Corso di Architettura (Prof. Scarano) 25/03/2002

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Architettura (Prof. Scarano) 25/03/2002"

Transcript

1 Corso d rchtettura (Prof. Scarano) // Un quadro della stuazone Lezone Logca Dgtale (): Crcut combnator Vttoro Scarano rchtettura Corso d Lauren Informatca Unverstà degl Stud d Salerno Input/Output Regstr Memora Prncpale Sstema d Interconnessone Central Processng Unt Untà rtmetco Logca Interconnessone nterna alla CPU Untà d Controllo Dove samo progettazone d crcut dgtal: l sommatore Dove stamo andando.. Progettazone d altr crcut Perché: per poter progettare semplc component della CPU e comprendere l funzonamento d altre component Organzzazone della lezone Crcut combnator Crcut combnator Tecnche d realzzazone d crcut la forma somme d prodott la forma prodott d somme Multplexer Decodfcator Demultplexer rray a Logca programmable ROM: Read Only Memory Un crcuto combnatoro è un nseme d porte logche nterconnesse l cu output, n ogn stante, è funzone solo dell nput con n nput e m output Può essere defnto da: tavola d vertà: per ognuno delle n possbl combnazon n nput vene specfcato l valore degl m output smbol grafc: struttura d nterconnessone espresson booleane: ogn segnale d output vene espresso come una funzone booleana de suo segnal d output Tre rappresentazon pel sommatore (solo per ) n= nput e m= output + a r b a b s = abr + ab + ab r + a b r Progettazone d crcut Ogn funzone booleana può essere realzzata da una rete d porte logche (con dverse alternatve) Pass da segure: realzzare la tavola d vertà della funzone che s ntende realzzare dalla tavola d vertà arrvare alla espressone booleana mnmzzare la espressone booleana dalla espressone booleana progettare la rete Espresson booleane utlzzate: la forma come somma d prodott la forma come prodott d somme

2 Corso d rchtettura (Prof. Scarano) // La forma Somme d prodott (SDP) La forma Prodott d somme (PDS) Sa data la tavola d vertà: s può rcavare una espressone booleana elencando le combnazon de valor d, e C per cu l valore d è orma somma d prodott s elencano (n ND) le occorrenze delle varabl n nput che danno = le s unsce n un OR = C + C + C C Sa data la tavola d vertà: s può rcavare una espressone booleana elencando le combnazon de valor d, e C per cu l valore d è orma prodott d somme s elencano (n OR) le occorrenze delle varabl n nput che danno = le s unsce n un ND L dea: basta la occorrenza d uno d quest nput per rendere = = (+ + C)(+ + C)( + + C)( + + C)(+ + C C) lcun comment In generale: un crtero per sceglere se rappresentare una tavola d vertà (funzone) come somma d prodott oppure come prodotto d somme dpende dal numero d zer ed un della funzone Se c sono pù un: somma d prodott Se c sono pù zer: prodotto d somme E possble (n generale) avere forme pù compatte delle forme SDP o PDS C sono anche altr crter da tenere presente: semplctà: uso d una sola porta (NND o NOR) Mnmzzazone attraverso la semplfcazone algebrca Data la espressone n forma SDP che abbamo trovato per l esempo: = C + C + C Possamo osservare (da tavola d vertà) che è vera sse: = C + C + C = + C Che può essere scrtto come: = ( + C) Semplfcazone (NND) attraverso la semplfcazone algebrca Data la espressone: = ( + C) = + C voglamo trovare una espressone equvalente composta solo da operator NND pplchamo due volte la complementazone: = + C pplchamo la legge d De Morgan C = C Multplexer Crcuto combnatorale che permette d selezonare (tramte lnee d controllo) quale delle lnee d nput deve andare n output Un esempo d un multplexer a ve: D D a seconda de valor delle lnee d MUX a ve D controllo (S e S) una delle lnee S S dat (D,D, D, ) vene datn output su S S necessaro un codce d selezone D della lnea dat (tpcamente l valore D bnaro dell ndce della lnea dat) D

