TSP con eliminazione di sottocicli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TSP con eliminazione di sottocicli"

Transcript

1 TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: (la matrice delle distanze è simmetrica). Formulare un modello di PLI e proporre un programma in AMPL che risolva il problema. Approfondimento (opzionale) Si parli di un possibile approccio euristico per la soluzione del TSP, considerando che sulla matrice delle distanze vale la disuguaglianza triangolare. Documento preparato da Leo Liberti

2 Soluzione Formalizziamo il problema come un grafo diretto completo G(V, A) dove V sono i clienti e A sono tutti gli archi possibili tra i nodi in V. I pesi sugli archi sono le distanze tra i clienti. Si deve cercare un cammino di peso minimo che tocchi tutti i nodi una e una sola volta. Formulazione Parametri:. sia V l insieme dei clienti da visitare;. per ogni i, j V sia d ij la distanza tra il cliente i e il cliente j. Variabili: per ogni i j V, sia x ij = se il commesso viaggia direttamente tra i e j, e 0 altrimenti (x ij {0, ). Funzione obiettivo: min i j V d ij x ij. Vincoli: x ij = i V (solo un successore) j V,j i i V,i j i S,j V \S x ij = j V (solo un predecessore) x ij S V (nessun sottociclo) x ij {0, i j V. L ultimo vincolo dice che per ogni partizione dei vertici, ci dev essere almeno un arco nel taglio corrispondente. Questo impedisce la formazione di sottocicli non triviali (che ovviamente definirebbero una partizione dei vertici con un taglio associato vuoto). Dato che il numero dei sottoinsiemi propri S di un insieme V è un numero esponenziale nella cardinalità di V, la dimensione di un istanza del problema esposto sopra è esponenziale (e dunque non accettabile). Bisogna dunque adottare un opportuna strategia di soluzione. Inizialmente, il problema viene rilassato cancellando completamente il vincolo nessun sottociclo (in tal modo la dimensione dell istanza è polinomiale). Il rilassamento ottenuto viene risolto tramite le comuni tecniche di PLI. La soluzione trovata può non essere ammissibile per il vincolo nessun sottociclo : ovvero, potrebbero esserci dei sottocicli non banali. Cerchiamo quindi il sottociclo più piccolo, inseriamo nel problema rilassato un solo vincolo della classe di vincoli nessun sottociclo in modo che il sottociclo trovato venga rotto, e ri-ottimizziamo il problema. Si continua iterativamente finché la soluzione non presenta più alcun sottociclo. A quel punto la soluzione trovata è quella ottima. Documento preparato da Leo Liberti

3 Tentiamo prima un approccio manuale alla generazione dei cicli da rompere. Risolviamo prima il modello seguente. Modello AMPL # modello per tsp param n > 0, integer; set V :=..n; param d{v,v >= 0; param numerocicli >= 0, integer, default 0; set ciclo{..numerocicli; var x{v,v binary; minimize costociclo : sum{i in V, j in V : i!= j d[i,j]*x[i,j]; subject to successore {i in V : sum{j in V : i!= j x[i,j] = ; subject to predecessore {j in V : sum{i in V : i!= j x[i,j] = ; subject to nocicli {k in..numerocicli : sum{i in ciclo[k], j in V diff ciclo[k] x[i,j] >= ; Dati AMPL # tsp.dat param n := 7; param d : := ; Per risolverlo, usiamo il seguente file.run, in cui si inizializza la matrice delle distanze in modo che sia simmetrica. Algoritmo AMPL: file tsp-simple.run # leggi modello e dati model tsp.mod; data tsp.dat; # rendi simmetrica la matrice delle distanze for {i in V, j in V : i > j { let d[i,j] := d[j,i]; # risolvi option solver cplex; solve; # stampa display costociclo; display x; Si noti che siccome ciclo e inizializzato a una lista di insiemi vuoti, i vincoli di rottura dei sottocicli di fatto non sono stati inseriti. Otteniamo la soluzione seguente, che corrisponde infatti a tre cicli distinti: (, 3, 5, ), (,, ) e (, 7, ). Soluzione CPLEX (non ottima) Documento preparato da Leo Liberti 3

