TSP con eliminazione di sottocicli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TSP con eliminazione di sottocicli"

Transcript

1 TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: (la matrice delle distanze è simmetrica). Formulare un modello di PLI e proporre un programma in AMPL che risolva il problema. Approfondimento (opzionale) Si parli di un possibile approccio euristico per la soluzione del TSP, considerando che sulla matrice delle distanze vale la disuguaglianza triangolare. Documento preparato da Leo Liberti

2 Soluzione Formalizziamo il problema come un grafo diretto completo G(V, A) dove V sono i clienti e A sono tutti gli archi possibili tra i nodi in V. I pesi sugli archi sono le distanze tra i clienti. Si deve cercare un cammino di peso minimo che tocchi tutti i nodi una e una sola volta. Formulazione Parametri:. sia V l insieme dei clienti da visitare;. per ogni i, j V sia d ij la distanza tra il cliente i e il cliente j. Variabili: per ogni i j V, sia x ij = se il commesso viaggia direttamente tra i e j, e 0 altrimenti (x ij {0, ). Funzione obiettivo: min i j V d ij x ij. Vincoli: x ij = i V (solo un successore) j V,j i i V,i j i S,j V \S x ij = j V (solo un predecessore) x ij S V (nessun sottociclo) x ij {0, i j V. L ultimo vincolo dice che per ogni partizione dei vertici, ci dev essere almeno un arco nel taglio corrispondente. Questo impedisce la formazione di sottocicli non triviali (che ovviamente definirebbero una partizione dei vertici con un taglio associato vuoto). Dato che il numero dei sottoinsiemi propri S di un insieme V è un numero esponenziale nella cardinalità di V, la dimensione di un istanza del problema esposto sopra è esponenziale (e dunque non accettabile). Bisogna dunque adottare un opportuna strategia di soluzione. Inizialmente, il problema viene rilassato cancellando completamente il vincolo nessun sottociclo (in tal modo la dimensione dell istanza è polinomiale). Il rilassamento ottenuto viene risolto tramite le comuni tecniche di PLI. La soluzione trovata può non essere ammissibile per il vincolo nessun sottociclo : ovvero, potrebbero esserci dei sottocicli non banali. Cerchiamo quindi il sottociclo più piccolo, inseriamo nel problema rilassato un solo vincolo della classe di vincoli nessun sottociclo in modo che il sottociclo trovato venga rotto, e ri-ottimizziamo il problema. Si continua iterativamente finché la soluzione non presenta più alcun sottociclo. A quel punto la soluzione trovata è quella ottima. Documento preparato da Leo Liberti

3 Tentiamo prima un approccio manuale alla generazione dei cicli da rompere. Risolviamo prima il modello seguente. Modello AMPL # modello per tsp param n > 0, integer; set V :=..n; param d{v,v >= 0; param numerocicli >= 0, integer, default 0; set ciclo{..numerocicli; var x{v,v binary; minimize costociclo : sum{i in V, j in V : i!= j d[i,j]*x[i,j]; subject to successore {i in V : sum{j in V : i!= j x[i,j] = ; subject to predecessore {j in V : sum{i in V : i!= j x[i,j] = ; subject to nocicli {k in..numerocicli : sum{i in ciclo[k], j in V diff ciclo[k] x[i,j] >= ; Dati AMPL # tsp.dat param n := 7; param d : := ; Per risolverlo, usiamo il seguente file.run, in cui si inizializza la matrice delle distanze in modo che sia simmetrica. Algoritmo AMPL: file tsp-simple.run # leggi modello e dati model tsp.mod; data tsp.dat; # rendi simmetrica la matrice delle distanze for {i in V, j in V : i > j { let d[i,j] := d[j,i]; # risolvi option solver cplex; solve; # stampa display costociclo; display x; Si noti che siccome ciclo e inizializzato a una lista di insiemi vuoti, i vincoli di rottura dei sottocicli di fatto non sono stati inseriti. Otteniamo la soluzione seguente, che corrisponde infatti a tre cicli distinti: (, 3, 5, ), (,, ) e (, 7, ). Soluzione CPLEX (non ottima) Documento preparato da Leo Liberti 3