3 Corso d rchtettura (Prof. Scarano) // Esemp d output del multplexer Implementazone d un multplexer D D D D D D MUX a ve S S MUX a ve S S D D D D D D MUX a ve S S MUX a ve S S S S Per ogn possble valore d S e S solo un ND rceverà un n nput l valore n uscta dell ND sarà quello della lnea dat corrspondente Gl altr ND rcevono almeno uno e qund l loro valore n output sarà L OR fnale avrà l valore della unca porta ND con due un selezonata da S e S Esempo dellmplementazone S S Selezonamo n doppo le lnee con un qund segnal d controllo sono S= e S= ssumamo (per esempo) che le lnee dat abbano valore: D = D = D = = Il rsultato è che l unca porta ND che fa passare l valore della lnea dat è quella d D Crcuto con n nput e n output: una sola delle lnee d output sarà messa a TRUE n dpendenza dal valore bnaro che vene messo n nput S S a D D D S S S a D D D D D D D Implementazone d un decodfcatore Demultplexer Crcuto combnatorale che ha n lnee d controllo ed una lnea dat n nput n lnee d output Tramte le n lnee d controllo s selezona quale è la lnea d output su cu verrà dato n output la lnea dat S S Demultplexer a D D D S S D D D

4 Corso d rchtettura (Prof. Scarano) // Evoluzone della produzone In passato, su ogn crcuto ntegrato andavano poche porte (una decna) la realzzazone d crcut utlzzava quest crcut base desso l processo d produzone permette la realzzazone d moltssme porte su un sngolo crcuto Matrce logca programmable chp general-purpose possono realzzare forme SDP Programmable Logc rray (PL) Ogn nput del chp vene reso dsponble n forma vera ed n forma complementata (NOT) Ogn nput può essere collegato a qualsas porta ND L output d qualsas porta ND è collegable a qualsas porta OR Dmenson: esstono PL con - nput, - output Realzzazone d un crcuto ad hoc utlzzo d fusbl (che possono essere rmoss) su ogn ntersezone d lnea durante la fabbrcazone del chp Un PL a nput e output Un PL a nput e output che realzza due funzon specfche Read Only Memory (ROM) Progettazone d una ROM () I crcut combnatoral sono senza memora l output dpende esclusvamente dagl nput applcat Una Memora a sola lettura (Read Only Memory) memormmagazznata permanentemente dato un nput (ndrzzo della ROM) l output è sempre lo stesso qund sono mplementabl con crcut combnator Per progettare una ROM dobbamo avere una tavola d vertà che, per ogn ndrzzo (valore d nput) defnscl valore delle lnee d output (parola memorzzata nella ROM) Input Output

5 Corso d rchtettura (Prof. Scarano) // Progettazone d una ROM () Progettazone d una ROM () Esercz Problem Mostrare lmplementazone d un multplexer a ve Dmostrare che la espressone per la funzone (sul lbro ndcata come. a pag. ) n forma "somma d prodott" è equvalente alla forma "prodotto d somme" rcavata a lezone. Dmostrare la equvalenza tra la espressone d data dalla espressone. (p.) con la espressone. (p.) medante passagg algebrc. Realzzare una ROM con d dmensone e con valor a bt (M()=, M()=, M()=, M()=) Nel dagramma delle component d un sommatore (fg.. a pag. ), mostrare come è possble mplementare lo Swtch ndcato n fgura con un mutplexer a ve. ornendo lmplementazone d un decoder a ed una lnea dat addzonale n nput, mplementare (scrvere la rete combnatorale) un demultplexer.

