Daniele Marini. Aliasing spaziale e blending di immagini

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Daniele Marini. Aliasing spaziale e blending di immagini"

Transcript

1 Daniele Marini Aliasing spaziale e blending di immagini

2 Cos è un alias? Alias - In telecomunicazione un falso segnale dovuto a interferenza tra frequenza del segnale e frequenza di campionamento aliasing c è ovunque in computer graphics poichè il rendering è un processo di campionamento Esempi: linee a dente di sega (jagged lines) false tramature di texture (moirée) 2

3 Aliasing spaziale di linee e di texture Osserviamo aliasing sia su singole linee o bordi (denti di sega) sia su texture (moirée) 3

4 Aliasing temporale Si osserva aliasing anche in sequenze di immagini: 4

5 Il rendering è un processo di campionamento 5

6 Il rendering è un processo di campionamento rendere una curva 6

7 Campionare segnali Due passi nella rappresentazione digitale di un segnale: campionamento e ricostruzione Campionamento: da segnale continuo a campioni discreti Ricostruzione: dai valori discreti al segnale continuo Aliasing può derivare da entrambi i passaggi 7

8 Alias temporale provocato da sottocampionamento una ruota sembra girare in senso inverso Osserva solo a 1/4 della frequenza problema di sotto campionamento 8

9 Alias provocato da sotto-campionamento segnale 1D segnale effettivo segnale campionato 9

10 Alias spaziale provocato da sottocampionamento segnale 2d: moirée aliasing moderato aliasing più forte 10

11 Alias e spettro Si può comprendere matematicamente il fenomeno dell aliasing considerando che lo spettro di un segnale a supporto finito si ripete periodicamente Se la frequenza di campionamento è inferiore alla frequenza massima del segnale queste ripetizioni si sovrappongono nelle code 11

12 Alias e spettro 12

13 Se aumentiamo la frequenza di campionamento? f=1 rpm 1 campione per rivoluzione 1 < campione/rivoluzione < 2 2 campioni/rivoluzione > 2 campioni/rivoluzione 13

14 Quanto basta? qual è la giusta frequenza di campionamento? teorema del campionamento (o limite di Nyquist) - la frequenza di campionamento deve essere almeno doppia della massima frequenza del segnale due campioni in questo periodo 14

15 Si può evitare totalmente aliasing.... dato il limite di Nyquist? In realtà no la frequenza massima potrebbe essere infinita, segnale non limitato in banda La maggior parte delle scene grafiche e le immagini non sono bandlimited: bordi netti non possono mai venire campionati correttamente in modo digitale (point sampling) Si può limitare il segnale in banda con un filtro passa basso Come si può correggere o limitare l aliasing? 15

16 Ricostruzione Dopo aver campionato (idealmente) in modo corretto, dobbiamo ricostruire il segnale continuo Si procede usando filtri di ricostruzione 16

17 Alcuni filtri di ricostruzione Filtri più comuni: Box - Interpolazione Nearest neighbour Filtro a tenda Interpolazione lineare 17

18 Alcuni filtri di ricostruzione Interpolazione bicubica 18

19 Box Molto semplice ma non molto buono 19

20 Filtro triangolare Lineare Basato su interpolazione lineare. Migliore ma ancora non smooth 32x32 Nearest neighbor 20

21 Bicubico Filtro passa basso ideale: nearestneighbor bicubica lineare 21

22 Ricampionamento Supponiamo che i campioni siano a intervalli unitari: 0,1,2,3,4, Ricampionare in modo che la loro distanza valga a a< 1 produce magnification a>1 produce minification 22

23 Ri-campionamento Minification e Magnification ricampiona il segnale a risoluzioni diverse Minification Magnification (in questo caso la minificazione è stata fatta male) 23

24 Magnification facile da usare, ricampiona in modo semplice il segnale da ricostruire Segnale ricostruito Ricampionamento a frequenza doppia del segnale ricostruito 24

25 Minification Raddoppiamo la distanza tra i campioni Si ha un effetto di sfocatura 25

26 Minification Più difficile La frequenza del segnale è troppo alta per evitare aliasing Soluzioni possibili: Accresci l ampiezza del filtro passa basso del filtro ideale sinc - sfoca l immagine Prima sfoca l immagine (con qualunque metodo), poi ricampionala 26