4 costociclo = 37 x [*,*] : := ; In pratica, abbiamo la situazione come nella figura qui sotto Aggiungiamo perciò un vincolo di rottura del sottociclo (, 3, 5, ) al modello: per S = {, 3, 5 si impone i S,j V \S x ij. In AMPL, è sufficiente aggiungere le istruzioni seguenti nel file tsp-simple.run, prima dell istruzione solve;, e risolvere nuovamente il modello lanciando ampl < tsp-simple.run. let numerocicli := ; let ciclo[] := {, 3, 5 ; Si ottiene la soluzione seguente, che essendo un ciclo Hamiltoniano, è ottima. Soluzione CPLEX (ottima) costociclo = 53 x [*,*] : := ; La ciclo Hamiltoniano ottimo è (,,, 7,, 3, 5, ), raffigurato sotto. In generale, la soluzione non è unica (possono esistere più cicli Hamiltoniani con lo stesso costo), quindi si potrebbe trovare una soluzione diversa da questa Documento preparato da Leo Liberti

5 Descriviamo ora un algoritmo in AMPL per la generazione automatica dei sottocicli da rompere (per eseguirlo, usare il comando ampl < tsp.run). Algoritmo AMPL: file tsp.run # tsp.run - algoritmo per la rottura dei sottocicli # usa cplex e non stampare i messaggi del solutore numerico option solver cplex; option solver_msg 0; # leggi modello e dati model tsp.mod; data tsp.dat; let numerocicli := 0; # strutture dati per l algoritmo param nodosuccessore{v >= 0, integer; param nodocorrente >= 0, integer; # rendi simmetrica la matrice delle distanze for {i in V, j in V : i > j { let d[i,j] := d[j,i]; # algoritmo: risolvi il modello senza vincoli di rottura # dei sottocicli, trova un sottociclo, aggiungi il vincolo # corrispondente, e quando non esistono piu sottocicli propri, esci param termination binary; let termination := 0; repeat while (termination = 0) { # risolvi il problema solve; let numerocicli := numerocicli + ; # trova i successori di ogni nodo for {i in V { let nodosuccessore[i] := sum{j in V : j!= i j * x[i,j]; # trova un sottociclo let nodocorrente := ; let ciclo[numerocicli] := {; repeat { let ciclo[numerocicli] := ciclo[numerocicli] union {nodocorrente; let nodocorrente := nodosuccessore[nodocorrente]; until (nodocorrente = ); # stampa il sottociclo che vogliamo rompere printf "ciclo: ("; for {i in ciclo[numerocicli] { printf "%d, ", i ; printf ")\n"; # verifica se si puo terminare if (card(ciclo[numerocicli]) >= n) then { # se il sottociclo include tutti i nodi e Hamiltoniano, esci let termination := ; Documento preparato da Leo Liberti 5

6 printf "costo del ciclo hamiltoniano minimo: %d\n", costociclo; Soluzione numerica ciclo: (, 3, 5, ) ciclo: (,,, 7,, 3, 5, ) costo del ciclo hamiltoniano minimo: 53 Documento preparato da Leo Liberti