ELETTRONICA dei SISTEMI DIGITALI Universita di Bologna, sede di Cesena. Fabio Campi

ELETTRONICA dei SISTEMI DIGITALI Universita di Bologna, sede di Cesena. Fabio Campi ELETTROICA de SISTEMI DIGITALI Unversta d Bologna, sede d Cesena Fabo Camp Aa 3-4 Artmetca Computazonale S studano possbl archtetture hardware (ASIC) per realzzare operazon Matematche su segnal compost

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

I generatori dipendenti o pilotati e gli amplificatori operazionali

I generatori dipendenti o pilotati e gli amplificatori operazionali 108 Lucano De Menna Corso d Elettrotecnca I generator dpendent o plotat e gl amplfcator operazonal Abbamo pù volte rcordato che generator fn ora ntrodott, d tensone e d corrente, vengono dett deal per

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

Premessa essa sulle soluzioni

Premessa essa sulle soluzioni Appunt d Chmca La composzone delle soluzon Premessa sulle soluzon...1 Concentrazone...2 Frazone molare...2 Molartà...3 Normaltà...4 Molaltà...4 Percentuale n peso...4 Percentuale n volume...5 Massa per

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

I simboli degli elementi di un circuito

I simboli degli elementi di un circuito I crcut elettrc Per mantenere attvo l flusso d carche all nterno d un conduttore, è necessaro che due estrem d un conduttore sano collegat tra loro n un crcuto elettrco. Le part prncpal d un crcuto elettrco

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Il dimensionamento dei sistemi di fabbricazione

Il dimensionamento dei sistemi di fabbricazione Il dmensonamento de sstem d fabbrcazone 1 Processo d progettazone d un sstema produttvo Anals della domanda Industralzzazone d prodotto e processo (dstnte e ccl d lavorazone) Scelta delle soluzon produttve

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Prof. Luigi Puccinelli IMPIANTI E SISTEMI AEROSPAZIALI CALCOLATORI DI BORDO

Prof. Luigi Puccinelli IMPIANTI E SISTEMI AEROSPAZIALI CALCOLATORI DI BORDO Prof. Lug Puccnell IMPIANTI E SISTEMI AEROSPAZIALI CALCOLATORI DI BORDO 2 Inzalmente basat su tecnche analogche ora quas esclusvamente dgtal Vantagg dgtal Maggore precsone Possbltà d modfca del comportamento

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

InfoCenter Product A PLM Application

InfoCenter Product A PLM Application genes d un fra o Gestone de crcolazone dell'nformazone sa crcoscrtta entro Pdetermnat ambt settoral. L'ntegrazone de sstem e de odpartment azendal rchede nuove modaltà operatve, nuove t competenze e nuov

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

Unità Didattica N 5. Impulso e quantità di moto

Unità Didattica N 5. Impulso e quantità di moto Imnpulso e quanttà d moto - - Impulso e quanttà d moto ) Sstema solato : orze nterne ed esterne...pag. 2 2) Impulso e quanttà d moto...pag. 3 3) Teorema d conservazone della quanttà d moto...pag. 6 4)

Dettagli

Telefoni Avaya T3 collegabile a Integral 5 Configurazione e utilizzo sala conferenze Integrazione del manuale utente

Telefoni Avaya T3 collegabile a Integral 5 Configurazione e utilizzo sala conferenze Integrazione del manuale utente Telefon Avaya T3 collegable a Integral 5 Confgurazone e utlzzo sala conferenze Integrazone del manuale utente Issue 1 Integral 5 Software Release 2.6 Settembre 2009 Utlzzo sala conferenze Utlzzo sala conferenze

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri Segmentazone tramte modell ad hoc Indvduazone d lnee e curve Obbettvo: Data l mmagne d output d un algortmo d rlevamento d bord, trova tutte le stanze d una certa curva (lnea o ellss) o una sua parte.

Dettagli

Hansard OnLine. Unit Fund Centre Guida

Hansard OnLine. Unit Fund Centre Guida Hansard OnLne Unt Fund Centre Guda Sommaro Pagna Introduzone al Unt Fund Centre (UFC) 3 Uso de fltr per la selezone de fond 4-5 Lavorare con rsultat del fltro 6 Lavorare con rsultat del fltro - Prezz 7

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I.