4 costociclo = 37 x [*,*] : := ; In pratica, abbiamo la situazione come nella figura qui sotto Aggiungiamo perciò un vincolo di rottura del sottociclo (, 3, 5, ) al modello: per S = {, 3, 5 si impone i S,j V \S x ij. In AMPL, è sufficiente aggiungere le istruzioni seguenti nel file tsp-simple.run, prima dell istruzione solve;, e risolvere nuovamente il modello lanciando ampl < tsp-simple.run. let numerocicli := ; let ciclo[] := {, 3, 5 ; Si ottiene la soluzione seguente, che essendo un ciclo Hamiltoniano, è ottima. Soluzione CPLEX (ottima) costociclo = 53 x [*,*] : := ; La ciclo Hamiltoniano ottimo è (,,, 7,, 3, 5, ), raffigurato sotto. In generale, la soluzione non è unica (possono esistere più cicli Hamiltoniani con lo stesso costo), quindi si potrebbe trovare una soluzione diversa da questa Documento preparato da Leo Liberti

5 Descriviamo ora un algoritmo in AMPL per la generazione automatica dei sottocicli da rompere (per eseguirlo, usare il comando ampl < tsp.run). Algoritmo AMPL: file tsp.run # tsp.run - algoritmo per la rottura dei sottocicli # usa cplex e non stampare i messaggi del solutore numerico option solver cplex; option solver_msg 0; # leggi modello e dati model tsp.mod; data tsp.dat; let numerocicli := 0; # strutture dati per l algoritmo param nodosuccessore{v >= 0, integer; param nodocorrente >= 0, integer; # rendi simmetrica la matrice delle distanze for {i in V, j in V : i > j { let d[i,j] := d[j,i]; # algoritmo: risolvi il modello senza vincoli di rottura # dei sottocicli, trova un sottociclo, aggiungi il vincolo # corrispondente, e quando non esistono piu sottocicli propri, esci param termination binary; let termination := 0; repeat while (termination = 0) { # risolvi il problema solve; let numerocicli := numerocicli + ; # trova i successori di ogni nodo for {i in V { let nodosuccessore[i] := sum{j in V : j!= i j * x[i,j]; # trova un sottociclo let nodocorrente := ; let ciclo[numerocicli] := {; repeat { let ciclo[numerocicli] := ciclo[numerocicli] union {nodocorrente; let nodocorrente := nodosuccessore[nodocorrente]; until (nodocorrente = ); # stampa il sottociclo che vogliamo rompere printf "ciclo: ("; for {i in ciclo[numerocicli] { printf "%d, ", i ; printf ")\n"; # verifica se si puo terminare if (card(ciclo[numerocicli]) >= n) then { # se il sottociclo include tutti i nodi e Hamiltoniano, esci let termination := ; Documento preparato da Leo Liberti 5

6 printf "costo del ciclo hamiltoniano minimo: %d\n", costociclo; Soluzione numerica ciclo: (, 3, 5, ) ciclo: (,,, 7,, 3, 5, ) costo del ciclo hamiltoniano minimo: 53 Documento preparato da Leo Liberti

7 Approfondimento: Soluzione Euristica Per la soluzione euristica, si consideri l euristica 3 -approssimata per il TSP metrico (cioè la cui matrice delle distanze rispetta la disuguaglianza triangolare) ideata da Christofides. L euristica costruisce un ciclo Hamiltoniano (o tour) nel modo seguente.. Si costruisce un albero di supporto di costo minimo T nel grafo G.. Si costruisce un matching M di costo minimo tra i vertici del grafo che hanno cardinalità dispari in T. 3. Si forma un ciclo Euleriano che consiste dell unione di T e M (l unione è un ciclo Euleriano perché per costruzione ogni nodo ha un numero pari di lati adiacenti).. Per ogni vertice v tale che δ(v) (T M) > (ovvero per ogni v da cui si dipartono più di lati di T e M), si contraggono tutte le coppie di lati adiacenti a v tranne una. L operazione di contrazione di una coppia di lati {u, v, {v, w consiste nel sostituire questi lati con il lato {u, w (l operazione è sempre possibile perché il grafo è completo). Effettuando quest operazione per tutte le coppie di lati adiacenti a v tranne una, si rispettano i vincoli di predecessore e successore, perché v a quel punto avrà esattamente lati adiacenti. Si dimostra in modo piuttosto semplice che l euristica di Christofides è 3 -approssimata. Sia c il costo del tour prodotto dall euristica di Christofides, c il costo del tour ottimale, e c(f ) = (i,j) F d ij il costo di un insieme di archi F. Ogni tour, compreso quello ottimale, è un albero unito a un lato; perciò c(t ) c. D altro canto, ogni tour è anche un - matching (ogni vertice è assegnato al proprio successore e al proprio predecessore), quindi c(m) c. Si ha perciò che c(t M) c(t ) + c(m) c + c. Per la disuguaglianza triangolare, c c(t M), e quindi c 3 c, come volevasi dimostrare. Applichiamo ora l euristica di Christofides all istanza in questione. Le figure sotto rappresentano: il grafo originale, l albero di supporto di costo minimo, il matching di costo minimo tra vertici di stella con cardinalità dispari, e l unione dei due a formare un ciclo Euleriano. Si noti tuttavia che in questa particolare istanza tutti i nodi hanno già grado, quindi il ciclo è già Hamiltoniano. Il costo del ciclo ottenuto con quest euristica è 53, e quindi in questo caso l euristica trova un ciclo Hamiltoniano di costo minimo. Un algoritmo che risolve un problema di minimizzazione è k-approssimato se produce una soluzione con costo f tale che f kf, dove f è la soluzione ottima. Documento preparato da Leo Liberti 7