7 Approfondimento: Soluzione Euristica Per la soluzione euristica, si consideri l euristica 3 -approssimata per il TSP metrico (cioè la cui matrice delle distanze rispetta la disuguaglianza triangolare) ideata da Christofides. L euristica costruisce un ciclo Hamiltoniano (o tour) nel modo seguente.. Si costruisce un albero di supporto di costo minimo T nel grafo G.. Si costruisce un matching M di costo minimo tra i vertici del grafo che hanno cardinalità dispari in T. 3. Si forma un ciclo Euleriano che consiste dell unione di T e M (l unione è un ciclo Euleriano perché per costruzione ogni nodo ha un numero pari di lati adiacenti).. Per ogni vertice v tale che δ(v) (T M) > (ovvero per ogni v da cui si dipartono più di lati di T e M), si contraggono tutte le coppie di lati adiacenti a v tranne una. L operazione di contrazione di una coppia di lati {u, v, {v, w consiste nel sostituire questi lati con il lato {u, w (l operazione è sempre possibile perché il grafo è completo). Effettuando quest operazione per tutte le coppie di lati adiacenti a v tranne una, si rispettano i vincoli di predecessore e successore, perché v a quel punto avrà esattamente lati adiacenti. Si dimostra in modo piuttosto semplice che l euristica di Christofides è 3 -approssimata. Sia c il costo del tour prodotto dall euristica di Christofides, c il costo del tour ottimale, e c(f ) = (i,j) F d ij il costo di un insieme di archi F. Ogni tour, compreso quello ottimale, è un albero unito a un lato; perciò c(t ) c. D altro canto, ogni tour è anche un - matching (ogni vertice è assegnato al proprio successore e al proprio predecessore), quindi c(m) c. Si ha perciò che c(t M) c(t ) + c(m) c + c. Per la disuguaglianza triangolare, c c(t M), e quindi c 3 c, come volevasi dimostrare. Applichiamo ora l euristica di Christofides all istanza in questione. Le figure sotto rappresentano: il grafo originale, l albero di supporto di costo minimo, il matching di costo minimo tra vertici di stella con cardinalità dispari, e l unione dei due a formare un ciclo Euleriano. Si noti tuttavia che in questa particolare istanza tutti i nodi hanno già grado, quindi il ciclo è già Hamiltoniano. Il costo del ciclo ottenuto con quest euristica è 53, e quindi in questo caso l euristica trova un ciclo Hamiltoniano di costo minimo. Un algoritmo che risolve un problema di minimizzazione è k-approssimato se produce una soluzione con costo f tale che f kf, dove f è la soluzione ottima. Documento preparato da Leo Liberti 7

8 5 / 50 / 9 0 original graph / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure : Il grafo originale. 5 / 50 / 9 0 sptree cost = 8 / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure : L albero di costo minimo. Documento preparato da Leo Liberti 8

9 5 / 50 / 9 0 matching cost: 9 / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure 3: Il matching di costo minimo tra vertici di grado dispari. 5 / 50 / 9 0 tour cost: 53 / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure : Unione di albero e matching (soluzione approssimata). Documento preparato da Leo Liberti 9

10 5 / 50 / 9 0 optimal tour cost: 53 / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure 5: La soluzione ottimale (uguale, in questo caso, a quella approssimata). Documento preparato da Leo Liberti 0

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Problema del Trasporto. Container vuoti Verona 10 Perugia 12 Roma 20 Pescara 24 Taranto 18 Lamezia 40

Problema del Trasporto. Container vuoti Verona 10 Perugia 12 Roma 20 Pescara 24 Taranto 18 Lamezia 40 Problema del Trasporto Una ditta di trasporto deve trasferire container vuoti dai propri 6 Magazzini, situati a Verona, Perugia, Roma, Pescara, Taranto e Lamezia, ai principali Porti nazionali (Genova,

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2009-2010 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università di Roma La Sapienza Dipartimento di Informatica e

Dettagli

Problema della produzione dei monitor

Problema della produzione dei monitor Problema della produzione dei monitor Una azienda produce monitor per PC in tre diversi stabilimenti. Il costo di produzione di ciascun monitor varia a causa della diversa efficienza produttiva degli stabilimenti.

Dettagli

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna 9 Algoritmi Euristici introduzione Vittorio Maniezzo Università di Bologna 1 Molti problemi reali richiedono soluzioni algoritmiche I camion devono essere instradati VRP, NP-hard I depositi o i punti di

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore ITTS Vito Volterra Progetto ABACUS Ottimizzazione combinatoria Il problema del commesso viaggiatore Studente: Davide Talon Esame di stato 2013 Anno scolastico 2012-2013 Indice 1. Introduzione........................................

Dettagli

Introduzione. AMPL Introduzione. F. Rinaldi. Dipartimento di Matematica Università di Padova. Corso di Laurea Matematica. F. Rinaldi AMPL Introduzione

Introduzione. AMPL Introduzione. F. Rinaldi. Dipartimento di Matematica Università di Padova. Corso di Laurea Matematica. F. Rinaldi AMPL Introduzione Dipartimento di Matematica Università di Padova Corso di Laurea Matematica Outline Introduzione Utilizzo di un Solver Definizione Un solver (o risolutore) è un software che riceve in input una descrizione

Dettagli

Gestione Impresa. Mese 1 2 3 4 5 6 Unità richieste 700 600 500 800 900 800

Gestione Impresa. Mese 1 2 3 4 5 6 Unità richieste 700 600 500 800 900 800 Gestione Impresa Un impresa di produzione produce un solo tipo di merce. Ci sono 40 operai, ciascuno dei quali produce 20 unità di merce al mese. La domanda fluttua nel corso di un semestre secondo la

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Pianificazione di Produzione in DEC

Pianificazione di Produzione in DEC Pianificazione di Produzione in DEC L esempio considerato qui è un problema reale che la Digital Equipment Corporation (DEC) ha dovuto affrontare nell autunno del 1988 per preparare la pianificazione di

Dettagli

Linguaggi di modellizzazione

Linguaggi di modellizzazione p. 1/5 Linguaggi di modellizzazione Come visto, il primo passo per risolvere un problema di decisione consiste nel formularne il modello matematico. Una volta definito il modello matematico lo dobbiamo

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

Progetto e ottimizzazione di reti 2

Progetto e ottimizzazione di reti 2 Progetto e ottimizzazione di reti 2 Esercitazione AMPL A.A. 29-2 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma.it Università di Roma La Sapienza Dipartimento di Informatica

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura

Dettagli

Algoritmi enumerativi

Algoritmi enumerativi Capitolo 7 Algoritmi enumerativi Come abbiamo visto, né gli algoritmi greedy né quelli basati sulla ricerca locale sono in grado, in molti casi, di garantire l ottimalità della soluzione trovata. Nel caso

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Dalla teoria alla soluzione Ilario Filippini 2 Approccio euristico 3 Obiettivo dell approccio euristico 4 Tipi di euristiche Dalla teoria alla soluzione

Dettagli

Miscelazione di benzine

Miscelazione di benzine Miscelazione di benzine Una raffineria deve miscelare 4 tipi di petrolio grezzo per ottenere 3 tipi di benzina. La tabella seguente mostra la massima quantità disponibile per ogni tipo di petrolio grezzo

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Contenuto e scopo presentazione. Node Routing. Applicazioni. Il problema del commesso viaggiatore

Contenuto e scopo presentazione. Node Routing. Applicazioni. Il problema del commesso viaggiatore ontenuto e scopo presentazione Node Routing ontenuto vengono introdotti modelli e metodi per problemi di ommesso Viaggiatore: Traveling Salesman Problem (TSP) enni di TSP e VRP Scopo fornire strumenti

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Appunti di Logistica. F. Mason E. Moretti F. Piccinonno

Appunti di Logistica. F. Mason E. Moretti F. Piccinonno Appunti di Logistica F. Mason E. Moretti F. Piccinonno 2 1 Introduzione La Logistica è una disciplina molto vasta che, in prima approssimazione, si suddivide in logistica interna (alle aziende) e logistica

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 20/202 Lezione 6-8 Rappresentazione di funzioni non lineari: - Costi fissi - Funzioni lineari a tratti Funzioni obiettivo non lineari:

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Fondamenti di Ricerca Operativa

Fondamenti di Ricerca Operativa Politecnico di Milano Anno Accademico 2010/2011 Fondamenti di Ricerca Operativa Corso del Prof. Edoardo Amaldi Stefano Invernizzi Facoltà di Ingegneria dell Informazione Corso di Laurea Magistrale in Ingegneria

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Schedulazione delle attività di un progetto in presenza di multi-calendari e di vincoli sulle risorse

Schedulazione delle attività di un progetto in presenza di multi-calendari e di vincoli sulle risorse Schedulazione delle attività di un progetto in presenza di multi-calendari e di vincoli sulle risorse Maria Silvia Pini Resp. accademico: Prof.ssa Francesca Rossi Università di Padova Attività FSE DGR

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Breve guida all uso di AMPL

Breve guida all uso di AMPL Breve guida all uso di AMPL Renato Bruni AMPL (A Modeling Language for Mathematical Programming) è un linguaggio di modellazione per la programmazione matematica. Serve ad esprimere un problema di ottimizzazione

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

1. Classificazione delle risorse

1. Classificazione delle risorse 1. Classificazione delle risorse Classificazione delle risorse in base alla disponibilità. - Risorse rinnovabili Sono risorse utilizzate per l esecuzione di una attività per tutta la sua durata, ma sono

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Esercizi Capitolo 14 - Algoritmi Greedy

Esercizi Capitolo 14 - Algoritmi Greedy Esercizi Capitolo 14 - Algoritmi Greedy Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

DNA sequence alignment

DNA sequence alignment DNA sequence alignment - Introduzione: un possibile modello per rappresentare il DNA. Il DNA (Acido desossiribonucleico) è una sostanza presente nei nuclei cellulari, sia vegetali che animali; a questo

Dettagli

Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore

Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore Ascensore Ricerca Automatica Esercitazione In un grattacielo ci sono coppie formate da marito e moglie. Il cancello delle scale viene chiuso e l unico modo per scendere è con l ascensore che può portare

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Relazione sul progetto di Column Generation per il problema dei P-Centri in linguaggio OPL

Relazione sul progetto di Column Generation per il problema dei P-Centri in linguaggio OPL UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Scienze Naturali, Fisiche e Matematiche Corso di Laurea Magistrale in Informatica Corso di Complementi di Ricerca Operativa Professor Marco Trubian Relazione

Dettagli

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006)

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006) Claudio Arbib Universitàdi L Aquila Ricerca Operativa Problemi combinatorici (Gennaio 2006) Sommario Problemi combinatorici Ottimizzazione combinatoria L algoritmo universale Il metodo greedy Problemi

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Appunti di introduzione alla Ricerca Operativa

Appunti di introduzione alla Ricerca Operativa G r a fi e r e t i d i flu s s o Modelli su grafi e reti di flusso Una vasta classe di problemi di notevole rilevanza pratica può venire modellata tramite grafi o reti di flusso. In questo capitolo svilupperemo

Dettagli

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI.

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. 1. ABSTRACT In questo progetto si intende costruire un sistema di sorveglianza mediante l uso di robot mobili. L idea base è quella di usare

Dettagli

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2 3.1 Ottimizzazione lungo direzioni coniugate. Risolvere il seguente problema: minimize f(x 1,x 2 ) = 12x 2 + 4x 2 1 + 4x 2 2 4x 1 x 2 manualmente, utilizzando il metodo delle direzioni coniugate: determinare

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

Complessità e Approssimazione

Complessità e Approssimazione 1 Complessità e Approssimazione Corso di Laurea in Scienze dell'informazione Corso di Laurea Specialistica in Matematica Docente: Mauro Leoncini 2 Aspetti organizzativi Sito web: http://algo.ing.unimo.it/people/mauro

Dettagli

3. Gli algoritmi di ottimizzazione.

3. Gli algoritmi di ottimizzazione. Marcello Salmeri - Progettazione Automatica di Circuiti e Sistemi Elettronici Capitolo 3-3. Gli algoritmi di ottimizzazione. I grafi. La teoria dei grafi è un comodo strumento per la definizione e la formalizzazione

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri Stima di parametri Il gestore di un sito turistico dove si pratica il bungee-jumping deve fornire alla sovrintendenza municipale un documento che riguarda la sicurezza del servizio fornito. Il documento

Dettagli

Progetto e Ottimizzazione di Reti 1. Presentazione del Corso

Progetto e Ottimizzazione di Reti 1. Presentazione del Corso Progetto e Ottimizzazione di Reti 1. Presentazione del Corso PAOLO NOBILI (M-Z) ANTONIO SASSANO (A-L) Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Corso di Laurea in Ingegneria