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I. Eserctazone ottobre 0 Trasformazon crcutal Sere e parallelo S consderno crcut n Fg e che rappresentano rspettvamente un parttore d tensone e uno d corrente v v v v Fg : Parttore d tensone Fg : Parttore

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Il diagramma PSICROMETRICO

Il diagramma PSICROMETRICO Il dagramma PSICROMETRICO I dagramm pscrometrc vengono molto utlzzat nel dmensonamento degl mpant d condzonamento dell ara, n quanto consentono d determnare n modo facle e rapdo le grandezze d stato dell

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Soluzione esercizio Mountbatten

Soluzione esercizio Mountbatten Soluzone eserczo Mountbatten I dat fornt nel testo fanno desumere che la Mountbatten utlzz un sstema d Actvty Based Costng. 1. Calcolo del costo peno ndustrale de tre prodott Per calcolare l costo peno

Dettagli

1. DESCRIZIONE GENERALE

1. DESCRIZIONE GENERALE 1. DESCRIZIONE GENERALE 1.1 Premessa L ntervento oggetto della presente relazone tecnca rguarda l mpanto d rvelazone e segnalazone ncend da realzzare a servzo del locale archvo dell edfco scolastco sto

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso d Economa Applcata a.a. 2007-08 II modulo 16 Lezone Programma 16 lezone Democraza rappresentatva e nformazone Rcaptolando L agenza e l mercato (Arrow, 1986) Lezone 16 2 Introduzone Governo e Parlamento

Dettagli

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO

IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO IL MAGNETISMO IL CAMPO MAGNETICO E ALTRI FENOMENI GSCATULLO ( Il Magnetsmo La forze magnetca La forza Gà a temp d Talete (VI secolo a.c.), nell Antca Greca, era noto un mnerale d ferro n grado d attrare

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestone della produzone e della supply chan Logstca dstrbutva Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Un algortmo per l flusso su ret a costo mnmo: l smplesso su ret Convergenza

Dettagli

PERDITE DI POTENZA NEI TRASFORMATORI Prof.

PERDITE DI POTENZA NEI TRASFORMATORI    Prof. EDITE DI OTENZA NEI TASFOATOI www.elettrone.altervsta.org www.proessore.mypoast.com www.marcochrzz.blogspot.com ro. arco Chrzz EESSA Il trasormatore è una mchna elettrca statca, coè prva d part n movmento.

Dettagli

Appunti sulle curve di Bézier

Appunti sulle curve di Bézier Appunt sulle curve d Bézer Marco Barbato 1 Ottobre 2000 Abstract Vengono delneat n modo elementare gl argoment matematc alla base delle curve d Bézer e la loro mplementazone ne software tool d svluppo

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Appunti di statistica descrittiva Versione provvisoria

Appunti di statistica descrittiva Versione provvisoria Alessandro Benedett UnCAM-SSIS-FIM.04/3 Appunt d statstca descrttva Versone provvsora (v. allegato foglo Excel LDS4_Correlazone.xls) Correlazone e Regressone lneare La teora della correlazone s propone

Dettagli

Sviluppo delle lamiere

Sviluppo delle lamiere Svluppo delle lamere Per ottenere un prodotto fnto d lamera pegata è fondamentale calcolare lo svluppo dell elemento prma d essere pegato. I CAD 3D usano l fattore neutro. AUTORE: Grazano Bonett Svluppo

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti

I circuiti digitali: dalle funzioni logiche ai circuiti rchitettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff.. orghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II.