27 Piramidi di immagini Nota come Gaussian Pyramid [Burt and Adelson, 1983] Nella grafica si usa per gestire texture: mip map [Williams, 1983] Ogni immagine si ottiene sfocando con filtro gaussiano e sottocampionando

28 A cosa serve? Precomputazione Per accedere all immagine a differenti livelli di sfocature Utile per il texture mapping a risoluzione differenti (chimato mip-mapping) Image Processing Elaborarare le diverse bande di frequenza separatamente ad esempio per image blending Migliorare la ricerca in banche dati di immagini Applicare il template matching a scale differenti

29 Costruzione della piramide Gaussiana Maschera di filtraggio Repeat Filtra Sottocampiona Until risoluzione minima raggiunta Si può specificare il numero di livelli desiderato

30 Sotto campionamento di immagini 1/8 1/4 Scarta una riga e una colonna ogni due per creare un immagine a 1/2 scala - Chiamato image sub-sampling

31 Sotto campionamento di immagini 1/2 1/4 (2x zoom) 1/8 (4x zoom) Perchè così brutte? Non abbiamo rispettato il limie di Nyquist!

32 Pre filtraggio gaussiano G 1/8 G 1/4 Gaussian 1/2 Soluzione: filtra l immagine, poi sottocampiona A ogni passo di ½ riduzione il filtro deve raddoppiare

33 Sottocampionamento con pre filtro gaussiano Gaussian 1/2 G 1/4 G 1/8

34 Confronto con il metodo ingenuo 1/2 1/4 (2x zoom) 1/8 (4x zoom)

35 Image Blending

36 Image Blending

37 Feathering, basato su alpha channel

38 Feathering, basato su alpha channel = Controlliamo la trasparenza sul bordo I(x,y) = (αr, αg, αb, α) I blend = I left + I right

39 Dipende dall estensione 1 left 1 0 right effetto fantasma (ghost) 0

40 Dipende dall estensione

41 Dimensione ottimale dell intervallo di blending 1 Smooth senza effetto fantasma (ghost) Esempio Matlab blend.m 0

42 Qual è la dimensione ottimale dell intervallo? Per evitare cuciture Intervallo >= size della figura più rilevante Per evitare ghosting Intervallo <= 2*size della figura più rilevante

43 Qual è la dimensione ottimale dell intervallo? Per evitare cuciture Intervallo >= size della figura più rilevante Per evitare ghosting Intervallo <= 2*size della figura più rilevante Se lavoriamo nel dominio di Fourier frequenza maggiore <= 2*size della frequenza minima Il contenuto frequenziale dell immagine dovrebbe occupare una ottava (frequenze in rapporto 2:1) FFT

44 Se la gamma di frequenze è elevata? FFT

45 Se la gamma di frequenze è elevata? FFT Idea (Burt and Adelson) Calcola F left = FFT(I left ), F right = FFT(I right ) Scomponi la trasformate di Fourier in bande F left = F 1 left + F 2 left + Miscela sfumando le bande corrispondenti (1-t) F i left + t F i right Antitrasforma Si può implementare nel domino spaziale

46 Ricordiamo l effetto della sfocatura original

47 Sfocata smoothed (5x5 Gaussian)

48 Filtro passa alto Sfocata originale: I bordi e le alte frequenze

49 Costruzione piramide Piramide gaussiana (filtri passa basso) Piramide Laplaciana (immagini a bande di frequenza) Creata dalla piramide gaussian per sottrazione

50 Costruzione piramide Piramide gaussiana (filtri passa basso) Piramide Laplaciana (immagini a bande di frequenza) Creata dalla piramide gaussian per sottrazione

51 Piramide Laplaciana Ci serve questa! Original image Come ricostruiamo l immagine(collassiamo la piramide)?

52 Piramide Laplaciana Ci serve questa! Original image Come ricostruiamo l immagine(collassiamo la piramide)?

53 Piramide Laplaciana Lo schema con Simulink: costruzione e ricostruzione (collassare la piramide) - laplacianwarping.mdl