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

AMPL Plus: Introduzione all uso

AMPL Plus: Introduzione all uso AMPL Plus: Introduzione all uso A cura di Renato Bruni, Giovanni Fasano, Giampaolo Liuzzi, Sara Mattia Preliminari In questa breve introduzione verranno chiariti alcuni aspetti di base relativi all uso

Dettagli

Modelli di scheduling su macchina singola. relazione alle macchine che devono eseguire le varie operazioni, allora ogni singola macchina nello shop è

Modelli di scheduling su macchina singola. relazione alle macchine che devono eseguire le varie operazioni, allora ogni singola macchina nello shop è . Modello base Consideriamo il caso in cui ogni job consiste di una sola operazione. Poiché un insieme di job è partizionato in relazione alle macchine che devono eseguire le varie operazioni, allora ogni

Dettagli

Appendice D Soluzioni degli esercizi proposti

Appendice D Soluzioni degli esercizi proposti Appendice D Soluzioni degli esercizi proposti Capitolo 1 1. Si occupa di metodologie per la soluzione di problemi decisionali complessi. 2. È un problema che possiede diverse alternative (o soluzioni)

Dettagli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Ricerca Operativa 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi (come

Dettagli

La macchina di Turing (Alan Turing, 1936)*

La macchina di Turing (Alan Turing, 1936)* DNA-computing La macchina di Turing (Alan Turing, 1936)* Un meccanismo (finite control) si muove tra una coppia di nastri:. legge le istruzioni da un nastro (input tape). scrive il risultato sull altro

Dettagli

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching POLITECNICO DI TORINO I Facoltà di Ingegneria Corso di Laurea in Matematica per le Scienze dell Ingegneria Tesi di Laurea Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local

Dettagli

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Pre-appello del 15 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché

Dettagli

Grafi. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria Università di Bologna. moreno.marzolla@unibo.it http://www.moreno.marzolla.

Grafi. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria Università di Bologna. moreno.marzolla@unibo.it http://www.moreno.marzolla. Grafi Moreno Marzolla ip. di Informatica Scienza e Ingegneria Università di ologna moreno.marzolla@unibo.it http://www.moreno.marzolla.name/ opyright lberto Montresor, Università di Trento, Italy (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

40 Algoritmi sui Grafi

40 Algoritmi sui Grafi Università degli Studi di Napoli Parthenope Corso di Laurea in Informatica A.A 2014/15 PROGETTO PROGRAMMAZIONE III 40 Algoritmi sui Grafi Relatore: Prof. Raffaele Montella Studente: Diego Parlato Matricola:

Dettagli

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni Scopo intervento Integrazione scorte e distribuzione Modelli a domanda costante Presentare modelli e metodi utili per problemi di logistica distributiva Indicare limiti degli stessi e come scegliere tra

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria L. De Giovanni 1 Introduzione I metodi visti finora garantiscono, almeno in linea teorica, di risolvere

Dettagli

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain 1 PROGRAMMAZIONE LINEARE 1 1 Programmazione lineare 1.1 Modelli matematici Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling

Dettagli

Sistemi Operativi mod. B. Sistemi Operativi mod. B A B C A B C P 1 2 0 0 P 1 1 2 2 3 3 2 P 2 3 0 2 P 2 6 0 0 P 3 2 1 1 P 3 0 1 1 < P 1, >

Sistemi Operativi mod. B. Sistemi Operativi mod. B A B C A B C P 1 2 0 0 P 1 1 2 2 3 3 2 P 2 3 0 2 P 2 6 0 0 P 3 2 1 1 P 3 0 1 1 < P 1, > Algoritmo del banchiere Permette di gestire istanze multiple di una risorsa (a differenza dell algoritmo con grafo di allocazione risorse). Ciascun processo deve dichiarare a priori il massimo impiego

Dettagli

Ingegneria del Software MINR. Esercitazione: esempi di esercizi di esame

Ingegneria del Software MINR. Esercitazione: esempi di esercizi di esame Ingegneria del Software MINR Esercitazione: esempi di esercizi di esame EserciziEsame.1 Struttura del compito 2/3 ore di tempo esercizi su Function point Test scatola nera Test scatola bianca Pianificazione

