Progettazione di Algoritmi

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Progettazione di Algoritmi"

Transcript

1 Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 1/01/016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai 3 ore di tempo per rispondere alle domande. La prova consta di 8 domande a risposta multipla e 3 domande aperte. Per le domande a risposta multipla occorre rispondere inserendo la lettera scelta nell apposito quadratino accanto al numero della domanda. In caso di ripensamento, cancellare la risposta data e scrivere la nuova risposta nel successivo quadratino. Ogni risposta esatta vale punti; ogni risposta errata vale -1 punto; ogni domanda lasciata in bianco vale 0 punti. Le domande a risposta multipla valgono in tutto 3 punti, quelle aperte 68 punti per un totale di 100 punti. NOME: COGNOME: MATRICOLA: Quesito risposta multipla uso di un algoritmo problema 1 problema Totale Punti /3 /18 /5 /5 /100

2 Quesito 1 1. Quali delle seguenti affermazioni è vera? A. log n = O(log log n) B. n = O (log n) C. log log n = O (log log n) D. nessuna delle precedenti è vera. In quali casi la visita in profondità e la visita in ampiezza su un grafo non orientato producono esattamente lo stesso albero? A. Se il grafo ha n vertici ed n archi B. Se il grafo è un ciclo semplice C. Se il grafo è un cammino (catena) D. Mai 3. Qual è il tempo di esecuzione del seguente frammento di codice? A. O(log n) B. O(n) C. Θ(n ) D. Ω(n ). L algoritmo di Huffman calcola una codifica prefissa binaria γ per un alfabeto S con frequenze f(s), per s S, associando ad ogni s S, la parola codice γ(s), di lunghezza γ(s), in modo tale da minimizzare A. Σ s S γ(s) B. Σ s S γ(s) C. Σ s S f(s)γ(s) D. Σ s S f(s) γ(s) 5. Un minimo albero di copertura (MST) per un grafo pesato G=(V,E) è? A. Un sottografo di peso totale minimo B. Un insieme aciclico di archi di peso totale minimo C. Un albero col minimo numero di archi il cui insieme di vertici è V D. Nessuna delle risposte precedenti 6. Gli algoritmi di Dijkstra e di Bellman-Ford risolvono il problema dei cammini minimi in un grafo orientato e pesato. Inoltre A. Entrambi funzionano correttamente per qualsiasi tipo di grafo (orientato e pesato, con costi positivi e negativi) B. L algoritmo di Dijkstra funziona correttamente per tutti i grafi (orientati e pesati) in cui non vi siano cicli di costo negativo C. L algoritmo di Bellman-Ford funziona correttamente per tutti i grafi (orientati e pesati) in cui non vi siano archi di costo negativo D. Nessuna delle risposte precedenti è vera 7. Il valore di un flusso in una rete G=(V,E) è: A. La somma dei flussi uscenti dalla sorgente B. La capacità minima di un cammino dalla sorgente al pozzo C. Una funzione f:e R + che rispetta le proprietà di capacità e di conservazione D. Nessuna delle risposte precedenti 8. Un ordinamento topologico per il grafo diretto G=(V,E) con V={u, v, x, y, z}, E={(u,x), (v,x), (v,y), (v,u), (x,y), (y,z)} è: A. z, y, x, u, v B. v, u, x, y, z C. G non ammette un ordinamento topologico D. Nessuna delle risposte precedenti è vera for i=1 to n/ if x>y then x=x-y endfor return x 1

3 Quesito Applicazione algoritmo Usa l algoritmo di Ford-Fulkerson per trovare il flusso massimo dalla sorgente s al pozzo t nella rete riportata nella seguente figura. Mostra l augmenting path utilizzato in ogni iterazione. b s a 5 d 3 t 5 10 c

4 Quesito 3 Problema 1 Stai facendo il consulente per un azienda di trasporti che consegna pacchi fra Palermo e Milano. Il numero di pacchi è così elevato che c è la necessità di spedire molti furgoni ogni giorno fra le due città. Ogni furgone ha un limite di W Kg sul peso massimo che può trasportare. Non ci sono limiti sul numero di furgoni che si può utilizzare, ma le sedi sono piccole e hanno spazio solo per un autoveicolo alla volta. I pacchi devono essere spediti nell ordine in cui arrivano (altrimenti i clienti potrebbero protestare). L azienda al momento utilizza un approccio greedy: riempie un furgone fino a che c è la possibilità di inserire un nuovo pacco senza superare il massimo del peso (non ci sono problemi di spazio) e lo fa partire e passa ad un nuovo furgone. Ti hanno chiamato per stabilire se c è un modo per fare meglio e ridurre il numero di furgoni utilizzati. Fornisci una prova del fatto che l approccio attualmente utilizzato è ottimale. (Suggerimento: si fornisca una prova simile a quella vista per il problema della schedulazione di intervalli.) 3

5 Quesito Problema Sei l amministratore delegato di un azienda che produce hardware per PC e la tua azienda è il fornitore di molti punti vendita su tutto il territorio nazionale. Nelle prossime n settimane c è la previsione di spedire lotti di s i componenti hardware, misurati in Kg, per i=1,, n. L azienda si avvale di trasportatori, Bertollini e STA. Bertollini fa pagare una quota fissa di r per Kg (quindi per spedire un lotto di peso s i si paga r s i ) STA invece offre un contratto per una spesa fissa c per settimana e permette di spedire senza limiti. Tuttavia il contratto deve essere fatto per almeno settimane consecutive. Un piano di spedizione è una scelta della compagnia di trasporto per le prossime n settimane con il vincolo che se per una settimana si sceglie STA allora per almeno altre 3 settimane successive si deve usare STA. Il costo di un piano di spedizione è il costo totale da pagare alle compagnie. Come amministratore delegato sei responsabile della scelta del piano di spedizione. Fornisci un algoritmo efficiente per trovare il piano di spedizione con costo minimo.

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 29/01/2016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 06/07/2016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via

Dettagli

Progettazione di algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 15 Novembre Attenzione:

Progettazione di algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 15 Novembre Attenzione: COGNOME: Nome: Progettazione di algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 15 Novembre 2016 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante.

Dettagli

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Pre-appello del 15 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché

Dettagli

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici); Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati

Cammini minimi. Definizioni. Distanza fra vertici. Proprietà dei cammini minimi. Algoritmi e Strutture Dati Algoritmi e Strutture Dati Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Cammini minimi Un cammino minimo tra una coppia di

Dettagli

Algoritmi e strutture dati

Algoritmi e strutture dati Algoritmi e Strutture Dati Cammini minimi Definizioni Sia G = (V,E) un grafo orientato pesato sugli archi. Il costo di un cammino π = è dato da: Un cammino minimo tra una coppia di

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente Grafi (non orientati e connessi): minimo albero ricoprente Una breve presentazione Definizioni Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo):

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo): UNIVERSITA DEGLI STUDI DI SALERNO C.d.L. in INGEGNERIA GESTIONALE Esercizi di Ricerca Operativa Prof. Saverio Salerno Corso tenuto nell anno solare 2009 I seguenti esercizi sono da ritenersi di preparazione

Dettagli

Cammini minimi in grafi:

Cammini minimi in grafi: Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Cammini minimi in grafi: una trilogia Cammini minimi in grafi: Episodio III: la fine della trilogia Input: nelle puntate

Dettagli

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Grafi pesati Minimo albero ricoprente

Grafi pesati Minimo albero ricoprente Algoritmi e Strutture Dati Definizioni Grafi pesati Minimo albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene

Dettagli

Minimo albero di copertura

Minimo albero di copertura apitolo 0 Minimo albero di copertura efinizione 0.. ato un grafo G = (V, E) non orientato e connesso, un albero di copertura di G è un sottoinsieme T E tale che il sottografo (V, T ) è un albero libero.

Dettagli

AMPL Problemi su Reti

AMPL Problemi su Reti Dipartimento di Matematica Università di Padova Corso di Laurea Informatica Outline Problemi su Reti Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente .. Grafi (non orientati e connessi): minimo albero ricoprente Una presentazione alternativa (con ulteriori dettagli) Problema: calcolo del minimo albero di copertura (M.S.T.) Dato un grafo pesato non orientato

Dettagli

Alberi e arborescenze di costo minimo

Alberi e arborescenze di costo minimo Alberi e arborescenze di costo minimo Complementi di Ricerca Operativa Giovanni Righini Dipartimento di Tecnologie dell Informazione - Università degli Studi di Milano Definizioni - 1 Un grafo G = (V,

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N

Dettagli

Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla

Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Camil Demetrescu Irene Finocchi Giuseppe F. Italiano Algoritmi e Strutture Dati 2/ed Quiz a risposta multipla Indice 1 Un introduzione informale agli algoritmi 1 2 Modelli di calcolo e metodologie di

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

Esame di Ricerca Operativa del 16/06/2015

Esame di Ricerca Operativa del 16/06/2015 Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il

Dettagli

Cammini minimi con sorgente singola

Cammini minimi con sorgente singola Capitolo 11 Cammini minimi con sorgente singola efinizione 11.1. Sia G = (V,, w) un grafo orientato e pesato; dato il cammino p = v 0, v 1,..., v k in G, il valore w(p) = k i=1 w(v i 1, v i ) rappresenta

Dettagli

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio Algoritmi Greedy Tecniche Algoritmiche: tecnica greedy (o golosa) Idea: per trovare una soluzione globalmente ottima, scegli ripetutamente soluzioni ottime localmente Un esempio Input: lista di interi

Dettagli

Esame di Ricerca Operativa del 11/07/2016

Esame di Ricerca Operativa del 11/07/2016 Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013 A Ricerca Operativa 1 Seconda prova intermedia Si è rotto un aereo che doveva trasportare un elevato numero di persone dalla città 3 alla città 8. Si rende quindi necessario utilizzare i posti disponibili

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia La Pharmatix è un azienda di Anagni che produce due principi attivi, A e B, che consentono un profitto per grammo venduto di 20 e 30 euro rispettivamente.

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Alberi di copertura minimi 1 Problema Nella progettazione di circuiti elettronici è spesso necessario collegare i morsetti. Per connettere un insieme di n morsetti si può usare un insieme di n-1 fili elettrici.

Dettagli

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una

Dettagli

VISITA IL SITO PER ALTRO MATERIALE E GUIDE

VISITA IL SITO  PER ALTRO MATERIALE E GUIDE COPYRIGHT SEGO LICENSE Questo documento viene fornito così come è: se pensate che faccia schifo problemi vostri, nessuno vi obbliga a leggerlo. Se pensate che sia qualcosa di positivo e/o avete suggerimenti

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

11.4 Chiusura transitiva

11.4 Chiusura transitiva 6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)

Dettagli

COMPLEMENTI DI SHORTEST-PATH. ASD Fabrizio d'amore

COMPLEMENTI DI SHORTEST-PATH. ASD Fabrizio d'amore COMPLEMENTI DI SHORTEST-PATH ASD 2016-17 Fabrizio d'amore problemi di shortest-path (SP) grafo di riferimento G=(V,E) semplice/orientato pesato pesi non negativi pesi arbitrari, ma no cicli a peso negativo

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi!

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! G R A F I 1 GRAFI Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! 2 cip: cip: Pallogrammi Pallogrammi GRAFI: cosa sono I grafi sono una struttura matematica fondamentale: servono

Dettagli

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni

Dettagli

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente

Introduzione. Il routing permette la comunicazione tra due nodi differenti anche se non sono collegati direttamente Routing Introduzione Il livello 3 della pila ethernet ha il compito di muovere i pacchetti dalla sorgente attraversando più sistemi Il livello di network deve quindi: Scegliere di volta in volta il cammino

Dettagli

Grafi: definizioni e visite

Grafi: definizioni e visite Grafi: definizioni e visite Grafi (non orientati) Grafo (non orientato): G = (V, E) V = nodi (o vertici) E = archi fra coppie di nodi distinti. Modella relazioni fra coppie di oggetti. Parametri della

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Progettazione di algoritmi

Progettazione di algoritmi Progettazione di algoritmi Discussione dell'esercizio [vincoli] Prima di tutto rappresentiamo il problema con un grafo G: i nodi sono le n lavorazioni L 1, L 2,, L n, e tra due nodi L h, L k c'è un arco

Dettagli

Flusso a Costo Minimo

Flusso a Costo Minimo Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria Dal

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014 A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità

Dettagli

Routing. Forwarding e routing

Routing. Forwarding e routing Routing E necessario stabilire un percorso quando host sorgente e destinazione non appartengono alla stessa rete Router di default si occupa di instradare il traffico all esterno della rete Router sorgente:

Dettagli

Esempi. non. orientato. orientato

Esempi. non. orientato. orientato Definizione! Un grafo G = (V,E) è costituito da un insieme di vertici V ed un insieme di archi E ciascuno dei quali connette due vertici in V detti estremi dell arco.! Un grafo è orientato quando vi è

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 18 Febbraio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 18 Febbraio Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 18 Febbraio 2015 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina.

Dettagli

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi :

Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi : Per almeno una delle soluzioni ottime { P i, i r } del problema generalizzato, l unione dei cammini P i forma un albero di copertura per G radicato in r e orientato, ossia un albero la cui radice è r i

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

Ottimizzazione Combinatoria e Reti (a.a. 2007/08)

Ottimizzazione Combinatoria e Reti (a.a. 2007/08) o Appello 6/07/008 Ottimizzazione Combinatoria e Reti (a.a. 007/08) Nome Cognome: Matricola: ) Dopo avere finalmente superato l esame di Ricerca Operativa, Tommaso è pronto per partire in vacanza. Tommaso

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 12 Grafi e visite di grafi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico

Depth-first search. Visita in profondità di un grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Visita in profondità di n grafo Algoritmo Esempio Complessità dell algoritmo Proprietà Ordinamento topologico Depth-first search Dato n grafo G=(V,E) e n specifico ertice s chiamato

Dettagli

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi Università degli Studi di Roma La Sapienza Ottimizzazione nella Gestione dei Progetti - Esercitazione : calcolo degli schedule ottimi di FABIO D ANDREAGIOVANNI Dipartimento di Informatica e Sistemistica

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

Visite in Grafi BFS e DFS

Visite in Grafi BFS e DFS Visite in Grafi BFS e DFS Visita di un Grafo Obiettivo: Visitare una sola volta tutti i nodi del grafo. Es.: visitare un porzione del grafo del Web Difficoltà: Presenza di cicli: Marcare i nodi visitati

Dettagli

N.B.: Gli esercizi di OFFICE vanno risolti prima dell esercizio sulla PL

N.B.: Gli esercizi di OFFICE vanno risolti prima dell esercizio sulla PL EIPE - I appello a.a. 2014-2015, 4-5-6 maggio 2015 Cognome:... Nome:... Matricola:... Office (I es.) x/10:... Office (II es.) x/10:... Office (III es.) x/10:... Bonus tempo: b b B B N.B.: Gli esercizi

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

Algoritmi e Strutture Dati - Prof. Roberto De Prisco A.A Seconda prova di verifica (4 Febbraio 2005)

Algoritmi e Strutture Dati - Prof. Roberto De Prisco A.A Seconda prova di verifica (4 Febbraio 2005) Algoritmi e Strutture Dati - Prof. Roberto De Prisco A.A. 004-00 Seconda prova di verifica (4 Febbraio 00) Laurea/Diploma in Informatica Università di Salerno Nome e Cognome: Matricola: 1 3 4 TOTALE /1

Dettagli

Esercizio 1. min. Esercizio 2. Esercizio 3

Esercizio 1. min. Esercizio 2. Esercizio 3 A UNIVERSIÀ DEGLI SUDI ROMA RE Ricerca Operativa Primo appello gennaio 00 Esercizio Portando il problema in forma standard si aggiungono le variabili e 4. Impostando il problema artificiale è sufficiente

Dettagli

età (anni) manutenzione (keuro) ricavato (keuro)

età (anni) manutenzione (keuro) ricavato (keuro) .6 Cammini minimi. Determinare i cammini minimi dal nodo 0 a tutti gli altri nodi del seguente grafo, mediante l algoritmo di Dijkstra e, se applicabile, anche mediante quello di Programmazione Dinamica.