8 5 / 50 / 9 0 original graph / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure : Il grafo originale. 5 / 50 / 9 0 sptree cost = 8 / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure : L albero di costo minimo. Documento preparato da Leo Liberti 8

9 5 / 50 / 9 0 matching cost: 9 / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure 3: Il matching di costo minimo tra vertici di grado dispari. 5 / 50 / 9 0 tour cost: 53 / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure : Unione di albero e matching (soluzione approssimata). Documento preparato da Leo Liberti 9

10 5 / 50 / 9 0 optimal tour cost: 53 / 9 / 57 / 7 7 / 0 / 8 / 8 7 / 79 / 8 / 93 3 / 7 5 / 90 3 / 7 / 9 8 / / 59 0 / 8 9 / 0 / 5 3 / 3 Figure 5: La soluzione ottimale (uguale, in questo caso, a quella approssimata). Documento preparato da Leo Liberti 0

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2009-2010 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università di Roma La Sapienza Dipartimento di Informatica e

Dettagli

Problema della produzione dei monitor

Problema della produzione dei monitor Problema della produzione dei monitor Una azienda produce monitor per PC in tre diversi stabilimenti. Il costo di produzione di ciascun monitor varia a causa della diversa efficienza produttiva degli stabilimenti.

Dettagli

Gestione Impresa. Mese 1 2 3 4 5 6 Unità richieste 700 600 500 800 900 800

Gestione Impresa. Mese 1 2 3 4 5 6 Unità richieste 700 600 500 800 900 800 Gestione Impresa Un impresa di produzione produce un solo tipo di merce. Ci sono 40 operai, ciascuno dei quali produce 20 unità di merce al mese. La domanda fluttua nel corso di un semestre secondo la

Dettagli

Pianificazione di Produzione in DEC

Pianificazione di Produzione in DEC Pianificazione di Produzione in DEC L esempio considerato qui è un problema reale che la Digital Equipment Corporation (DEC) ha dovuto affrontare nell autunno del 1988 per preparare la pianificazione di

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Introduzione. AMPL Introduzione. F. Rinaldi. Dipartimento di Matematica Università di Padova. Corso di Laurea Matematica. F. Rinaldi AMPL Introduzione

Introduzione. AMPL Introduzione. F. Rinaldi. Dipartimento di Matematica Università di Padova. Corso di Laurea Matematica. F. Rinaldi AMPL Introduzione Dipartimento di Matematica Università di Padova Corso di Laurea Matematica Outline Introduzione Utilizzo di un Solver Definizione Un solver (o risolutore) è un software che riceve in input una descrizione

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

Linguaggi di modellizzazione

Linguaggi di modellizzazione p. 1/5 Linguaggi di modellizzazione Come visto, il primo passo per risolvere un problema di decisione consiste nel formularne il modello matematico. Una volta definito il modello matematico lo dobbiamo

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

Progetto e ottimizzazione di reti 2

Progetto e ottimizzazione di reti 2 Progetto e ottimizzazione di reti 2 Esercitazione AMPL A.A. 29-2 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma.it Università di Roma La Sapienza Dipartimento di Informatica

