e 4 anno) CLASSE PRIMA Simple del verbo to be in tutte le sue forme Il Present Simple del verbo to have (got) in tutte le sue forme I pronomi soggetto e complemento Gli aggettivi e pronomi possessivi

Dettagli

Come scrivere un articolo scientifico La bibliografia: citare da Internet

Come scrivere un articolo scientifico La bibliografia: citare da Internet scrivere in medicina Come scrivere un articolo scientifico La bibliografia: citare da Internet L emergere di Internet come fonte preziosa di informazioni, ha reso necessaria la definizione di alcune regole

Dettagli

Informatica per la comunicazione" - lezione 9 -

Informatica per la comunicazione - lezione 9 - Informatica per la comunicazione" - lezione 9 - Protocolli di livello intermedio:" TCP/IP" IP: Internet Protocol" E il protocollo che viene seguito per trasmettere un pacchetto da un host a un altro, in

Dettagli

REALIZZARE UN MODELLO DI IMPRESA

REALIZZARE UN MODELLO DI IMPRESA REALIZZARE UN MODELLO DI IMPRESA - organizzare e gestire l insieme delle attività, utilizzando una piattaforma per la gestione aziendale: integrata, completa, flessibile, coerente e con un grado di complessità

Dettagli

LA VALUTAZIONE ECONOMICA DEL PORTAFOGLIO BREVETTUALE

LA VALUTAZIONE ECONOMICA DEL PORTAFOGLIO BREVETTUALE LA VALUTAZIONE ECONOMICA DEL PORTAFOGLIO BREVETTUALE Prof. MARCO GIULIANI Docente di Economia Aziendale Università Politecnica delle Marche Socio LIVE m.giuliani@univpm.it Jesi, 11 ottobre 2013 1 Prime

Dettagli

ENERGY-EFFICIENT HOME VENTILATION SYSTEMS

ENERGY-EFFICIENT HOME VENTILATION SYSTEMS SISTEMI DI RECUPERO RESIDENZIALE HOME RECOVERY SYSTEMS RECUPERO DI CALORE AD ALTA EFFICIENZA HIGH EFFICIENCY HEAT RECOVERY VENTILAZIONE A BASSO CONSUMO LOW ENERGY VENTILATION SISTEMI DI RICAMBIO CONTROLLATO

Dettagli

Progettazione Orientata agli Oggetti

Progettazione Orientata agli Oggetti Progettazione Orientata agli Oggetti Sviluppo del software Ciclo di vita del software: comprende tutte le attività dall analisi iniziale fino all obsolescenza (sviluppo, aggiornamento, manutenzione) Procedimento

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

Percorso formativo laboratoriale DIDATTICA DELLA MATEMATICA

Percorso formativo laboratoriale DIDATTICA DELLA MATEMATICA Percorso formativo laboratoriale DIDATTICA DELLA MATEMATICA Un approccio inclusivo per Disturbi Specifici e Difficoltà di Apprendimento Anna Maria Antonucci AIRIPA Puglia Lo sviluppo dell intelligenza

Dettagli