54 Osservazione impyramid (X, reduce ) riduce una MxN in una ceil(m/2) x ceil(n/2) impyramid (X, expand ) espande a (2*M-1) x (2*N-1) Se M o N non sono potenze di 2 o sono dispari occorre ridimensionare l immagine ricostruita dopo expand per poter collassare la piramide Non usare imresize! (opera uno smooth), meglio imcrop (per ridurre) o padarray (per allargare)

55 Blending piramidale Piramide sinistra blend Piramide destra

56 Blending piramidale

57 Livello laplaciano 4 Livello laplaciano 2 Livello laplaciano 0 Piramide sin. Piramide des. Piramide miscelata

58 Blending con piramide laplaciana Approccio generale: 1. Costruisci piramide Gaussiana GA e GB dalle immagini A e B 2. Costruisci piramide Laplaciana LA e LB dalle immagini A e B 3. Costruisci piramide Gaussiana GM della maschera di blending 4. Forma piramide combinata LS da LA e LB usando nodi di Gm come pesi: LS(I,j) = GM(I,j,)*LA(I,j) + (1-GM(I,j))*LB(I,j) 5. Miscela con GM livello N GA livello N e GB livello N 6. Collassa la piramide LS per ottenere l immagine finale miscelata Esempio MATLAB pyramid_blending.m

59 Blending di regioni

60 Horror Photo prof. dmartin

61 Blending a due bande Brown & Lowe, 2003 Usa solo due bande: alta freq. e bassa freq. Miscela con smoothing la bassa frequenza Miscela alta frequenza senza smoothing: usa una maschera binaria

62 Blending a due bande Alta frequenza (λ < 2 pixel) Bassa fequenza (λ > 2 pixel)

63 Blending lineare

64 Blending a due bande

65 Dominio del gradiente Nel Blending piramidale abbiamo decomposto l immagine in derivate 2 nd (Laplaciano) e a bassa risoluzione Consideriamo ora la derivata prima (gradiente): Non abbiamo bisogno della bassa risoluzione Cattura tutta l informazione (fino alle costanti) Idea: Deriva Miscela Integra

66 Blending nel dominio del Gradiente (1D) due segnali chiaro scuro Blending regolare Blending delle derivate

67 Gradient Domain Blending (2D) Più complesso in 2D: Prendi derivate parziali dx e dy (campo del gradiente) Elabora (smooth, blend, feather, etc) Re-integra Ma ora integral(dx) può essere diverso da integral(dy) Trova la soluzione più gradevole (Equivalent to solving Poisson equation) Si può usare FFT, deconvolution, o altro

68 Confronti: Levin et al, 2004

69 Perez et al., 2003

70 Perez et al, 2003 editing Limiti: Non si può invertire il contrasto (gray on black -> gray on white) Sfondo colorato stinge Le immagini devono essere allineate molto bene

71 Non miscelare: TAGLIA! Gli oggetti in movimento creano effetto fantasma (ghost)

72 Davis, 1998 Segmentare creando un mosaico Ogni segmento è una immagine sorgente Elimina artefatti lungo i contorni Algoritmo di Dijkstra s

73 Efros & Freeman, 2001 blocco Input texture B1 B2 B1 B2 B1 B2 Blocchi posti casualmente Forza blocchi vicini a sovrapporsi Minimal error boundary cut

74 Minimal error boundary Blocchi sovrapposti Confine verticale 2 _ = Errore di sovrapposizione min. error boundary

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python SciPy Programmazione Orientata agli Oggetti e Scripting in Python SciPy: Informazioni di Base Libreria di algoritmi e strumenti matematici Fornisce: moduli per l'ottimizzazione, per l'algebra lineare,

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

ANALISI DI SEGNALI BIOLOGICI

ANALISI DI SEGNALI BIOLOGICI ANALISI DI SEGNALI BIOLOGICI A.Accardo accardo@units.it LM Neuroscienze A.A. 2010-11 Parte II 1 Analisi in frequenza di un segnale l analisi in frequenza di un segnale o analisi di Fourier descrive il