Dettagli

Ricerca euristica. Funzioni di valutazione euristica. Esempi di euristica. Strategia best-first: esempio. Algoritmo di ricerca Best-First 03/03/15

Ricerca euristica. Funzioni di valutazione euristica. Esempi di euristica. Strategia best-first: esempio. Algoritmo di ricerca Best-First 03/03/15 Ricerca euristica Ricerca euristica Maria Simi a.a. 2014/2015 La ricerca esaustiva non è praticabile in problemi di complessità esponenziale Noi usiamo conoscenza del problema ed esperienza per riconoscere

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati schifano@fe.infn.it Laurea di Informatica - Università di Ferrara 2011-2012 [1] Strutture dati Dinamiche: Le liste Una lista è una sequenza di elementi di un certo tipo in cui è possibile aggiungere e/o

Dettagli

Programmazione dinamica

Programmazione dinamica Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Ant Colony Optimization (ACO) e Swarm Intelligence

Ant Colony Optimization (ACO) e Swarm Intelligence Università degli Studi di Milano Facoltà di scienze Matematiche, Fisiche e Naturali Ant Colony Optimization (ACO) e Swarm Intelligence Seminario per il corso di Sistemi Intelligenti Prof. N. Alberto BORGHESE

Dettagli

AMPL: Esempi e Comandi Avanzati

AMPL: Esempi e Comandi Avanzati Dipartimento di Matematica Università di Padova Corso di Laurea Matematica Outline Comandi Avanzati Script per Operazioni Complesse Ciclo For for {e in INSIEME}{... } Ciclo Repeat While (termina se espressione

Dettagli

Contenuto e scopo presentazione. Routing. Gestione spedizioni. Reti

Contenuto e scopo presentazione. Routing. Gestione spedizioni. Reti ontenuto e scopo presentazione Routing enni di TSP e VRP 11/07/2001 7.01 ontenuto vengono introdotti modelli e metodi per problemi di ommesso Viaggiatore: Traveling Salesman Problem (TSP) Scopo fornire

Dettagli

Laboratorio. Ricerca Operativa

Laboratorio. Ricerca Operativa Facoltà di Ingegneria dell Informazione, Informatica e Statistica Corso di Laurea in Ingegneria Gestionale Appunti dalle lezioni del corso di Laboratorio di Ricerca Operativa Massimo Roma Dipartimento

Dettagli

Algoritmi esatti per la ricerca di strategie ottime nel problema di pattugliamento con singolo pattugliatore

Algoritmi esatti per la ricerca di strategie ottime nel problema di pattugliamento con singolo pattugliatore POLITECNICO DI MILANO FACOLTÀ DI INGEGNERIA DELL INFORMAZIONE Corso di Laurea Specialistica in Ingegneria Informatica Algoritmi esatti per la ricerca di strategie ottime nel problema di pattugliamento

Dettagli

1 Inefficienza degli equilibri

1 Inefficienza degli equilibri Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 8: 9 Aprile 2010 Inefficienza degli equilibri Docente Prof. Vincenzo Auletta Note redatte da: Carmine Giordano Abstract In questa

Dettagli

Ambienti più realistici. Ricerca online. Azioni non deterministiche L aspirapolvere imprevedibile. Soluzioni più complesse. Alberi di ricerca AND-OR

Ambienti più realistici. Ricerca online. Azioni non deterministiche L aspirapolvere imprevedibile. Soluzioni più complesse. Alberi di ricerca AND-OR Ambienti più realistici Ricerca online Maria Simi a.a. 2011/2012 Gli agenti risolutori di problemi classici assumono: Ambienti completamente osservabili e deterministici il piano generato può essere generato

Dettagli

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2)

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2) Algoritmi per la visualizzazione DISEGNO DI GRAFI: ALCUNI CASI PARTICOLARI Disegno 2D ortogonale Disegno ortogonale 2D () Disegno ortogonale 2D (2) Punto di vista umano: primo criterio per giudicare la

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Esercitazione di laboratorio: Problema del venditore Terza parte 2 1 Esercizio del venditore

Dettagli