Corso di Logica I. Modulo sul Calcolo dei Sequenti. Dispensa Lezione II. Corso d Logca I. Modulo sul Calcolo de Sequent. Dspensa Lezone II. Govann Casn Teorema d corrspondenza fra l calcolo su sequent SND e l calcolo de sequent SC. Rproponamo per esteso la dmostrazone della

Dettagli

le macchine digitali Programma e Prove d esame 7: Reti sincrone 6: Reti asincrone Saper fare 5: Reti combinatorie

le macchine digitali Programma e Prove d esame 7: Reti sincrone 6: Reti asincrone Saper fare 5: Reti combinatorie 1 RETI OGICHE nsegna a descrvere ed a progettare.. Macchne dgtal - Sstem artfcal che mpegano grandezze fsche con un numero fnto d valor per rappresentare ed elaborare nformazon ug D Stefano Roberto asch

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO

INTRODUZIONE ALL ESPERIENZA 4: STUDIO DELLA POLARIZZAZIONE MEDIANTE LAMINE DI RITARDO INTODUZION ALL SPINZA 4: STUDIO DLLA POLAIZZAZION DIANT LAIN DI ITADO Un utle rappresentazone su come agscono le lamne su fasc coerent è ottenuta utlzzando vettor e le matrc d Jones. Vettore d Jones e

Dettagli

Laboratorio di Informatica I

Laboratorio di Informatica I Struttura della lezone Lezone 1: Introduzone al Lnguaggo C Vttoro Scarano Laboratoro d Informatca I Corso d Laurea n Informatca Introduzone al corso Il lnguaggo d programmazone C Svluppo e caratterstche

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabltà pr - 1 Che collegamento c è tra gl strument statstc per lo studo de fenomen real e l calcolo delle probabltà? Vedremo che non sempre la conoscenza delle caratterstche d un fenomeno

Dettagli

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Controllo e scheduling delle operazioni. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Controllo e schedulng delle operazon Paolo Dett Dpartmento d Ingegnera dell Informazone Unverstà d Sena Organzzazone della produzone PRODOTTO che cosa ch ORGANIZZAZIONE PROCESSO come FLUSSO DI PRODUZIONE

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 10: 6-7 Maggio Meccanismi con Pagamenti: Applicazioni e Limiti

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 10: 6-7 Maggio Meccanismi con Pagamenti: Applicazioni e Limiti trument della Teora de Goch per l Informatca A.A. 2009/0 Lecture 0: 6-7 Maggo 200 Meccansm con Pagament: Applcazon e Lmt ocente Paolo Penna Note redatte da: Paolo Penna Lezone precedente Funzon d scelta

Dettagli

CHE COS E LA COMPLESSITA

CHE COS E LA COMPLESSITA CHE COS E LA COMPLESSITA E un termne d moda, ambguo perché rcco d sgnfcat nterdscplnar, a volte mpropramente usato sa n campo scentfco, che nel lnguaggo colloquale, gornalstco e d costume Inter centr d

Dettagli

Metodologia per l individuazione di aree e linee critiche sulla rete in alta e altissima tensione ai sensi della delibera ARG/elt 99/08 e s.m.i.

Metodologia per l individuazione di aree e linee critiche sulla rete in alta e altissima tensione ai sensi della delibera ARG/elt 99/08 e s.m.i. ag. 1 d 6 Metodologa per l ndvduazone d aree e lnee crtche sulla rete n a e ssma tensone a sens della delbera RG/elt 99/08 e s.m.. SOMMRIO 1. Rerment... 2 2. remessa... 2 3. Ipotes... 2 4. Metodologa...