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici ELEMENTI DI PROBABILITA Media : migliore stima del valore vero in assenza di altre info. Aumentare il numero di misure permette di approssimare meglio il valor medio e quindi ridurre l influenza degli

Dettagli

I Grafici. La creazione di un grafico

I Grafici. La creazione di un grafico I Grafici I grafici servono per illustrare meglio un concetto o per visualizzare una situazione di fatto e pertanto la scelta del tipo di grafico assume notevole importanza. Creare grafici con Excel è

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Oscilloscopi serie WaveAce

Oscilloscopi serie WaveAce Oscilloscopi serie WaveAce 60 MHz 300 MHz Il collaudo facile, intelligente ed efficiente GLI STRUMENTI E LE FUNZIONI PER TUTTE LE TUE ESIGENZE DI COLLAUDO CARATTERISTICHE PRINCIPALI Banda analogica da

Dettagli

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1)

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1) 10 - La voce umana Lo strumento a fiato senz altro più importante è la voce, ma è anche il più difficile da trattare in modo esauriente in queste brevi note, a causa della sua complessità. Vediamo innanzitutto

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

LA TRASFORMATA DISCRETA DI FOURIER l.

LA TRASFORMATA DISCRETA DI FOURIER l. LA TRASFORMATA DISCRETA DI FOURIER l. t " : SULUPPO PER VIA GRAFICA n mpionamento del segnale analogico x(t) produce una sequenza xsgts) il cui spettro nel dominio della frequ enza è periodico, sicché

Dettagli

Metodiche classiche di acquisizione e quan3ficazione della variabilità della frequenza cardiaca

Metodiche classiche di acquisizione e quan3ficazione della variabilità della frequenza cardiaca Metodiche classiche di acquisizione e quan3ficazione della variabilità della frequenza cardiaca (Ivan Corazza) INDICE Misura intervalli RR battito-a-battito (Giorgio Barletta) Misura della variabilità

Dettagli

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Corso di laurea magistrale in Ingegneria delle Telecomunicazioni Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Trasmettitore

Dettagli

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA

UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA UNIVERSITA DI PISA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA ANNO ACCADEMICO 2004-2005 TESI DI LAUREA SVILUPPO DI METODI DECONVOLUTIVI PER L INDIVIDUAZIONE DI SORGENTI INDIPENDENTI

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

v in v out x c1 (t) Molt. di N.L. H(f) n

v in v out x c1 (t) Molt. di N.L. H(f) n Comunicazioni elettriche A - Prof. Giulio Colavolpe Compito n. 3 3.1 Lo schema di Fig. 1 è un modulatore FM (a banda larga). L oscillatore che genera la portante per il modulatore FM e per la conversione

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Oscurare le facce nei video:

Oscurare le facce nei video: Oscurare le facce nei video: Maschere Questo mini howto e' stato scritto per preservare l'anonimato delle persone durante le manifestazioni. Questo tipo di documentazione viene prodotta in seguito ad svariate

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

8. Il radar ad apertura sintetica

8. Il radar ad apertura sintetica 8. Il radar ad apertura sintetica Il radar ad apertura sintetica (SAR Synthetic Aperture Radar) è stato sviluppato a partire dal 1951 in seguito alle osservazioni effettuate da Carl Wiley della Goodyear

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE

I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE I COLORI DEL CIELO: COME SI FORMANO LE IMMAGINI ASTRONOMICHE Nell ultima notte di osservazione abbiamo visto bellissime immagini della Galassia, delle sue stelle e delle nubi di gas che la compongono.

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Lezione 12: La visione robotica

Lezione 12: La visione robotica Robotica Robot Industriali e di Servizio Lezione 12: La visione robotica L'acquisizione dell'immagine L acquisizione dell immagine Sensori a tubo elettronico (Image-Orthicon, Plumbicon, Vidicon, ecc.)

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Preprocessamento dei Dati

Preprocessamento dei Dati Preprocessamento dei Dati Raramente i dati sperimentali sono pronti per essere utilizzati immediatamente per le fasi successive del processo di identificazione, a causa di: Offset e disturbi a bassa frequenza

Dettagli

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org.

