Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi e Strutture Dati. Alberi Binari di Ricerca"

Transcript

1 Algortm e Strutture Dat Alber Bar d Rcerca

2 Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase) I geerale, matemeto e gestoe d corp d dat su cu s effettuao molte rcerche, evetualmete alterate a operazo d sermeto e cacellazoe.

3 Alber bar d rcerca Defzoe: U albero baro d rcerca è u albero baro che soddsfa la seguete propretà: se X è u odo e Y è u odo el sottoalbero sstro d X, allora key[y] key[x]; se Y è u odo el sottoablero destro d X allora key[y] key[x] 8 4

4 Alber bar d rcerca Assumamo che valor e od dell albero sao tutt dstt. Assumamo che valor e od le chav) possao essere ordat. 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

5 Alber bar d rcerca: esempo Rcerca del valore Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

6 Alber bar d rcerca: esempo Rcerca del valore 4 4 < 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

7 Alber bar d rcerca: esempo Rcerca del valore 4 4 sta el sottoalbero sstro d 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

8 Alber bar d rcerca: esempo Rcerca del valore 4 4 > 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

9 Alber bar d rcerca: esempo Rcerca del valore 4 4 sta el sottoalbero destro d 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

10 Alber bar d rcerca: esempo Rcerca del valore 4 4 = 4 : rovato! 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

11 Alber bar d rcerca I geerale, la rcerca è cofata a od poszoat lugo u sgolo percorso path) dalla radce ad ua fogla empo d rcerca = Oh) h = altezza dell albero

12 AD albero baro d rcerca: tpo d dato È ua specalzzazoe dell AD albero baro Gl elemet statc soo essezalmete gl stess, l uca dffereza è che s assume che dat coteut le chav) sao ordabl secodo qualche relazoe d orde. typedef *odo ARB; struct { elemeto key; ARB dx, sx; } odo; sx key dx

13 AD albero baro d rcerca: fuzo Selettor: root) fglo_dx) fglo_sx) key) Costruttor/Dstruttor: crea_albero) ARB_sersc,x) ARB_cacella,x) Propretà: vuoto) = retur =Nl) Operazo d Rcerca ARB_rcerca,k) ARB_mmo) ARB_massmo) ARB_successore,x) ARB_predecessore,x) Rtora l valore del test d uguaglaza

14 Rcerca Alber bar d rcerca ARB_rcerca,k) IF NIL HEN IF k Key[] HEN IF k < Key[] HEN retur ARB_rcercasx[],k) ELSE retur ARB_rcercadx[],k) ELSE retur ELSE retur NOA: Questo algortmo cerca l odo co chave k ell albero e e rtora l putatore. Rtora NIL el caso o essta alcu odo co chave k.

15 Rcerca Alber bar d rcerca ARB_rcerca,k) IF = NIL OR k = Key[] HEN retur ELSE IF k < Key[] HEN retur ARB_rcerca sx[],k) ELSE retur ARB_rcerca dx[],k) NOA: Varate stattca del precedete algortmo!

16 Rcerca Alber bar d rcerca I geerale, la rcerca è cofata a od poszoat lugo u sgolo percorso path) dalla radce ad ua fogla empo d rcerca = Oh) h = altezza dell albero Oh) = Olog N), dove N è l umero d od ell albero, solo se l albero è balacato coè la lughezza del percorso mmo è vco a quella del percorso massmo).

17 ARB: rcerca del mmo e massmo Il Mmo d è Il Massmo d è

18 ARB: rcerca del mmo e massmo Il Mmo d 8 è 8 Il Massmo d 8 è

19 ARB: rcerca del mmo e massmo Il Mmo d è Il Massmo d è

20 ARB: rcerca del mmo e massmo

21 ARB: rcerca del mmo e massmo ARB ABR-Mmox:ARB) WHILE sx[x] NIL DO x = sx[x] retur x ARB ABR-Massmox: ARB) WHILE dx[x] NIL DO x = dx[x] retur x

22 ARB: rcerca del mmo e massmo ARB ABR-Mmox:ARB) WHILE x NIL && sx[x] NIL DO x = sx[x] retur x ARB ABR-Massmox: ARB) WHILE x NIL && dx[x] NIL DO x = dx[x] retur x ARB ARB_Mmox:ARB) IF x NIL AND sx[x] NIL HEN retur ARB_Mmosx[x]) retur x

23 ARB: rcerca del successore Il successore d u odo X è l pù pccolo odo maggore del odo X

24 ARB: rcerca del successore Rcerca del successore del odo Il successore d u odo X è l pù pccolo odo maggore del odo X

25 ARB: rcerca del successore Rcerca del successore del odo = odo Il successore d u odo X è l pù pccolo odo maggore del odo X

26 ARB: rcerca del successore Rcerca del successore del odo = odo Se x ha u fglo destro, l successore è l mmo odo d quel sottoalbero

27 ARB: rcerca del successore Rcerca del successore del odo

28 ARB: rcerca del successore Rcerca del successore del odo = odo

29 ARB: rcerca del successore Rcerca del successore del odo = odo Se x NON ha u fglo destro, e x è fglo sstro del padre, l successore è l padre

30 ARB: rcerca del successore Rcerca del successore del odo

31 ARB: rcerca del successore Rcerca del successore del odo 4 = odo

32 ARB: rcerca del successore Rcerca del successore del odo 4 = odo Se x NON ha u fglo destro, ed è fglo destro del padre, l successore è l ultmo ateato per l quale x s trova el suo sottoalbero 8 sstro

33 ARB: rcerca del successore ABR-Successore,k) Z = Y = NIL WHILE Z!=NIL && key[z]!=k) Y = Z IF key[z] < k) HEN Z = dx[y] ELSE IF key[z] > k) HEN Z = sx[y] IF Z!= NIL && dx[z]!=nil) HEN retur ABR-Mmodx[Z]) ELSE WHILE Y!= NIL AND Z = dx[y]) DO Z = Y Y = padre[z] retur Y Se x NON ha u fglo destro, ed è fglo destro del padre, l successore è l ultmo ateato per l quale x s trova el suo sottoalbero sstro.

34 ARB: rcerca del successore ABR-Successore,k) Z = Y = NIL WHILE Z!=NIL && key[z]!=k) Y = Z IF key[z] < k) HEN Z = f_dx[y] ELSE IF key[z] > k) HEN Z = f_sx[y] IF Z!= NIL && f_dx[z]!= NIL) HEN retur ABR-Mmof_dx[Z]) Questo algortmo assume che og odo abba l putatore ELSE al padre WHILE Y!= NIL AND Z = f_dx[y]) DO Z = Y Y = padre[z] retur Y

35 ARB: rcerca del successore II y z NIL

36 ARB: rcerca del successore II y z

37 ARB: rcerca del successore II y 8 z 4 9 5

38 ARB: rcerca del successore II y z NIL

39 ARB: rcerca del successore II y z

40 ARB: rcerca del successore II y z

41 ARB: rcerca del successore II y z NIL

42 ARB: rcerca del successore II y NIL z

43 ARB: rcerca del successore II y NIL 8 z 4 9 5

44 ARB: rcerca del successore II y NIL 8 4 z 9 5

45 ARB: rcerca del successore II Izalzzamo l successore a NIL Partedo dalla radce dell albero: og volta che s segue l ramo sstro per raggugere l odo, s aggora l successore al odo padre; og volta che s segue u ramo destro per raggugere l odo, NON s aggora l successore al odo padre;

46 ARB: rcerca del successore y puta sempre al ARB ABR-Successore, k) odo caddato a z = essere successore y = NIL WHILE z!= NIL && key[z]!= k) IF key[z] < k) z = dx[z] ELSE IF key[z] > k) y = z z = sx[z] IF z!= NIL && dx[z]!= NIL) HEN y = ABR-Mmodx[z]) retur y

47 ARB: rcerca del successore rcorsva ABR-Successore_rc,k,Y) IF!= NIL) HEN IF k > key[]) HEN retur ABR-Successore_rc dx[],k,y) ELSE IF k < key[]) HEN retur ABR-Successore_rc sx[],k,) ELSE /* k = key[] */ IF dx[]!= NIL) HEN retur ABR-Mmodx[]) retur Y ABR-Successore,k) retur ABR-Successore_rc,k,NIL)

48 ARB: rcerca del successore rcorsva ABR-Successore_rc,k) IF!= NIL) HEN IF key[] < k) HEN retur ABR-Successore_rcdx[],k) ELSE IF key[] = k) retur ABR-Mmodx[]) ELSE /* key[] > key */ succ = ABR-Successore_rcsx[],k) IF succ!= NIL) HEN retur succ ELSE retur ELSE retur NIL

49 ARB: costo delle operazo eorema. Le operazo d Rcerca, Mmo, Massmo, Successore e Predecessore su d u Albero Baro d Rcerca possoo essere esegute tempo Oh), dove h è l altezza dell albero.

50 ARB: Isermeto d u odo caso I) 5 z

51 ARB: Isermeto d u odo caso I) 5 z y 5 < 8 Rcerca poszoe del uovo odo 4 9 5

52 ARB: Isermeto d u odo caso I) 5 y z 5 > 8 Rcerca poszoe del uovo odo 4 9 5

53 ARB: Isermeto d u odo caso I) 5 z 5 > 4 y 8 Rcerca poszoe del uovo odo rovata! 4 9 5

54 ARB: Isermeto d u odo caso I) fglo-dx[y]=z oppure fglo-sx[y]=z 8 y 4 z 5 9 5

55 ARB: Isermeto d u odo caso II) 5 z NIL Albero è vuoto

56 ARB: Isermeto d u odo caso II) z Root[] = z 5 Albero è vuoto Il uovo odo da serre dvee la radce

57 ARB: Isermeto d u odo ABR-sersc,k) z = alloca odo ARB key[z] = k y = NIL x = WHILE x!= NIL) DO y = x IF key[z] < key[x]) HEN x = sx[x] ELSE x = dx[x] IF y = NIL HEN = z ELSE IF key[z] < key[y] HEN sx[y] = z ELSE dx[y] = z

58 ARB: Isermeto d u odo ABR-sersc, k) z = alloca odo ARB key[z] = k y = NIL x = WHILE x!= NIL) DO y = x IF k < key[x]) HEN x = sx[x] ELSE x = dx[x] IF y = NIL HEN = z ELSE IF k < key[y] HEN sx[y] = z ELSE dx[y] = z Rcerca poszoe del uovo odo caso II) caso I)

59 ARB: Isermeto d u odo ABR-sert_rc,z) IF!= NIL HEN IF key[z] < key[] HEN sx[]= ABR-sert_rcsx[],z) ELSE dx[]= ABR-sert_rcdx[],z) retur ELSE retur z Rcordate che qu z è l odo che cotee la chave da serre

60 ARB: Isermeto d u odo ABR-sert_rc,k) IF!= NIL HEN IF k < key[] HEN sx[]= ABR-sert_rcsx[],k) ELSE dx[]= ABR-sert_rcdx[],k) retur ELSE z = alloca odo ARB key[z] = k retur z Qu vece k è la chave da serre. S deve qud allocare l odo!

61 Cacellazoe rcorsva Iput <k Output <k = cacella,k)

62 Cacellazoe rcorsva Iput >k Output >k = cacella,k)

63 Cacellazoe rcorsva Iput k

64 Cacellazoe rcorsva caso I) Iput Output k

65 Cacellazoe rcorsva caso II) Iput Output k

66 Cacellazoe rcorsva caso III) Iput Output k m{} = stacca-mmo)

67 ARB: Cacellazoe rcorsva ABR-Cacella-rck,) IF!= NIL HEN IF k < key[] HEN sx[]=arb-cacella-rck,sx[]) ELSE IF k > key[] HEN dx[]=arb-cacella-rck,dx[]) ELSE /* k = key[] */ odo = IF dx[odo] = NIL HEN = sx[odo] ELSE IF sx[odo] = NIL HEN = dx[odo] ELSE odo = Stacca-mdx[],) copa odo deallocaodo) retur cas I e II caso III

68 ARB: Cacellazoe rcorsova Stacca-m,P) IF NIL HEN IF sx[] NIL HEN retur Stacca-msx[],) ELSE /* successore trovato */ IF = sx[p] sx[p] = dx[] Il parametro P deota l padre d og chamata. ELSE /* m è l prmo odo passato */ dx[p] = dx[] retur NOA. L algortmo stacca l odo mmo dell albero e e rtora l putatore. Può ache rtorare NIL caso o essta u mmo è vuoto). Il valore d rtoro dovrebbe essere qud verfcato dal chamate prma dell uso. Nel caso della cacellazoe rcorsva però samo scur che l mmo esste sempre e qud o è ecessaro esegure alcu cotrollo!

69 ARB: Cacellazoe d u odo caso I) Caso semplce: l odo z o ha fgl z

70 ARB: Cacellazoe d u odo caso I) Caso semplce: l odo z o ha fgl Possamo elmarlo y 9 5 z

71 ARB: Cacellazoe d u odo caso II) Caso II: l odo ha u solo fglo 8 4 z 9 5

72 ARB: Cacellazoe d u odo caso II) 8 Caso II: l odo ha u fglo Scartare l odo e coettere l padre al fglo x 4 y z 9 5

73 ARB: Cacellazoe d u odo caso II) 8 Caso II: l odo ha u fglo Scartare l odo e coettere l padre al fglo x 4 y z 9 5

74 ARB: Cacellazoe d u odo caso II) 8 Caso II: l odo ha u fglo Scartare l odo e coettere l padre al fglo x 4 y z 9 5

75 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl z

76 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y z 8 4 y x

77 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y z 8 y NOA: Il successore d u odo co due fgl o può avere u fglo sstro 5.5 x

78 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y z 4 8 Staccare l successore y e coettere l padre al fglo destro y x

79 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y.5 z y 4 x Staccare l successore y e coettere l padre al fglo destro Copa l coteuto del successore el odo 5 da cacellare

80 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y.5 z y 4 x Staccare l successore y e coettere l padre al fglo destro Copa l coteuto del successore el odo 5 da cacellare

81 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl y.5 z x Calcolare l successore y Staccare l successore y e coettere l padre al fglo destro Copa l coteuto del successore y el odo 5 da cacellare Deallocare l odo staccato y

82 ARB: Cacellazoe d u odo Caso I: Il odo o ha fgl. Semplcemete s elma. Caso II: Il odo ha u solo fglo. S collega l padre del odo al fglo e s elma l odo. Caso III: Il odo ha due fgl. s cerca l suo successore che ha u solo fglo destro); s elma l successore come Caso II); s copao camp valore del successore el odo da elmare.

83 ARB: Cacellazoe d u odo ABR-Cacella,z) IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE y = ARB-Successorez) IF sx[y]!= NIL HEN x = sx[y] ELSE x = dx[y] IF x!= NIL HEN padre[x]=padre[y] IF padre[y] = NIL HEN = x ELSE IF y = sx[padre[y]] HEN sx[padre[y]]=x ELSE dx[padre[y]]=x IF y!= z HEN copa camp d y z dealloca y retur

84 ARB: Cacellazoe d u odo ABR-Cacella,z) IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE y = ARB-Successorez) IF sx[y]!= NIL HEN x = sx[y] ELSE x = dx[y] IF x!= NIL HEN padre[x]=padre[y] IF padre[y] = NIL HEN = x ELSE IF y = sx[padre[y]] HEN sx[padre[y]]=x ELSE dx[padre[y]]=x y è l odo da elmare IF y!= z HEN copa camp d y z dealloca y retur cas I e II caso III

85 ARB: Cacellazoe d u odo ABR-Cacella,z) IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE y = ARB-Successorez) IF sx[y]!= NIL HEN x = sx[y] ELSE x = dx[y] IF x!= NIL HEN padre[x]=padre[y] IF padre[y] = NIL HEN = x ELSE IF y = sx[padre[y]] HEN sx[padre[y]]=x ELSE dx[padre[y]]=x IF y!= z HEN copa camp d y z dealloca y retur cas I e II y è l odo da elmare e x è l suo sosttuto y è sosttuto da x caso III

86 ABR-Cacella-ter,k) p = NIL z = WHILE z!= NIL && key[z]!=k) DO p = z IF key[z] > k) HEN z = sx[z] ELSE z = dx[z] y è l odo da elmare p è l padre d y x è l sosttuto d y IF z = NIL) HEN retur /* ulla da cacellare */ IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE /* z ha fgl: s cerca l successore */ y = dx[z]; p = z WHILE sx[y] NIL) DO p = y y = sx[y] IF sx[y] NIL) HEN x = sx[y] ELSE x = dx[y] IF p = NIL) HEN = x /* s sta cacellado la radce */ ELSE IF y = sx[p]) HEN sx[p]=x ELSE dx[p]=x IF y!= z) HEN /* z ha due fgl */ copa camp d y z dealloca y retur

87 ABR-Cacella-ter,k) p = NIL z = WHILE z!= NIL && key[z]!=k) DO p = z IF key[z] > k) HEN z = sx[z] ELSE z = dx[z] IF z = NIL) HEN retur /* ulla da cacellare */ IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE /* z ha fgl: s cerca l successore */ y = dx[z]; p = z WHILE sx[y] NIL) DO p = y y = sx[y] IF sx[y] NIL) HEN x = sx[y] ELSE x = dx[y] IF p = NIL) HEN = x /* s sta cacellado la radce */ ELSE IF y = sx[p]) HEN sx[p]=x ELSE dx[p]=x IF y!= z) HEN /* z ha due fgl */ copa camp d y z dealloca y retur y è l odo da elmare p è l padre d y x è l sosttuto d y Rcerca d k Cas I e II Rcerca successore Caso III Dstacco odo y da elmare e aggorameto del padre Copa successore Caso III

88 ARB: costo d Isermeto e Cacellazoe eorema. Le operazo d Isermeto e Cacellazoe sull seme damco Albero Baro d Rcerca possoo essere esegute tempo Oh) dove h è l altezza dell albero

89 Costo delle operazo su ABR L algortmo d sermeto NON garatsce che l albero rsultate sa blacato. Nel caso peggore l altezza h può essere par ad N umero de od) 8 9 5

90 Costo delle operazo su ABR L algortmo d sermeto NON garatsce che l albero rsultate sa blacato. Nel caso peggore l altezza h può essere par ad N umero de od) 8 9 Qud tutte le operazo vste hao costo ON) el caso peggore 5

91 Costo medo delle operazo su ABR Dobbamo calcolare la lughezza meda a) del percorso d rcerca. Assumamo che le chav arrvo orde casuale tutte abbao uguale probabltà d presetars). Allora la probabltà che ua chave sa la radce dell albero è /; Assumamo, oltre, che la probabltà che ua chave vega cercata sa /. a) = = p dove p è la lughezza meda su tutt possbl ABR) del percorso al odo

92 Costo delle operazo su ABR Se la chave è la radce dell albero, allora l sottoalbero sstro avrà - od e a) = = p l sottoalbero destro avrà - od - -

93 Costo delle operazo su ABR Se la chave è la radce dell albero, allora l sottoalbero sstro avrà - od e l sottoalbero destro avrà - od a) = = p cascuo degl - od a sstra hao lughezza meda del percorso a-)+ la radce ha lughezza del percorso par ad cascuo degl - od a sstra hao lughezza meda del percorso a-)+ - -

94 Costo delle operazo su ABR a ) sa la lughezza meda del percorso d rcerca co chav quado la radce è la chave a ) = [ a ) ] [ a ) ] a-) è la lughezza meda del percorso d rcerca co - chav a-) è la lughezza meda del percorso d rcerca co - chav

95 Costo delle operazo su ABR a ) sa la lughezza meda del percorso d rcerca co chav quado la radce è la chave a) è la meda degl a ), dove cascu a ) ha probabltà /, coè la probabltà che propro la chave sa la radce dell albero. a a a = ] ) [ ] ) [ ) = = a a ) ) allora

96 Costo delle operazo su ABR a) è la meda degl a ), dove cascu a ) ha probabltà / a a a = ] ) [ ] ) [ ) = = = a a ) ) allora = = a a ] ) [ ] ) [

97 Costo delle operazo su ABR = = a a a ] ) [ ] ) [ ) = = a a ) ) ) ) = = a ) ) = = 0 ) a

98 Costo delle operazo su ABR = = 0 ) ) a a = = 0 ) ) ) a a

99 Costo delle operazo su ABR = = 0 ) ) a a = = 0 ) ) ) a a = = 0 ) ) ) a a

100 Costo delle operazo su ABR = = 0 ) ) a a = = 0 ) ) ) a a = = 0 ) ) ) a a ) ) ) 0 = = a a

101 Costo delle operazo su ABR = = 0 ) ) ) ) a a a ) ) ) 0 = = a a ) ) ) = a a

102 Costo delle operazo su ABR Fuzoe armoca ) ) ) = a a ) ) = H a H... ) = Dmostrare per duzoe

103 Costo delle operazo su ABR a ) = H ) Dmostrare per duzoe a ) = l ) = l c H ) = l... Formula d Eulero dove 0.577

104 Alber perfettamete blacat Defzoe: U albero baro s dce Perfettamete Blacato se, per og odo, l umero de od el suo sottoalbero sstro e l umero de od del suo sottoalbero destro dfferscoo al pù d

105 Alber perfettamete blacat Defzoe: U albero baro s dce Perfettamete Blacato se, per og odo, l umero de od el suo sottoalbero sstro e l umero de od del suo sottoalbero destro dfferscoo al pù d La lughezza meda a ) del percorso u albero perfettamete blacato APB) co od è approssmatvamete a' ) = log

106 Cofroto tra ABR e APB Il rapporto tra la lughezza meda a) del percorso u albero d rcerca e la lughezza meda a ) ell albero perfettamete blacato è per suffcetemete grade) è approssmatvamete a ) a' ) = l log c l log = l,8 trascurado term costat)

107 Cofroto tra ABR e APB Cò sgfca che, se ache blacassmo perfettamete l albero dopo og sermeto l guadago sul percorso medo che otterremmo NON supererebbe l 9%. a a' = l log c = l log = l.8 Scosglable ella maggor parte de cas, a meo che l umero de od e l rapporto tra rcerche e sermet sao molto grad.

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

La sicurezza sul lavoro: obblighi e responsabilità

La sicurezza sul lavoro: obblighi e responsabilità La sicurezza sul lavoro: obblighi e resposabilità Il Testo uico sulla sicurezza, Dlgs 81/08 è il pilastro della ormativa sulla sicurezza sul lavoro. I sostaza il Dlgs disciplia tutte le attività di tutti

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

l = 0, 1, 2, 3,,, n-1n m = 0, ±1,

l = 0, 1, 2, 3,,, n-1n m = 0, ±1, NUMERI QUANTICI Le autofuzioi soo caratterizzate da tre parametri chiamati NUMERI QUANTICI e soo completamete defiite dai loro valori: : umero quatico pricipale l : umero quatico secodario m : umero quatico

Dettagli

Riferimenti ed Oggetti

Riferimenti ed Oggetti Riferimenti e oggetti Riferimenti ed Oggetti In non si possono definire variabili di tipo oggetto ma solo di tipo riferimento a oggetto. I riferimenti sono assimilabili ai tipi base. Allocazione statica

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Strutture. Strutture e Unioni. Definizione di strutture (2) Definizione di strutture (1)

Strutture. Strutture e Unioni. Definizione di strutture (2) Definizione di strutture (1) Strutture Strutture e Unioni DD cap.10 pp.379-391, 405-406 KP cap. 9 pp.361-379 Strutture Collezioni di variabili correlate (aggregati) sotto un unico nome Possono contenere variabili con diversi nomi

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

L OFFERTA DI LAVORO 1

L OFFERTA DI LAVORO 1 L OFFERTA DI LAVORO 1 La famiglia come foritrice di risorse OFFERTA DI LAVORO Notazioe utile: T : dotazioe di tempo (ore totali) : ore dedicate al tempo libero l=t- : ore dedicate al lavoro : cosumo di

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

Verifica che una grammatica sia Context Free nel GrammaReader

Verifica che una grammatica sia Context Free nel GrammaReader Verifica che una grammatica sia Context Free nel GrammaReader Sommario Dispensa di Linguaggi di Programmazione Corrado Mencar Pasquale Lops In questa dispensa si descrivono alcune soluzioni per verificare

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

Lezione 9: Strutture e allocazione dinamica della memoria

Lezione 9: Strutture e allocazione dinamica della memoria Lezione 9: Strutture e allocazione dinamica della memoria Laboratorio di Elementi di Architettura e Sistemi Operativi 9 Maggio 2012 Allocazione dinamica della memoria Memoria dinamica È possibile creare

Dettagli

Capitolo 3 Il trattamento statistico dei dati

Capitolo 3 Il trattamento statistico dei dati Capolo 3 Il raameo sasco de da 3. - Geeralà Nel descrere feome, occorre da u lao elaborare de modell (coè delle relazo maemache fra le gradezze, che coseao d descrere e preedere l feomeo) e dall alro dars

Dettagli

Motori maxon DC e maxon EC Le cose più importanti

Motori maxon DC e maxon EC Le cose più importanti Motori maxo DC e maxo EC Il motore come trasformatore di eergia Il motore elettrico trasforma la poteza elettrica P el (tesioe U e correte I) i poteza meccaica P mech (velocità e coppia M). Le perdite

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Sottoprogrammi: astrazione procedurale

Sottoprogrammi: astrazione procedurale Sottoprogrammi: astrazione procedurale Incapsulamento di un segmento di programma presente = false; j = 0; while ( (j

Dettagli

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007

Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Laboratorio di Calcolatori 1 Corso di Laurea in Fisica A.A. 2006/2007 Dott.Davide Di Ruscio Dipartimento di Informatica Università degli Studi di L Aquila Lezione del 08/03/07 Nota Questi lucidi sono tratti

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Le Liste. Elisa Marengo. Università degli Studi di Torino Dipartimento di Informatica. Elisa Marengo (UNITO) Le Liste 1 / 31

Le Liste. Elisa Marengo. Università degli Studi di Torino Dipartimento di Informatica. Elisa Marengo (UNITO) Le Liste 1 / 31 Le Liste Elisa Marengo Università degli Studi di Torino Dipartimento di Informatica Elisa Marengo (UNITO) Le Liste 1 / 31 Cos è una Lista Una lista è una collezione di elementi omogenei che: potrebbero

Dettagli

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari

1. MODELLO DINAMICO AD UN GRADO DI LIBERTÀ. 1 Alcune definizioni preliminari . MODELLO DINAMICO AD UN GRADO DI LIBERTÀ Alcue defiizioi prelimiari I sistemi vibrati possoo essere lieari o o lieari: el primo caso vale il pricipio di sovrapposizioe degli effetti el secodo o. I geerale

Dettagli

3.4 Tecniche per valutare uno stimatore

3.4 Tecniche per valutare uno stimatore 3.4 Teciche per valutare uo stimatore 3.4. Il liguaggio delle decisioi statistiche, stimatori corretti e stimatori cosisteti La teoria delle decisioi forisce u liguaggio appropriato per discutere sulla

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

ESERCITAZIONE L adsorbimento su carbone attivo

ESERCITAZIONE L adsorbimento su carbone attivo ESERCITAZIONE adsorbimeto su carboe attivo ezioi di riferimeto: Processi basati sul trasferimeto di materia Adsorbimeto su carboi attivi Testi di riferimeto: Water treatmet priciples ad desi, WH Pricipi

Dettagli

Gestione dinamica di una pila

Gestione dinamica di una pila Gestione dinamica di una pila Una pila o stack è una lista lineare a lunghezza variabile in cui inserimenti (push) ed estrazioni (pop) vengono effettuate ad un solo estremo, detto testa (top) della pila.

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

Esercizio di Sincronizzazione tra Processi: Ponte a Senso Unico Alternato con Capacità Limitata

Esercizio di Sincronizzazione tra Processi: Ponte a Senso Unico Alternato con Capacità Limitata Esercizio di Sincronizzazione tra Processi: Ponte a Senso Unico Alternato con Capacità Limitata Supponiamo sempre di avere un ponte stretto che permette il passaggio delle auto solo in un verso per volta,

Dettagli

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario

USUFRUTTO. 5) Quali sono le spese a carico dell usufruttuario USUFRUTTO 1) Che cos è l sfrtto e come si pò costitire? L sfrtto è il diritto di godimeto ( ovvero di possesso) di bee altri a titolo gratito ; viee chiamato sfrttario chi esercita tale diritto, metre

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni: N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π

Dettagli

I file di dati. Unità didattica D1 1

I file di dati. Unità didattica D1 1 I file di dati Unità didattica D1 1 1) I file sequenziali Utili per la memorizzazione di informazioni testuali Si tratta di strutture organizzate per righe e non per record Non sono adatte per grandi quantità

Dettagli

Sommario lezioni di Probabilità versione abbreviata

Sommario lezioni di Probabilità versione abbreviata Sommario lezioi di Probabilità versioe abbreviata C. Frachetti April 28, 2006 1 Lo spazio di probabilità. 1.1 Prime defiizioi I possibili risultati di u esperimeto costituiscoo lo spazio dei campioi o

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi.

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi. Iroduzioe () Ua defiizioe (geerale) del ermie qualià: qualià è l isieme delle caraerisiche di u eià (bee o servizio) che e deermiao la capacià di soddisfare le esigeze espresse ed implicie di chi la uilizza.

Dettagli

Appendice I. Principali procedure ed istruzioni per la gestione di files, l'analisi statistica di tipo descrittivo e la correlazione semplice

Appendice I. Principali procedure ed istruzioni per la gestione di files, l'analisi statistica di tipo descrittivo e la correlazione semplice . Principali procedure ed istruzioni per la gestione di files, l'analisi statistica di tipo descrittivo e la correlazione semplice Ordinamento di osservazioni: PROC SORT PROC SORT DATA=fa il sort è numerico

Dettagli

Dispense del Corso di Algoritmi e Strutture Dati

Dispense del Corso di Algoritmi e Strutture Dati Dispense del Corso di Algoritmi e Strutture Dati Marco Bernardo Edoardo Bontà Università degli Studi di Urbino Carlo Bo Facoltà di Scienze e Tecnologie Corso di Laurea in Informatica Applicata Versione

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra?

Supponiamo, ad esempio, di voler risolvere il seguente problema: in quanti modi quattro persone possono sedersi l una accanto all altra? CALCOLO COMBINATORIO 1.1 Necessità del calcolo combiatorio Accade spesso di dover risolvere problemi dall'appareza molto semplice, ma che richiedoo calcoli lughi e oiosi per riuscire a trovare delle coclusioi

Dettagli

Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi

Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi TIPI DI DATO Tipicamente un elaboratore è capace di trattare domini di dati di tipi primitivi numeri naturali, interi, reali caratteri e stringhe di caratteri e quasi sempre anche collezioni di oggetti,

Dettagli

Esercizi Le leggi dei gas. Lo stato gassoso

Esercizi Le leggi dei gas. Lo stato gassoso Esercizi Le lei dei as Lo stato assoso Ua certa quatità di as cloro, alla pressioe di,5 atm, occupa il volume di 0,58 litri. Calcola il volume occupato dal as se la pressioe viee portata a,0 atm e se la

Dettagli

RICORSIVITA. Vediamo come si programma la soluzione ricorsiva al problema precedente: Poniamo S 1 =1 S 2 =1+2 S 3 =1+2+3

RICORSIVITA. Vediamo come si programma la soluzione ricorsiva al problema precedente: Poniamo S 1 =1 S 2 =1+2 S 3 =1+2+3 RICORSIVITA 1. Cos è la ricorsività? La ricorsività è un metodo di soluzione dei problemi che consiste nell esprimere la soluzione relativa al caso n in funzione della soluzione relativa al caso n-1. La

Dettagli

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati

Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Realizzazione di Politiche di Gestione delle Risorse: i Semafori Privati Condizione di sincronizzazione Qualora si voglia realizzare una determinata politica di gestione delle risorse,la decisione se ad

Dettagli

Ricerca sequenziale di un elemento in un vettore

Ricerca sequenziale di un elemento in un vettore Ricerca sequenziale di un elemento in un vettore La ricerca sequenziale o lineare è utilizzata per ricercare i dati in un vettore NON ordinato. L algoritmo di ricerca sequenziale utilizza quan non ha alcuna

Dettagli

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI

INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI INTRODUZIONE ALLE SUCCESSIONI E SERIE: ALCUNI ESEMPI NOTEVOLI Mirta Debbia LS A. F. Formiggii di Sassuolo (MO) - debbia.m@libero.it Maria Cecilia Zoboli - LS A. F. Formiggii di Sassuolo (MO) - cherubii8@libero.it

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard)

Sistemi LTI descrivibile mediante SDE (Equazioni alle Differenze Standard) Sistemi LTI descrivibile mediate SDE (Equazioi alle Differeze Stadard) Nella classe dei sistemi LTI ua sottoclasse è quella dei sistemi defiiti da Equazioi Stadard alle Differeze Fiite (SDE), dette così

Dettagli

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo

8) Sia Dato un mazzo di 40 carte. Supponiamo che esso sia mescolato in modo ESERCIZI DI CALCOLO DELLE PROBABILITÁ ) Qual e la probabilita che laciado dadi a facce o esca essu? Studiare il comportameto asitotico di tale probabilita per grade. ) I u sacchetto vi soo 0 pallie biache;

Dettagli

PREFAZIONE. di Giuseppe Berto

PREFAZIONE. di Giuseppe Berto , PREFAZIONE d Guseppe Berto RICORDO DEL TERRAGLIO Quand'ero govane, e la vogla d grare l mondo m spngeva n terre lontane, a ch m chedeva notze del mo paese, rspondevo: l mo paese è una strada. In effett,

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

Gest ione di list e in C

Gest ione di list e in C Gest ione di list e in C Politecnico di Milano Sede di Cremona Gianpaolo Cugola Dipartimento di Elettronica e Informazione cugola@elet.polimi.it http://www.elet.polimi.it/~cugola Strutture dinamiche Gli

Dettagli

Linguaggio di bash per esempi. Tre modi per quotare. Esempio. quotare: significa trattare caratteri speciali come normali caratteri

Linguaggio di bash per esempi. Tre modi per quotare. Esempio. quotare: significa trattare caratteri speciali come normali caratteri Linguaggio di bash per esempi Tre modi per quotare quotare: signica trattare caratteri speciali come normali caratteri es. di aratteri speciali: $, blank, apici, 1. backslash: per quotare un solo carattere

Dettagli

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010 Idagii sui coregoi del Lago Maggiore: Aalisi sui pesci catturati el 1 Rapporto commissioato dal Dipartimeto del territorio, Ufficio della caccia e della pesca, Via Stefao Frascii 17 51 Bellizoa Aprile

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Operazioni su Liste Doppie e Circolari 2 1 Indice Liste puntate semplici: Gli elementi sono

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Appunti di Sistemi Operativi. Enzo Mumolo e-mail address :mumolo@units.it web address :www.units.it/mumolo

Appunti di Sistemi Operativi. Enzo Mumolo e-mail address :mumolo@units.it web address :www.units.it/mumolo Appunti di Sistemi Operativi Enzo Mumolo e-mail address :mumolo@units.it web address :www.units.it/mumolo Indice 1 Cenni su alcuni algoritmi del Kernel di Unix 1 1.1 Elementi di Unix Internals.................................

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1.

aleatoria; se è nota la sua densità di probabilità ad essa si può associare una valore medio statistico. La grandezza così definita: (III.1. Caitolo III VALORI MEDI. SAZIONARIEÀ ED ERGODICIÀ III. - Mdi tatitich dl rimo ordi. Sia f( ) ua fuzio cotiua i aoci al gal alatorio (, t ζ ) la uatità dfiita dalla y f[(, t ζ )]. Ea idividua, a ua volta,

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

CAPITOLO 18 STABILITÀ DEI PENDII

CAPITOLO 18 STABILITÀ DEI PENDII Captolo 8 CAPITOLO 8 8. Frae 8.. Fattor e cause de movmet fraos Per fraa s tede u rapdo spostameto d ua massa d rocca o d terra l cu cetro d gravtà s muove verso l basso e verso l estero. I prcpal fattor

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Esercitazione 7. Procedure e Funzioni

Esercitazione 7. Procedure e Funzioni Esercitazione 7 Procedure e Funzioni Esercizio Scrivere un programma che memorizza in un array di elementi di tipo double le temperature relative al mese corrente e ne determina la temperatura massima,

Dettagli

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni Funzioni Le funzioni Con il termine funzione si intende, in generale, un operatore che, applicato a un insieme di operandi, consente di calcolare un risultato, come avviene anche per una funzione matematica

Dettagli

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005

Esame di Matematica 2 Mod.A (laurea in Matematica) prova di accertamento del 4 novembre 2005 Esame di Matematica 2 ModA (laurea i Matematica prova di accertameto del 4 ovembre 25 ESERCIZIO Si poga a 3 5 + 9 e b 2 4 6 + 6 ( (a Si determii d MCD(a, b e gli iteri m, Z tali che d ma + b co m < b ed

Dettagli

._~zio/ei,o, ck//jg~~e~ Y~ CIRCOLARE N. 21. MEF - RGS - Prot. 47613 del 09/06/2015 ID: 382320. Roma.

._~zio/ei,o, ck//jg~~e~ Y~ CIRCOLARE N. 21. MEF - RGS - Prot. 47613 del 09/06/2015 ID: 382320. Roma. D: 382320 MEF - RGS - Prot. 47613 del 09/06/2015 CRCOLARE N. 21 Roma.._~zio/ei,o, ck//jg~~e~ Y~ DPARTMENTO DELLA RAGONERA GENERALE DELLO STATO SPETTORATO GENERALE PER GL ORDNAMENT DEL PERSONALE UFFCO V

Dettagli