Dettagli

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte II

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte II Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte II Classificazione digli archi Sia G la foresta DF generata da DFS sul grafo G. Arco d albero: gli

Dettagli

ALBERTO DENNUNZIO DALLE AUTOSTRADE DIGITALI ALLE AUTOSTRADE REALI: GRAFI, WEB, FACEBOOK E NAVIGATORI SATELLITARI

ALBERTO DENNUNZIO DALLE AUTOSTRADE DIGITALI ALLE AUTOSTRADE REALI: GRAFI, WEB, FACEBOOK E NAVIGATORI SATELLITARI DALLE AUTOSTRADE DIGITALI ALLE AUTOSTRADE REALI: GRAFI, WEB, FACEBOOK E NAVIGATORI SATELLITARI ALBERTO DENNUNZIO DIPARTIMENTO DI INFORMATICA, SISTEMISTICA E COMUNICAZIONE UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Dettagli

Esercizi vari. Alberto Montresor. 19 Agosto, 2014

Esercizi vari. Alberto Montresor. 19 Agosto, 2014 Esercizi vari Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle rispettive soluzioni

Dettagli

Routing IP. IP routing

Routing IP. IP routing Routing IP IP routing IP routing (inoltro IP): meccanismo per la scelta del percorso in Internet attraverso il quale inviare i datagram IP routing effettuato dai router (scelgono il percorso) Routing diretto

Dettagli

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 08/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x x 0 x + x x x 8 x x 8

Dettagli

Fondamenti di Internet e Reti 097246

Fondamenti di Internet e Reti 097246 sul livello di Rete Instradamento. o Si consideri la rete in figura.. Si rappresenti, mediante un grafo, la rete per il calcolo dei cammini minimi (solo i nodi e gli archi no reti). Si calcoli il cammino

Dettagli

Algoritmi e soluzione di problemi

Algoritmi e soluzione di problemi Algoritmi e soluzione di problemi Dato un problema devo trovare una soluzione. Esempi: effettuare una telefonata calcolare l area di un trapezio L algoritmo è la sequenza di operazioni (istruzioni, azioni)

Dettagli

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità

Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità Visite Grafi Sommario Rappresentazione dei grafi Visita in ampiezza Visita in profondità Ordinamento topologico Visita in ampiezza La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e Strutture Dati Capitolo 2 Minimo albero ricoprente: Algoritmo di Prim Il problema del calcolo di un Minimum

Dettagli

Teoria dell informazione

Teoria dell informazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria dell informazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di

Dettagli

Cammini minimi fra tutte le coppie

Cammini minimi fra tutte le coppie Capitolo 12 Cammini minimi fra tutte le coppie Consideriamo il problema dei cammini minimi fra tutte le coppie in un grafo G = (V, E, w) orientato, pesato, dove possono essere presenti archi (ma non cicli)

Dettagli

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 19 Febbraio Attenzione:

Architettura degli Elaboratori. Classe 3 Prof.ssa Anselmo. Appello del 19 Febbraio Attenzione: Cognome.. Nome.... Architettura degli Elaboratori Classe 3 Prof.ssa Anselmo Appello del 19 Febbraio 2016 Attenzione: Inserire i propri dati nell apposito spazio sottostante e in testa a questa pagina.

Dettagli

Appunti lezione Capitolo 15 Ricerca locale

Appunti lezione Capitolo 15 Ricerca locale Appunti lezione Capitolo 15 Ricerca locale Alberto Montresor 03 Giugno, 016 1 Introduzione alla ricerca locale Un approccio miope, ma talvolta efficace è quello della ricerca locale. L idea è la seguente:

Dettagli

Corso di Perfezionamento

Corso di Perfezionamento Programmazione Dinamica 1 1 Dipartimento di Matematica e Informatica Università di Camerino 15 febbraio 2009 Tecniche di Programmazione Tecniche di progettazione di algoritmi: 1 Divide et Impera 2 Programmazione

Dettagli

Per gli esercizi sulla algebra booleana, si consiglia di verificare tramite tabelle di verità le equivalenze logiche proposte sulle dispense.

Per gli esercizi sulla algebra booleana, si consiglia di verificare tramite tabelle di verità le equivalenze logiche proposte sulle dispense. Fondamenti di Informatica - A. Fantechi Raccolta di esercizi Per gli esercizi sulla algebra booleana, si consiglia di verificare tramite tabelle di verità le equivalenze logiche proposte sulle dispense.

Dettagli

Prof. Pagani Corrado ALGORITMI ESERCITAZIONI CICLI

Prof. Pagani Corrado ALGORITMI ESERCITAZIONI CICLI Prof. Pagani Corrado ALGORITMI ESERCITAZIONI CICLI DIAGRAMMA A BLOCCHI: SWITCH DIAGRAMMA BLOCCHI: WHILE DIAGRAMMA BLOCCHI: FOR for (inizializzazione contatore, condizione, incremento) { istruzioni ; }

Dettagli

Cos è un algoritmo. Si dice algoritmo la descrizione di un metodo di soluzione di un problema che sia

Cos è un algoritmo. Si dice algoritmo la descrizione di un metodo di soluzione di un problema che sia Programmazione Un programma descrive al computer, in estremo dettaglio, la sequenza di passi necessari a svolgere un particolare compito L attività di progettare e realizzare un programma è detta programmazione

Dettagli

CASO 1) Pesi positivi ( diretto o indiretto) Algoritmo di Dijkstra

CASO 1) Pesi positivi ( diretto o indiretto) Algoritmo di Dijkstra 4) DISTANZE Problematiche Si suppone un grafo in cui ad ogni arco e' associato un peso (distanza). Il grafo puo' essere sia diretto che non diretto. Se non e' diretto ogni arco puo' essere pensato come

Dettagli

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si

Dettagli

Heap e code di priorità

Heap e code di priorità Heap e code di priorità Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica AA 2009/2010

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00

Dettagli

Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Prova in itinere del 10 Novembre 2009 COGNOME E NOME RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Prova in itinere del 10 Novembre 2009 COGNOME E NOME RIGA COLONNA MATRICOLA Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Prova in itinere del 10 Novembre 2009 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene

Dettagli

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali»

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» AA 010-011 INFORMATICA Prof. Giorgio Poletti giorgio.poletti@unife.it Grafi

Dettagli

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III

Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III Algoritmi e Strutture Dati (Mod. B) Algoritmi su grafi Ricerca in profondità (Depth-First Search) Parte III Applicazioni di DFS Due prolemi: calcolare l ordinamento topologico indotto da un grafo aciclico.

Dettagli

Parte 2. Ricorsione. [M.C.Escher Drawing hands, 1948] - AA. 2012/13 2.1

Parte 2. Ricorsione. [M.C.Escher Drawing hands, 1948] - AA. 2012/13 2.1 Parte 2 Ricorsione - AA. 2012/13 [M.C.Escher Drawing hands, 1948] 2.1 Funzioni ricorsive Una funzione si dice ricorsiva se richiama se stessa, direttamente o indirettamente La ricorsione si dice diretta

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

ESERCIZI SULLA TECNICA BACKTRACKING e BRANCH & BOUND

ESERCIZI SULLA TECNICA BACKTRACKING e BRANCH & BOUND ESERCIZI SULLA TECNICA BACKTRACKING e BRANCH & BOUND 1. [ STRINGHE] Scrivere in pseudo-codice una procedura che, preso in input un intero n, stampi tutte le stringhe di lunghezza minore o uguale ad n sull

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI EQUAZIONI E RELAZIONI Se x è un numero compreso tra 6 e 9, allora il numero (x+5) fra quali numeri è compreso? A. 1 e 4 B. 10 e 13 C. 11 e 14 D. 30 e 45 Qual è il valore di x che

Dettagli

Esame di Ricerca Operativa del 09/02/2016

Esame di Ricerca Operativa del 09/02/2016 Esame di Ricerca Operativa del 0/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una sartoria produce tipi di vestiti: pantaloni, gonne e giacche, utilizzando stoffa e filo. Settimanalmente, la disponibilità

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

Esercitazione. Ricorsione. May 31, Esercizi presi dal libro di Rosen

Esercitazione. Ricorsione. May 31, Esercizi presi dal libro di Rosen Esercitazione Ricorsione May 31, 2016 Esercizi presi dal libro di Rosen Problema 2 a) sezione 5.3 Data la seguente funzione definita ricorsivamente come: f(n+1) = 2f(n) f(0) = 3 Determinare il valore di

Dettagli

Algoritmi distribuiti su reti sincrone. Introduzione alle reti sincrone

Algoritmi distribuiti su reti sincrone. Introduzione alle reti sincrone Lucia Pallottino. Sistemi Robotici Distribuiti - Versione del 18 Aprile 2012 194 Algoritmi distribuiti su reti sincrone Per questo capitolo si può fare riferimento al libro Distributed Algorithms di Nancy

Dettagli