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Nuovo documento Anteprima di stampa Annulla Galleria Apri Controllo ortografico Ripristina Sorgente dati Salva Controllo

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Prof. Ing. Alberto Pistocchi, Ing Davide Broccoli. Ing Stefano Bagli, PhD. Ing Paolo Mazzoli. Torino, 9-10 Ottobre 2013. Italian DHI Conference 2013

Prof. Ing. Alberto Pistocchi, Ing Davide Broccoli. Ing Stefano Bagli, PhD. Ing Paolo Mazzoli. Torino, 9-10 Ottobre 2013. Italian DHI Conference 2013 Implementazione di un modello dinamico 3D densità a dipendente all'interno di un sistema Web-GIS per la gestione e il monitoraggio della qualità delle acque di falda per un comparto di discariche Prof.

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

I sistemi di acquisizione dati

I sistemi di acquisizione dati I sistemi di acquisizione dati L'utilizzo dei computers, e dei PC in particolare, ha notevolmente aumentato la produttività delle attività sperimentali. Fenomeno fisico Sensore/ trasduttore Acquisizione

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i

x (x i ) (x 1, x 2, x 3 ) dx 1 + f x 2 dx 2 + f x 3 dx i x i NA. Operatore nabla Consideriamo una funzione scalare: f : A R, A R 3 differenziabile, di classe C (2) almeno. Il valore di questa funzione dipende dalle tre variabili: Il suo differenziale si scrive allora:

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

GUIDA ALLE SOLUZIONI

GUIDA ALLE SOLUZIONI La caratteristica delle trasmissioni digitali è " tutto o niente ": o il segnale è sufficiente, e quindi si riceve l'immagine, oppure è insufficiente, e allora l'immagine non c'è affatto. Non c'è quel

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Creazione di un disegno realistico con CorelDRAW

Creazione di un disegno realistico con CorelDRAW Creazione di un disegno realistico con CorelDRAW Hugo Hansen L'autore L'autore Hugo Hansen vive appena fuori dalla splendida città di Copenhagen. Esperto professionista nell'ambito del design grafico,

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

ELABORARE FILE AUDIO CON AUDACITY Tutorial per le prime funzionalità

ELABORARE FILE AUDIO CON AUDACITY Tutorial per le prime funzionalità ELABORARE FILE AUDIO CON AUDACITY Tutorial per le prime funzionalità INDICE 1. Caricare un file audio. p. 2 2. Riprodurre una traccia. p. 2 3. Tagliare una traccia... p. 3 4. Spostare una traccia. p. 3

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Esempi introduttivi Variabili casuali Eventi casuali e probabilità

Esempi introduttivi Variabili casuali Eventi casuali e probabilità Esempi introduttivi Esempio tipico di problema della meccanica razionale: traiettoria di un proiettile. Esempio tipico di problema idraulico: altezza d'acqua corrispondente a una portata assegnata. Come

Dettagli

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione Analisi del dominio: i sistemi per la localizzazione Definizione e implementazione del framework e risultati sperimentali e sviluppi futuri Tecniche di localizzazione Triangolazione Analisi della scena

Dettagli

1. Diodi. figura 1. figura 2

1. Diodi. figura 1. figura 2 1. Diodi 1.1. Funzionamento 1.1.1. Drogaggio 1.1.2. Campo elettrico di buil-in 1.1.3. Larghezza della zona di svuotamento 1.1.4. Curve caratteristiche Polarizzazione Polarizzazione diretta Polarizzazione

Dettagli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli Prefazione Non è facile definire che cosa è un problema inverso anche se, ogni giorno, facciamo delle operazioni mentali che sono dei metodi inversi: riconoscere i luoghi che attraversiamo quando andiamo

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori"

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori" slide a cura di Salvatore Orlando & Marta Simeoni " Architettura degli Elaboratori 1 Interi unsigned in base 2" Si utilizza un