Dettagli

1 - Oscillatori: Generalità. Verranno illustrati in questo capitolo due tipi di oscillatori:

1 - Oscillatori: Generalità. Verranno illustrati in questo capitolo due tipi di oscillatori: Oscllator: Generaltà Verranno llustrat n questo captolo due tp d oscllator: a) Oscllatore con Trgger d Schmtt b) Oscllatore con NE555. Trgger d schmtt L ampop vene reazonato postvamente tramte le resstenze

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): C.d.L. Scenze e ecnologe grare,.. 2015/2016, Fsca Gas deale (perfetto): non esste n realtà drogeno e elo assomglano d pù a un gas deale - le molecole sono puntform; - nteragscono tra loro e con le paret

Dettagli

Induttori e induttanza

Induttori e induttanza Induttor e nduttanza Un nduttore o nduttanza è un dspostvo elettronco che mmagazzna energa sottoforma d campo magnetco così come l condensatore mmagazzna energa sotto forma d campo elettrco. Il flusso

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplfcator operazonal Parte www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal

Dettagli

Questo è il secondo di una serie di articoli, di

Questo è il secondo di una serie di articoli, di DENTRO LA SCATOLA Rubrca a cura d Fabo A. Schreber Il Consglo Scentfco della rvsta ha pensato d attuare un nzatva culturalmente utle presentando n ogn numero d Mondo Dgtale un argomento fondante per l

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1 L EQUILIBRIO LEQU L Corpo rgdo Centro d massa Equlbro Coppa d forze Momento d una forza Condzon d equlbro Leve pag.1 Corpo esteso so e corpo rgdo Punto materale: corpo senza dmenson (approx.deale) Corpo

Dettagli

LA CONVERSIONE STATICA ELETTRICA/ELETTRICA

LA CONVERSIONE STATICA ELETTRICA/ELETTRICA A COVERSIOE STATICA EETTRICA/EETTRICA a conversone statca elettrca/elettrca può avvenre n due mod: converttor statc a semconduttor dspostv elettromagnetc (trasformator) I a conversone statca elettrca/elettrca

Dettagli

FUNZIONI LOGICHE FORME CANONICHE SP E PS

FUNZIONI LOGICHE FORME CANONICHE SP E PS FUNZIONI LOGICHE FORME CANONICHE SP E PS Ua fuzoe logca può essere espressa quattro forme: 1. attraverso ua proposzoe logca; 2. attraverso ua tabella della vertà; 3. attraverso u espressoe algebrca; 4.

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G.

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G. Problema 1 S consderno le funzon f e g defnte, per tutt gl x real, da: f ( x) = x 3 4 x, g( x) = sn( π x) 1. Fssato un convenente sstema d rfermento cartesano Oxy s studno le funzon f e g e se ne dsegnno

Dettagli

Newsletter "Lean Production" Autore: Dott. Silvio Marzo

Newsletter Lean Production Autore: Dott. Silvio Marzo Il concetto d "Produzone Snella" (Lean Producton) s sta rapdamente mponendo come uno degl strument pù modern ed effcac per garantre alle azende la flessbltà e la compettvtà che l moderno mercato rchede.

Dettagli

Stage estivo 2004 L. Lucci, A. Giacomini, R. Botti, R. Vaccaro, L. Contiguglia, U. Sassi, M. Battisti Penta

Stage estivo 2004 L. Lucci, A. Giacomini, R. Botti, R. Vaccaro, L. Contiguglia, U. Sassi, M. Battisti Penta Stage estvo 4 L. Lucc, A. Gacomn, R. Bott, R. accaro, L. Contgugla, U. Sass, M. Battst Penta Tutor LNF G. Corrad & D. Lenc I programm d smulazone crcutale costtuscono uno strumento d fondamentale utltà

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Impresa Familiare - Quadro RR

Impresa Familiare - Quadro RR HELP DESK Nota Salvatempo 0005 MODULO Impresa Famlare - Quadro RR Quando serve Novtà Termn presentazone Gestre n modo veloce ed ntegrato l Quadro RR n caso d Impresa famlare. Rportare sulla delega del

Dettagli

Progetto di una intersezione stradale semaforizzata

Progetto di una intersezione stradale semaforizzata Paolo Martns Preone, 10.07.2004 Unverstà degl Stud d Treste Facoltà d Ingegnera Corso d Panfcazone de Trasport Prof. Govann Longo Anno Accademco 2003-2004 Progetto d una ntersezone stradale semaforzzata

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli