Algoritmi e Strutture Dati. Alberi Binari di Ricerca

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi e Strutture Dati. Alberi Binari di Ricerca"

Transcript

1 Algortm e Strutture Dat Alber Bar d Rcerca

2 Alber bar d rcerca Motvazo gestoe e rcerche grosse quattà d dat lste, array e alber o soo adeguat perché effcet tempo O) o spazo Esemp: Matemeto d archv DataBase) I geerale, matemeto e gestoe d corp d dat su cu s effettuao molte rcerche, evetualmete alterate a operazo d sermeto e cacellazoe.

3 Alber bar d rcerca Defzoe: U albero baro d rcerca è u albero baro che soddsfa la seguete propretà: se X è u odo e Y è u odo el sottoalbero sstro d X, allora key[y] key[x]; se Y è u odo el sottoablero destro d X allora key[y] key[x] 8 4

4 Alber bar d rcerca Assumamo che valor e od dell albero sao tutt dstt. Assumamo che valor e od le chav) possao essere ordat. 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

5 Alber bar d rcerca: esempo Rcerca del valore Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

6 Alber bar d rcerca: esempo Rcerca del valore 4 4 < 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

7 Alber bar d rcerca: esempo Rcerca del valore 4 4 sta el sottoalbero sstro d 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

8 Alber bar d rcerca: esempo Rcerca del valore 4 4 > 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

9 Alber bar d rcerca: esempo Rcerca del valore 4 4 sta el sottoalbero destro d 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

10 Alber bar d rcerca: esempo Rcerca del valore 4 4 = 4 : rovato! 8 4 Propretà degl ABR Per og odo X, valor e od del sottoalbero sstro soo tutt mor del valore el odo X, e tutt valor e od del sotto-albero destro soo maggor del valore d X

11 Alber bar d rcerca I geerale, la rcerca è cofata a od poszoat lugo u sgolo percorso path) dalla radce ad ua fogla empo d rcerca = Oh) h = altezza dell albero

12 AD albero baro d rcerca: tpo d dato È ua specalzzazoe dell AD albero baro Gl elemet statc soo essezalmete gl stess, l uca dffereza è che s assume che dat coteut le chav) sao ordabl secodo qualche relazoe d orde. typedef *odo ARB; struct { elemeto key; ARB dx, sx; } odo; sx key dx

13 AD albero baro d rcerca: fuzo Selettor: root) fglo_dx) fglo_sx) key) Costruttor/Dstruttor: crea_albero) ARB_sersc,x) ARB_cacella,x) Propretà: vuoto) = retur =Nl) Operazo d Rcerca ARB_rcerca,k) ARB_mmo) ARB_massmo) ARB_successore,x) ARB_predecessore,x) Rtora l valore del test d uguaglaza

14 Rcerca Alber bar d rcerca ARB_rcerca,k) IF NIL HEN IF k Key[] HEN IF k < Key[] HEN retur ARB_rcercasx[],k) ELSE retur ARB_rcercadx[],k) ELSE retur ELSE retur NOA: Questo algortmo cerca l odo co chave k ell albero e e rtora l putatore. Rtora NIL el caso o essta alcu odo co chave k.

15 Rcerca Alber bar d rcerca ARB_rcerca,k) IF = NIL OR k = Key[] HEN retur ELSE IF k < Key[] HEN retur ARB_rcerca sx[],k) ELSE retur ARB_rcerca dx[],k) NOA: Varate stattca del precedete algortmo!

16 Rcerca Alber bar d rcerca I geerale, la rcerca è cofata a od poszoat lugo u sgolo percorso path) dalla radce ad ua fogla empo d rcerca = Oh) h = altezza dell albero Oh) = Olog N), dove N è l umero d od ell albero, solo se l albero è balacato coè la lughezza del percorso mmo è vco a quella del percorso massmo).

17 ARB: rcerca del mmo e massmo Il Mmo d è Il Massmo d è

18 ARB: rcerca del mmo e massmo Il Mmo d 8 è 8 Il Massmo d 8 è

19 ARB: rcerca del mmo e massmo Il Mmo d è Il Massmo d è

20 ARB: rcerca del mmo e massmo

21 ARB: rcerca del mmo e massmo ARB ABR-Mmox:ARB) WHILE sx[x] NIL DO x = sx[x] retur x ARB ABR-Massmox: ARB) WHILE dx[x] NIL DO x = dx[x] retur x

22 ARB: rcerca del mmo e massmo ARB ABR-Mmox:ARB) WHILE x NIL && sx[x] NIL DO x = sx[x] retur x ARB ABR-Massmox: ARB) WHILE x NIL && dx[x] NIL DO x = dx[x] retur x ARB ARB_Mmox:ARB) IF x NIL AND sx[x] NIL HEN retur ARB_Mmosx[x]) retur x

23 ARB: rcerca del successore Il successore d u odo X è l pù pccolo odo maggore del odo X

24 ARB: rcerca del successore Rcerca del successore del odo Il successore d u odo X è l pù pccolo odo maggore del odo X

25 ARB: rcerca del successore Rcerca del successore del odo = odo Il successore d u odo X è l pù pccolo odo maggore del odo X

26 ARB: rcerca del successore Rcerca del successore del odo = odo Se x ha u fglo destro, l successore è l mmo odo d quel sottoalbero

27 ARB: rcerca del successore Rcerca del successore del odo

28 ARB: rcerca del successore Rcerca del successore del odo = odo

29 ARB: rcerca del successore Rcerca del successore del odo = odo Se x NON ha u fglo destro, e x è fglo sstro del padre, l successore è l padre

30 ARB: rcerca del successore Rcerca del successore del odo

31 ARB: rcerca del successore Rcerca del successore del odo 4 = odo

32 ARB: rcerca del successore Rcerca del successore del odo 4 = odo Se x NON ha u fglo destro, ed è fglo destro del padre, l successore è l ultmo ateato per l quale x s trova el suo sottoalbero 8 sstro

33 ARB: rcerca del successore ABR-Successore,k) Z = Y = NIL WHILE Z!=NIL && key[z]!=k) Y = Z IF key[z] < k) HEN Z = dx[y] ELSE IF key[z] > k) HEN Z = sx[y] IF Z!= NIL && dx[z]!=nil) HEN retur ABR-Mmodx[Z]) ELSE WHILE Y!= NIL AND Z = dx[y]) DO Z = Y Y = padre[z] retur Y Se x NON ha u fglo destro, ed è fglo destro del padre, l successore è l ultmo ateato per l quale x s trova el suo sottoalbero sstro.

34 ARB: rcerca del successore ABR-Successore,k) Z = Y = NIL WHILE Z!=NIL && key[z]!=k) Y = Z IF key[z] < k) HEN Z = f_dx[y] ELSE IF key[z] > k) HEN Z = f_sx[y] IF Z!= NIL && f_dx[z]!= NIL) HEN retur ABR-Mmof_dx[Z]) Questo algortmo assume che og odo abba l putatore ELSE al padre WHILE Y!= NIL AND Z = f_dx[y]) DO Z = Y Y = padre[z] retur Y

35 ARB: rcerca del successore II y z NIL

36 ARB: rcerca del successore II y z

37 ARB: rcerca del successore II y 8 z 4 9 5

38 ARB: rcerca del successore II y z NIL

39 ARB: rcerca del successore II y z

40 ARB: rcerca del successore II y z

41 ARB: rcerca del successore II y z NIL

42 ARB: rcerca del successore II y NIL z

43 ARB: rcerca del successore II y NIL 8 z 4 9 5

44 ARB: rcerca del successore II y NIL 8 4 z 9 5

45 ARB: rcerca del successore II Izalzzamo l successore a NIL Partedo dalla radce dell albero: og volta che s segue l ramo sstro per raggugere l odo, s aggora l successore al odo padre; og volta che s segue u ramo destro per raggugere l odo, NON s aggora l successore al odo padre;

46 ARB: rcerca del successore y puta sempre al ARB ABR-Successore, k) odo caddato a z = essere successore y = NIL WHILE z!= NIL && key[z]!= k) IF key[z] < k) z = dx[z] ELSE IF key[z] > k) y = z z = sx[z] IF z!= NIL && dx[z]!= NIL) HEN y = ABR-Mmodx[z]) retur y

47 ARB: rcerca del successore rcorsva ABR-Successore_rc,k,Y) IF!= NIL) HEN IF k > key[]) HEN retur ABR-Successore_rc dx[],k,y) ELSE IF k < key[]) HEN retur ABR-Successore_rc sx[],k,) ELSE /* k = key[] */ IF dx[]!= NIL) HEN retur ABR-Mmodx[]) retur Y ABR-Successore,k) retur ABR-Successore_rc,k,NIL)

48 ARB: rcerca del successore rcorsva ABR-Successore_rc,k) IF!= NIL) HEN IF key[] < k) HEN retur ABR-Successore_rcdx[],k) ELSE IF key[] = k) retur ABR-Mmodx[]) ELSE /* key[] > key */ succ = ABR-Successore_rcsx[],k) IF succ!= NIL) HEN retur succ ELSE retur ELSE retur NIL

49 ARB: costo delle operazo eorema. Le operazo d Rcerca, Mmo, Massmo, Successore e Predecessore su d u Albero Baro d Rcerca possoo essere esegute tempo Oh), dove h è l altezza dell albero.

50 ARB: Isermeto d u odo caso I) 5 z

51 ARB: Isermeto d u odo caso I) 5 z y 5 < 8 Rcerca poszoe del uovo odo 4 9 5

52 ARB: Isermeto d u odo caso I) 5 y z 5 > 8 Rcerca poszoe del uovo odo 4 9 5

53 ARB: Isermeto d u odo caso I) 5 z 5 > 4 y 8 Rcerca poszoe del uovo odo rovata! 4 9 5

54 ARB: Isermeto d u odo caso I) fglo-dx[y]=z oppure fglo-sx[y]=z 8 y 4 z 5 9 5

55 ARB: Isermeto d u odo caso II) 5 z NIL Albero è vuoto

56 ARB: Isermeto d u odo caso II) z Root[] = z 5 Albero è vuoto Il uovo odo da serre dvee la radce

57 ARB: Isermeto d u odo ABR-sersc,k) z = alloca odo ARB key[z] = k y = NIL x = WHILE x!= NIL) DO y = x IF key[z] < key[x]) HEN x = sx[x] ELSE x = dx[x] IF y = NIL HEN = z ELSE IF key[z] < key[y] HEN sx[y] = z ELSE dx[y] = z

58 ARB: Isermeto d u odo ABR-sersc, k) z = alloca odo ARB key[z] = k y = NIL x = WHILE x!= NIL) DO y = x IF k < key[x]) HEN x = sx[x] ELSE x = dx[x] IF y = NIL HEN = z ELSE IF k < key[y] HEN sx[y] = z ELSE dx[y] = z Rcerca poszoe del uovo odo caso II) caso I)

59 ARB: Isermeto d u odo ABR-sert_rc,z) IF!= NIL HEN IF key[z] < key[] HEN sx[]= ABR-sert_rcsx[],z) ELSE dx[]= ABR-sert_rcdx[],z) retur ELSE retur z Rcordate che qu z è l odo che cotee la chave da serre

60 ARB: Isermeto d u odo ABR-sert_rc,k) IF!= NIL HEN IF k < key[] HEN sx[]= ABR-sert_rcsx[],k) ELSE dx[]= ABR-sert_rcdx[],k) retur ELSE z = alloca odo ARB key[z] = k retur z Qu vece k è la chave da serre. S deve qud allocare l odo!

61 Cacellazoe rcorsva Iput <k Output <k = cacella,k)

62 Cacellazoe rcorsva Iput >k Output >k = cacella,k)

63 Cacellazoe rcorsva Iput k

64 Cacellazoe rcorsva caso I) Iput Output k

65 Cacellazoe rcorsva caso II) Iput Output k

66 Cacellazoe rcorsva caso III) Iput Output k m{} = stacca-mmo)

67 ARB: Cacellazoe rcorsva ABR-Cacella-rck,) IF!= NIL HEN IF k < key[] HEN sx[]=arb-cacella-rck,sx[]) ELSE IF k > key[] HEN dx[]=arb-cacella-rck,dx[]) ELSE /* k = key[] */ odo = IF dx[odo] = NIL HEN = sx[odo] ELSE IF sx[odo] = NIL HEN = dx[odo] ELSE odo = Stacca-mdx[],) copa odo deallocaodo) retur cas I e II caso III

68 ARB: Cacellazoe rcorsova Stacca-m,P) IF NIL HEN IF sx[] NIL HEN retur Stacca-msx[],) ELSE /* successore trovato */ IF = sx[p] sx[p] = dx[] Il parametro P deota l padre d og chamata. ELSE /* m è l prmo odo passato */ dx[p] = dx[] retur NOA. L algortmo stacca l odo mmo dell albero e e rtora l putatore. Può ache rtorare NIL caso o essta u mmo è vuoto). Il valore d rtoro dovrebbe essere qud verfcato dal chamate prma dell uso. Nel caso della cacellazoe rcorsva però samo scur che l mmo esste sempre e qud o è ecessaro esegure alcu cotrollo!

69 ARB: Cacellazoe d u odo caso I) Caso semplce: l odo z o ha fgl z

70 ARB: Cacellazoe d u odo caso I) Caso semplce: l odo z o ha fgl Possamo elmarlo y 9 5 z

71 ARB: Cacellazoe d u odo caso II) Caso II: l odo ha u solo fglo 8 4 z 9 5

72 ARB: Cacellazoe d u odo caso II) 8 Caso II: l odo ha u fglo Scartare l odo e coettere l padre al fglo x 4 y z 9 5

73 ARB: Cacellazoe d u odo caso II) 8 Caso II: l odo ha u fglo Scartare l odo e coettere l padre al fglo x 4 y z 9 5

74 ARB: Cacellazoe d u odo caso II) 8 Caso II: l odo ha u fglo Scartare l odo e coettere l padre al fglo x 4 y z 9 5

75 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl z

76 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y z 8 4 y x

77 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y z 8 y NOA: Il successore d u odo co due fgl o può avere u fglo sstro 5.5 x

78 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y z 4 8 Staccare l successore y e coettere l padre al fglo destro y x

79 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y.5 z y 4 x Staccare l successore y e coettere l padre al fglo destro Copa l coteuto del successore el odo 5 da cacellare

80 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl Calcolare l successore y.5 z y 4 x Staccare l successore y e coettere l padre al fglo destro Copa l coteuto del successore el odo 5 da cacellare

81 ARB: Cacellazoe d u odo caso III) Caso III: l odo ha due fgl y.5 z x Calcolare l successore y Staccare l successore y e coettere l padre al fglo destro Copa l coteuto del successore y el odo 5 da cacellare Deallocare l odo staccato y

82 ARB: Cacellazoe d u odo Caso I: Il odo o ha fgl. Semplcemete s elma. Caso II: Il odo ha u solo fglo. S collega l padre del odo al fglo e s elma l odo. Caso III: Il odo ha due fgl. s cerca l suo successore che ha u solo fglo destro); s elma l successore come Caso II); s copao camp valore del successore el odo da elmare.

83 ARB: Cacellazoe d u odo ABR-Cacella,z) IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE y = ARB-Successorez) IF sx[y]!= NIL HEN x = sx[y] ELSE x = dx[y] IF x!= NIL HEN padre[x]=padre[y] IF padre[y] = NIL HEN = x ELSE IF y = sx[padre[y]] HEN sx[padre[y]]=x ELSE dx[padre[y]]=x IF y!= z HEN copa camp d y z dealloca y retur

84 ARB: Cacellazoe d u odo ABR-Cacella,z) IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE y = ARB-Successorez) IF sx[y]!= NIL HEN x = sx[y] ELSE x = dx[y] IF x!= NIL HEN padre[x]=padre[y] IF padre[y] = NIL HEN = x ELSE IF y = sx[padre[y]] HEN sx[padre[y]]=x ELSE dx[padre[y]]=x y è l odo da elmare IF y!= z HEN copa camp d y z dealloca y retur cas I e II caso III

85 ARB: Cacellazoe d u odo ABR-Cacella,z) IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE y = ARB-Successorez) IF sx[y]!= NIL HEN x = sx[y] ELSE x = dx[y] IF x!= NIL HEN padre[x]=padre[y] IF padre[y] = NIL HEN = x ELSE IF y = sx[padre[y]] HEN sx[padre[y]]=x ELSE dx[padre[y]]=x IF y!= z HEN copa camp d y z dealloca y retur cas I e II y è l odo da elmare e x è l suo sosttuto y è sosttuto da x caso III

86 ABR-Cacella-ter,k) p = NIL z = WHILE z!= NIL && key[z]!=k) DO p = z IF key[z] > k) HEN z = sx[z] ELSE z = dx[z] y è l odo da elmare p è l padre d y x è l sosttuto d y IF z = NIL) HEN retur /* ulla da cacellare */ IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE /* z ha fgl: s cerca l successore */ y = dx[z]; p = z WHILE sx[y] NIL) DO p = y y = sx[y] IF sx[y] NIL) HEN x = sx[y] ELSE x = dx[y] IF p = NIL) HEN = x /* s sta cacellado la radce */ ELSE IF y = sx[p]) HEN sx[p]=x ELSE dx[p]=x IF y!= z) HEN /* z ha due fgl */ copa camp d y z dealloca y retur

87 ABR-Cacella-ter,k) p = NIL z = WHILE z!= NIL && key[z]!=k) DO p = z IF key[z] > k) HEN z = sx[z] ELSE z = dx[z] IF z = NIL) HEN retur /* ulla da cacellare */ IF sx[z] = NIL OR dx[z] = NIL) HEN y = z ELSE /* z ha fgl: s cerca l successore */ y = dx[z]; p = z WHILE sx[y] NIL) DO p = y y = sx[y] IF sx[y] NIL) HEN x = sx[y] ELSE x = dx[y] IF p = NIL) HEN = x /* s sta cacellado la radce */ ELSE IF y = sx[p]) HEN sx[p]=x ELSE dx[p]=x IF y!= z) HEN /* z ha due fgl */ copa camp d y z dealloca y retur y è l odo da elmare p è l padre d y x è l sosttuto d y Rcerca d k Cas I e II Rcerca successore Caso III Dstacco odo y da elmare e aggorameto del padre Copa successore Caso III

88 ARB: costo d Isermeto e Cacellazoe eorema. Le operazo d Isermeto e Cacellazoe sull seme damco Albero Baro d Rcerca possoo essere esegute tempo Oh) dove h è l altezza dell albero

89 Costo delle operazo su ABR L algortmo d sermeto NON garatsce che l albero rsultate sa blacato. Nel caso peggore l altezza h può essere par ad N umero de od) 8 9 5

90 Costo delle operazo su ABR L algortmo d sermeto NON garatsce che l albero rsultate sa blacato. Nel caso peggore l altezza h può essere par ad N umero de od) 8 9 Qud tutte le operazo vste hao costo ON) el caso peggore 5

91 Costo medo delle operazo su ABR Dobbamo calcolare la lughezza meda a) del percorso d rcerca. Assumamo che le chav arrvo orde casuale tutte abbao uguale probabltà d presetars). Allora la probabltà che ua chave sa la radce dell albero è /; Assumamo, oltre, che la probabltà che ua chave vega cercata sa /. a) = = p dove p è la lughezza meda su tutt possbl ABR) del percorso al odo

92 Costo delle operazo su ABR Se la chave è la radce dell albero, allora l sottoalbero sstro avrà - od e a) = = p l sottoalbero destro avrà - od - -

93 Costo delle operazo su ABR Se la chave è la radce dell albero, allora l sottoalbero sstro avrà - od e l sottoalbero destro avrà - od a) = = p cascuo degl - od a sstra hao lughezza meda del percorso a-)+ la radce ha lughezza del percorso par ad cascuo degl - od a sstra hao lughezza meda del percorso a-)+ - -

94 Costo delle operazo su ABR a ) sa la lughezza meda del percorso d rcerca co chav quado la radce è la chave a ) = [ a ) ] [ a ) ] a-) è la lughezza meda del percorso d rcerca co - chav a-) è la lughezza meda del percorso d rcerca co - chav

95 Costo delle operazo su ABR a ) sa la lughezza meda del percorso d rcerca co chav quado la radce è la chave a) è la meda degl a ), dove cascu a ) ha probabltà /, coè la probabltà che propro la chave sa la radce dell albero. a a a = ] ) [ ] ) [ ) = = a a ) ) allora

96 Costo delle operazo su ABR a) è la meda degl a ), dove cascu a ) ha probabltà / a a a = ] ) [ ] ) [ ) = = = a a ) ) allora = = a a ] ) [ ] ) [

97 Costo delle operazo su ABR = = a a a ] ) [ ] ) [ ) = = a a ) ) ) ) = = a ) ) = = 0 ) a

98 Costo delle operazo su ABR = = 0 ) ) a a = = 0 ) ) ) a a

99 Costo delle operazo su ABR = = 0 ) ) a a = = 0 ) ) ) a a = = 0 ) ) ) a a

100 Costo delle operazo su ABR = = 0 ) ) a a = = 0 ) ) ) a a = = 0 ) ) ) a a ) ) ) 0 = = a a

101 Costo delle operazo su ABR = = 0 ) ) ) ) a a a ) ) ) 0 = = a a ) ) ) = a a

102 Costo delle operazo su ABR Fuzoe armoca ) ) ) = a a ) ) = H a H... ) = Dmostrare per duzoe

103 Costo delle operazo su ABR a ) = H ) Dmostrare per duzoe a ) = l ) = l c H ) = l... Formula d Eulero dove 0.577

104 Alber perfettamete blacat Defzoe: U albero baro s dce Perfettamete Blacato se, per og odo, l umero de od el suo sottoalbero sstro e l umero de od del suo sottoalbero destro dfferscoo al pù d

105 Alber perfettamete blacat Defzoe: U albero baro s dce Perfettamete Blacato se, per og odo, l umero de od el suo sottoalbero sstro e l umero de od del suo sottoalbero destro dfferscoo al pù d La lughezza meda a ) del percorso u albero perfettamete blacato APB) co od è approssmatvamete a' ) = log

106 Cofroto tra ABR e APB Il rapporto tra la lughezza meda a) del percorso u albero d rcerca e la lughezza meda a ) ell albero perfettamete blacato è per suffcetemete grade) è approssmatvamete a ) a' ) = l log c l log = l,8 trascurado term costat)

107 Cofroto tra ABR e APB Cò sgfca che, se ache blacassmo perfettamete l albero dopo og sermeto l guadago sul percorso medo che otterremmo NON supererebbe l 9%. a a' = l log c = l log = l.8 Scosglable ella maggor parte de cas, a meo che l umero de od e l rapporto tra rcerche e sermet sao molto grad.

Problema della Ricerca

Problema della Ricerca Problema della Rcerca Pag. /59 Problema della Rcerca U dzoaro rappreseta u seme d formazo suddvso per elemet ad oguo de qual è assocata ua chave. Esempo d dzoaro è l eleco telefoco dove la chave è costtuta

Dettagli

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti

Dimostrazione della Formula per la determinazione del numero di divisori-test di primalità, di Giorgio Lamberti Gorgo Lambert Pag. Dmostrazoe della Formula per la determazoe del umero d dvsor-test d prmaltà, d Gorgo Lambert Eugeo Amtrao aveva proposto l'dea d ua formula per calcolare l umero d dvsor d u umero, da

Dettagli

Modelli di Schedulazione

Modelli di Schedulazione EW Modell d Schedulazoe Idce Maccha Sgola Tepo d Copletaeto Totale Tepo d Copletaeto Totale Pesato Tepo d Rtardo Totale Maespa co set-up dpedete dalla sequeza Tepo d Copletaeto Totale co vcolo d precedeza

Dettagli

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi.

In questo capitolo vedremo solamente un caso di rendita, che useremo poi per generalizzare le rendite e dedurre tutti gli altri casi. 7. Redte I questo captolo edremo solamete u caso d redta, che useremo po per geeralzzare le redte e dedurre tutt gl altr cas. S defsce redta ua successoe d captal (rate) tutte da pagare, o tutte da rscuotere,

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Attualizzazione. Attualizzazione

Attualizzazione. Attualizzazione Attualzzazoe Il problema erso alla captalzzazoe prede l ome d attualzzazoe Abbamo ua operazoe fazara elemetare e dato l motate M dobbamo determare l corrspodete captale zale C L'attualzzazoe è la operazoe

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO.

ARGOMENTO: MISURA DELLA RESISTENZA ELETTRICA CON IL METODO VOLT-AMPEROMETRICO. elazoe d laboratoro d Fsca corso M-Z Laboratoro d Fsca del Dpartmeto d Fsca e Astrooma dell Uverstà degl Stud d Cataa. Scala Stefaa. AGOMENTO: MSUA DELLA ESSTENZA ELETTCA CON L METODO OLT-AMPEOMETCO. NTODUZONE:

Dettagli

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue:

ERRATA CORRIGE. L intero contenuto del paragrafo 9.2.3 a pagina 47-48 del Capitolato tecnico Determinazione del Canone è sostituito come segue: Procedura aperta per l affdameto de servz tegrat, gestoal, operatv e d mautezoe multservzo tecologco da esegurs presso gl mmobl d propretà o uso alle Asl ed alle azede ospedalere della regoe Campaa ERRATA

Dettagli

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014

Modelli di Flusso e Applicazioni: Andrea Scozzari. a.a. 2013-2014 Modell d Flusso e Applcazo: Adrea Scozzar a.a. 203-204 2 Il modello d Flusso d Costo Mmo: Problem d Flusso A u l V b c P S A ), ( m ) ( ) ( ), ( Problem rcoducbl a problem d Flusso Il problema del trasporto

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 11 marzo 2015 Apput d ddattca della Matematca fazara Redte, ammortamet

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Alberi Binari di Ricerca (BST) Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Alberi Binari di Ricerca (Binary Search Trees BST)

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

Capitolo 5: Fattorizzazione di interi

Capitolo 5: Fattorizzazione di interi Captolo 5: Fattorzzazoe d ter Trovare fattor d u umero tero grade è ua mpresa assa ardua, e può essere mpossble co le rsorse ogg dspobl. No s cooscoo metod polomal per la fattorzzazoe, come vece accade

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

Leasing: aspetti finanziari e valutazione dei costi

Leasing: aspetti finanziari e valutazione dei costi Leasg: aspett fazar e valutazoe de cost Descrzoe Il leasg è u cotratto medate l quale ua parte (locatore), cede ad u altro soggetto (locataro), per u perodo d tempo prefssato, uo o pù be, sao ess mobl

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha:

RENDITE. Le singole rate possono essere corrisposte all inizio o alla fine di ciascun periodo e precisamente si ha: RENDITE. Pagamet rateal S defsce redta ua sere qualsas d somme rscuotbl (o pagabl a scadeze dverse, o, pù esattamete, u seme d captal co dspobltà scagloata el tempo. Tal captal soo dett rate della redta

Dettagli

Lezione 19. Elementi interi ed estensioni intere.

Lezione 19. Elementi interi ed estensioni intere. Lezoe 9 Peequst: Modul ftamete geeat Elemet algebc Elemet te ed esteso tee Sa A u aello commutatvo utao sa B u suo sottoaello Tutt sottoaell cosdeat coteao l utà moltplcatva d A Defzoe 9 U elemeto α A

Dettagli

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza

2014-2015 Corso TFA - A048 Matematica applicata. Didattica della matematica applicata all economia e alla finanza Uverstà degl Stud d Ferrara 2014-2015 Corso TFA - A048 Matematca applcata Ddattca della matematca applcata all ecooma e alla faza 18 marzo 2015 Apput d ddattca della Matematca fazara Redte, costtuzoe d

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

Lezione 3. Funzione di trasferimento

Lezione 3. Funzione di trasferimento Lezoe 3 Fuzoe d trasfermeto Calcolo della rsposta d u sstema damco leare Per l calcolo della rsposta (uscta) d u sstema damco leare soggetto ad gress assegat, s possoo segure due strade Calcolo el domo

Dettagli

ammontare del carattere posseduto dalle i unità più povere.

ammontare del carattere posseduto dalle i unità più povere. Eserctazoe VII: La cocetrazoe Eserczo Determare l rapporto d cocetrazoe d G del fatturato medo (espresso. d euro) d 8 mprese e rappresetare la curva d Lorez: 97 35 39 52 24 72 66 87 Eserczo apporto d cocetrazoe

Dettagli

L assorbimento e lo strippaggio

L assorbimento e lo strippaggio assorbmeto e lo strppaggo Coloa a stad d ulbro (coloa a patt Il calcolo d ua coloa d assorbmeto/strppaggo d questo tpo parte dal blaco d matera. Chamado e le portate d lqudo A e d gas C relatve a due compoet

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

SCHEDA DIDATTICA N 5

SCHEDA DIDATTICA N 5 FACOLTA DI INGEGNEIA COSO DI LAUEA IN INGEGNEIA CIVILE COSO DI IDOLOGIA POF. PASQUALE VESACE SCHEDA DIDATTICA N 5 MOMENTI DELLE VAIABILI CASUALI E STIMA DEI PAAMETI A.A. 0-3 Momet delle varabl casual La

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari Tol obblgazoar Bod U obblgazoe è u olo d debo emesso da ua soceà da uo sao o da u ee pubblco che dà dro al suo possessore al rmborso del capale presao alla scadeza e al pagameo d eress cedole. La emssoe

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Premessa... 1. Equazioni i differenziali lineari

Premessa... 1. Equazioni i differenziali lineari Apput d Cotroll Autoatc Captolo 3 parte I Sste dac lear Preessa... Equazo dfferezal lear... Evoluzoe lbera ed evoluzoe forzata... Uso della trasforazoe d Laplace... 3 Esepo... 7 Osservazo sulla rsposta

Dettagli

La struttura dati ad albero binario

La struttura dati ad albero binario La struttura dati ad albero binario L albero è una struttura dati nella quale le informazioni sono organizzate in modo gerarchico, dall alto verso il basso. Gli elementi di un albero si chiamano nodi,

Dettagli

del corso di Elaborazione Numerica dei Segnali

del corso di Elaborazione Numerica dei Segnali G. Guta: corso d Elaborazoe Numerca de Segal (laurea specalstca) - lucdo. Corso d laurea Corso d laurea del corso d Elaborazoe Numerca de Segal (laurea specalstca) (docete: Prof. G. Guta) x() x () e x

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Ammortamento americano. Ammortamento americano

Ammortamento americano. Ammortamento americano mmortameto amercao La cora lezoe abbamo vto che ell'ammortameto amercao l rmboro del debto zale avvee medate u uco verameto a cadeza, otteuto attravero ua operazoe d cottuzoe d u captale al tao attvo j;

Dettagli

Schemi a blocchi. Sistema in serie

Schemi a blocchi. Sistema in serie Scem a blocc Nel caso ssem semplc, ques possoo essere scemazza meae blocc, ce rappreseao vers compoe, collega ra loro sere o parallelo a secoa ella logca uzoameo. Vl Valvolal solvee Sesore Pompa Pompa

Dettagli

I PARTE: CALCOLO DELLE PROBABILITÀ

I PARTE: CALCOLO DELLE PROBABILITÀ rof. Ig. Domzao Mostacc Apput d probabltà e statstca d coteggo I ARTE: CALCOLO DELLE ROBABILITÀ I. Evet ed Est Cosderamo l espermeto d gettare u dado. Gettamo l dado, aspettamo che s ferm e osservamo l

Dettagli

Modelli MILP per il Supply Chain Design

Modelli MILP per il Supply Chain Design Corso d Progettazoe e Gestoe della Supply Cha (PGSC) Facoltà d Igegera Modell MILP per l Supply Cha Desg Ig. Toaso Ross Uverstà C. Cattaeo LIUC Cetro d Rcerca sulla Logstca GLI STRUMENTI PER LA CONFIGURAZIONE.

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

Statistica degli estremi

Statistica degli estremi Statstca degl estrem Rcham d probabltà e statstca Il calcolo della probabltà d u eveto è drettamete coesso co: - la COOSCEZA ICOMPLETA dell eveto stesso; - l assuzoe d u RISCHIO, calcolato come la probabltà

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

CALCOLO ECONOMICO E FINANZIARIO

CALCOLO ECONOMICO E FINANZIARIO CALCOLO ECONOMICO E FINANZIARIO 1. Iteresse e scoto La postcpazoe d ua dspobltà fazara rchede ua certa rcompesa (teresse), vceversa la sua atcpazoe comporta ua dmuzoe dell'mporto orgaro (scoto). Il rsparmatore,

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Complessità Computazionale

Complessità Computazionale Uiversità degli studi di Messia Facoltà di Igegeria Corso di Laurea i Igegeria Iformatica e delle Telecomuicazioi Fodameti di Iformatica II Prof. D. Brueo Complessità Computazioale La Nozioe di Algoritmo

Dettagli

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO

CAMPI DI FORZA CONSERVATIVI - ENERGIA POTENZIALE E POTENZIALE ELETTRICO CMPI DI OZ CONSEVTIVI - ENEGI POTENZIE E POTENZIE EETTICO Camp Vettoal Defzoe: u campo vettoale è ua egoe dello spazo, cu og puto è defto u vettoe. Ta camp vettoal d patcolae teesse fsca v soo camp d foza

Dettagli

Approssimazioni di curve

Approssimazioni di curve Approssmazo d curve e superfc Approssmazo d curve Il terme Computer Grafca comprede ua larga varetà d applcazo che rguardao umerevol aspett della ostra vta. U eleco esemplfcatvo d alcu de camp cu essa

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in:

B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: B-Tree Prof. Rudolf Bayer Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: Filesystem: btrfs, NTFS, ReiserFS, NSS, XFS, JFS

Dettagli

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I

Aldo Montesano PRINCIPI DI ANALISI ECONOMICA CAP. 11 L ANALISI DELL'EQUILIBRIO GENERALE I Aldo Motesao PRINCIPI DI ANALISI ECONOMICA CAP. L ANALISI DELL'EQUILIBRIO GENERALE I L aals dell equlbro parzale, esaata el captolo precedete, è sa u utle troduzoe all aals dell equlbro geerale, sa uo

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

Le 7 fasi dell AMD (PAG.6 M.Fraire-Metodi di AMD CISU, Roma 1994)

Le 7 fasi dell AMD (PAG.6 M.Fraire-Metodi di AMD CISU, Roma 1994) !(Breve rchamo alle lezo ) " I passato l applcazoe ua tecca statstca multvarata cossteva stetcamete tabella e at potes moello e tecca statstca multvarata output e rsultat Ogg l amplars e camp applcazoe

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

PROBLEMI INVERSI NELLA MECCANICA DEL

PROBLEMI INVERSI NELLA MECCANICA DEL UNIVERSITÀ DELLA CALABRIA DOTTORATO DI RICERCA IN MECCANICA COMPUTAZIONALE XX CICLO SETTORE SCIENTIFICO DISCIPLINARE ICAR-8 PROBLEMI INVERSI NELLA MECCANICA DEL DANNEGGIAMENTO Doato Guseppe Dssertazoe

Dettagli

Le variabili casuali semplici

Le variabili casuali semplici 573 7 Le varabl casual semplc Nel captolo precedete s è prvlegato l eveto e la sua probabltà seza dugare sulle faltà dell espermeto e sulle attvtà coesse alle sue mafestazo. charo però che l espermeto

Dettagli

CORSO STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI

CORSO STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI CORSO DI STATISTICA MATEMATICA LUCIO BERTOLI BARSOTTI Idce I PARTE Sezoe I... Probabltà classca. Il problema d Galleo della somma del puteggo d tre dad... 3. Aagramm d parole co lettere rpetute o meo.

Dettagli

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA The last step of reaso s to ackowledge that there s a fty of thgs that go beyod t. B. Pascal La Statstca ha come scopo la coosceza quattatva de feome collettv.

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale:

Con una rappresentazione parametrica, una curva c è data come una funzione a valori vettoriali di un singolo parametro reale: Co u rppresetzoe prmetrc, u curv c è dt come u fuzoe vlor vettorl d u sgolo prmetro rele: c : D R E t.c. c( u o ( x ( u... x ( u I cu o è l orge del rfermeto, D geere cocde co l tervllo [,] e x soo le

Dettagli

Programmazione Non Lineare: Algoritmi Evolutivi Ing. Valerio Lacagnina. METODI di PNL

Programmazione Non Lineare: Algoritmi Evolutivi Ing. Valerio Lacagnina. METODI di PNL Programmazoe No Leare: Algortm Evolutv Ig. Valero Lacaga Programmazoe o leare: metodche rsolutve METODI d PNL INDIRETTI DIRETTI Codzo ecessare Sstema d vcol Algortm I metod drett forscoo soltato codzo

Dettagli

La valutazione dei credit derivatives. ed una sua applicazione a dati di mercato.

La valutazione dei credit derivatives. ed una sua applicazione a dati di mercato. La valutazoe de credt dervatves ed ua sua applcazoe a dat d mercato. a cura d Alessadro Matta. La valutazoe d credt dervatves..... Ipotes d base.....2 Strumet sgle-ame....2.3 Strumet mult-ame....4.4 Idc

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

B alberi. dizionari in memoria secondaria

B alberi. dizionari in memoria secondaria B alberi dizionari in memoria secondaria dizionari su memoria secondaria la memorizzazione su memoria secondaria risponde a due esigenze permanenza dell informazione la RAM è volatile grande quantità di

Dettagli

Spazio per timbri. DENUNCIA DI INIZIO ATTIVITÀ (insegne, targhe, affissi pubblicitari e tende)

Spazio per timbri. DENUNCIA DI INIZIO ATTIVITÀ (insegne, targhe, affissi pubblicitari e tende) Spazio per timbri DENUNCIA DI INIZIO ATTIVITÀ (isege, targhe, affissi pubblicitari e tede) Al Servizio Edizia Privata del Comue di PAVIA DI UDINE La D.I.A. va presetata i bollo ( 14,62) quado costituisca

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Matematica finanziaria avanzata III: la valutazione dei gestori

Matematica finanziaria avanzata III: la valutazione dei gestori Maemaca azaa aazaa III: la aluazoe de geso L dusa del spamo geso La aluazoe della peomace Redme Msue sk-adjused Msue basae su modell ecoomec Le gadezze lea I bechmak e le commsso La lodzzazoe de edme L

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

«MANLIO ROSSI-DORIA»

«MANLIO ROSSI-DORIA» «MANLIO ROSSI-DORIA» Collaa a cura del Cetro per la Formazoe Ecooma e Poltca dello Svluppo Rurale e del Dpartmeto d Ecooma e Poltca Agrara dell Uverstà d Napol Federco II 6 Nella stessa collaa:. Qualtà

Dettagli

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze

Esercizi di Statistica per gli studenti di Scienze Politiche, Università di Firenze Esercz d Statstca per gl studet d Sceze Poltche, Uverstà d Freze Esercz svolt da ua selezoe d compt degl Esam scrtt d Statstca del 999 e del 000 VERSIONE PROVVISORIA APRILE 00 A cura d L. Matroe F.Meall

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

MINICORSO: Controllo Statistico di Processo (parte 2/5) di Andrea Saviano

MINICORSO: Controllo Statistico di Processo (parte 2/5) di Andrea Saviano Parte 2 Mcorso Cotrollo Statstco d Processo d Adrea Savao Walter Adrew Shewhart, ch era costu, premessa Ache le matematco, che combazoe! Probabltà... seza mprevst Il 7 e ½ e altr goch d carte No poamo

Dettagli

13 Valutazione dei modelli di simulazione

13 Valutazione dei modelli di simulazione 3 Valutazoe de modell d smulazoe I modell d smulazoe o sosttuscoo la coosceza, ma soo puttosto u mezzo per orgazzarla. Quado l modello è utlzzato per aalzzare u sstema attuado smulazo, è mportate capre

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t 4. Approcco formale E neressane efnre le caraersche e var regm fnanzar n manera pù asraa e generale, n moo a poer suare qualsas regme fnanzaro. A al fne efnamo percò e paramer n grao escrvere qualsas po

Dettagli

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA Politecico di Torio Sistemi di Produzioe... CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA... Equazioe di govero Negli ultimi ai il metodo

Dettagli