Dettagli

NOTA APPLICATIVA IL METODO DEL PICCO PONDERATO NELLA VALUTAZIONE DELL ESPOSIZIONE UMANA AI CAMPI ELETTROMAGNETICI

NOTA APPLICATIVA IL METODO DEL PICCO PONDERATO NELLA VALUTAZIONE DELL ESPOSIZIONE UMANA AI CAMPI ELETTROMAGNETICI NOTA APPLICATIVA IL METODO DEL PICCO PONDERATO NELLA VALUTAZIONE DELL ESPOSIZIONE UMANA AI CAMPI ELETTROMAGNETICI Daniele Andreuccetti Alessandro Gandolfo Mario Monti Nicola Zoppetti Dicembre 2013 NOTA

Dettagli

METODO PER LA STESURA DI PROGRAMMI PER IL CENTRO DI LAVORO CNC

METODO PER LA STESURA DI PROGRAMMI PER IL CENTRO DI LAVORO CNC METODO PER LA STESURA DI PROGRAMMI PER IL CENTRO DI LAVORO CNC Riferimento al linguaggio di programmazione STANDARD ISO 6983 con integrazioni specifiche per il Controllo FANUC M21. RG - Settembre 2008

Dettagli

Appendice per dispositivi multifunzione Navico compatibili che supportano le seguenti funzionalità Broadband 4G Radar:

Appendice per dispositivi multifunzione Navico compatibili che supportano le seguenti funzionalità Broadband 4G Radar: Appendice per dispositivi multifunzione Navico compatibili che supportano le seguenti funzionalità Broadband 4G Radar: Doppio radar Doppia scala Controlli Radar 4G -Separazione - obiettivi -- Eliminazione

Dettagli

Teoria quantistica della conduzione nei solidi e modello a bande

Teoria quantistica della conduzione nei solidi e modello a bande Teoria quantistica della conduzione nei solidi e modello a bande Obiettivi - Descrivere il comportamento quantistico di un elettrone in un cristallo unidimensionale - Spiegare l origine delle bande di

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Bus di sistema. Bus di sistema

Bus di sistema. Bus di sistema Bus di sistema Permette la comunicazione (scambio di dati) tra i diversi dispositivi che costituiscono il calcolatore E costituito da un insieme di fili metallici che danno luogo ad un collegamento aperto

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

MAPPE IN DIMENSIONE UNO

MAPPE IN DIMENSIONE UNO ¾ MAPPE IN DIMENSIONE UNO Abbiamo visto come la sezione di Poincaré conduca in modo naturale alla considerazione di mappe definite mediante funzioni reali. In questo capitolo passiamo a discutere la dinamica

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo:

ALGORITMI 1 a Parte. di Ippolito Perlasca. Algoritmo: ALGORITMI 1 a Parte di Ippolito Perlasca Algoritmo: Insieme di regole che forniscono una sequenza di operazioni atte a risolvere un particolare problema (De Mauro) Procedimento che consente di ottenere

Dettagli

Heidi Gebauer Juraj Hromkovič Lucia Keller Ivana Kosírová Giovanni Serafini Björn Steffen. Programmare con LOGO

Heidi Gebauer Juraj Hromkovič Lucia Keller Ivana Kosírová Giovanni Serafini Björn Steffen. Programmare con LOGO Heidi Gebauer Juraj Hromkovič Lucia Keller Ivana Kosírová Giovanni Serafini Björn Steffen Programmare con LOGO 1 Istruzioni di base Un istruzione è un comando che il computer è in grado di capire e di

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

AUDIOSCOPE Mod. 2813-E - Guida all'uso. Rel. 1.0 DESCRIZIONE GENERALE.

AUDIOSCOPE Mod. 2813-E - Guida all'uso. Rel. 1.0 DESCRIZIONE GENERALE. 1 DESCRIZIONE GENERALE. DESCRIZIONE GENERALE. L'analizzatore di spettro Mod. 2813-E consente la visualizzazione, in ampiezza e frequenza, di segnali musicali di frequenza compresa tra 20Hz. e 20KHz. in

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione.

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 40: Filtro di Kalman - introduzione. Struttura ricorsiva della soluzione. IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 40: Filtro di Kalman - introduzione Cenni storici Filtro di Kalman e filtro di Wiener Formulazione del problema Struttura ricorsiva della soluzione

Dettagli