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona

Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona e e Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario e ed implementazione in Java Visita di un grafo e e Concetti di base Struttura

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1

Dettagli

Breve guida all uso di AMPL

Breve guida all uso di AMPL Breve guida all uso di AMPL Renato Bruni AMPL (A Modeling Language for Mathematical Programming) è un linguaggio di modellazione per la programmazione matematica. Serve ad esprimere un problema di ottimizzazione

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 20/202 Lezione 6-8 Rappresentazione di funzioni non lineari: - Costi fissi - Funzioni lineari a tratti Funzioni obiettivo non lineari:

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Schedulazione delle attività di un progetto in presenza di multi-calendari e di vincoli sulle risorse

Schedulazione delle attività di un progetto in presenza di multi-calendari e di vincoli sulle risorse Schedulazione delle attività di un progetto in presenza di multi-calendari e di vincoli sulle risorse Maria Silvia Pini Resp. accademico: Prof.ssa Francesca Rossi Università di Padova Attività FSE DGR

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Dalla teoria alla soluzione Ilario Filippini 2 Approccio euristico 3 Obiettivo dell approccio euristico 4 Tipi di euristiche Dalla teoria alla soluzione

Dettagli

Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore

Ricerca Automatica. Esercitazione 3. Ascensore. Ascensore. Ascensore Ascensore Ricerca Automatica Esercitazione In un grattacielo ci sono coppie formate da marito e moglie. Il cancello delle scale viene chiuso e l unico modo per scendere è con l ascensore che può portare

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

Fondamenti di Ricerca Operativa

Fondamenti di Ricerca Operativa Politecnico di Milano Anno Accademico 2010/2011 Fondamenti di Ricerca Operativa Corso del Prof. Edoardo Amaldi Stefano Invernizzi Facoltà di Ingegneria dell Informazione Corso di Laurea Magistrale in Ingegneria

Dettagli

Complessità e Approssimazione

Complessità e Approssimazione 1 Complessità e Approssimazione Corso di Laurea in Scienze dell'informazione Corso di Laurea Specialistica in Matematica Docente: Mauro Leoncini 2 Aspetti organizzativi Sito web: http://algo.ing.unimo.it/people/mauro

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

3. Gli algoritmi di ottimizzazione.

3. Gli algoritmi di ottimizzazione. Marcello Salmeri - Progettazione Automatica di Circuiti e Sistemi Elettronici Capitolo 3-3. Gli algoritmi di ottimizzazione. I grafi. La teoria dei grafi è un comodo strumento per la definizione e la formalizzazione

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Appunti di introduzione alla Ricerca Operativa

Appunti di introduzione alla Ricerca Operativa G r a fi e r e t i d i flu s s o Modelli su grafi e reti di flusso Una vasta classe di problemi di notevole rilevanza pratica può venire modellata tramite grafi o reti di flusso. In questo capitolo svilupperemo

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

Appendice D Soluzioni degli esercizi proposti

Appendice D Soluzioni degli esercizi proposti Appendice D Soluzioni degli esercizi proposti Capitolo 1 1. Si occupa di metodologie per la soluzione di problemi decisionali complessi. 2. È un problema che possiede diverse alternative (o soluzioni)

Dettagli

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI.

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. 1. ABSTRACT In questo progetto si intende costruire un sistema di sorveglianza mediante l uso di robot mobili. L idea base è quella di usare

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2

minimize f(x 1,x 2 ) = 1 2 x2 1 + a 2 x2 2 3.1 Ottimizzazione lungo direzioni coniugate. Risolvere il seguente problema: minimize f(x 1,x 2 ) = 12x 2 + 4x 2 1 + 4x 2 2 4x 1 x 2 manualmente, utilizzando il metodo delle direzioni coniugate: determinare

Dettagli

Esercizi Capitolo 14 - Algoritmi Greedy

Esercizi Capitolo 14 - Algoritmi Greedy Esercizi Capitolo 14 - Algoritmi Greedy Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

APPLICAZIONI DELLA RICERCA OPERATIVA

APPLICAZIONI DELLA RICERCA OPERATIVA Università degli Studi della Calabria Laurea in Informatica A.A. 2004/2005 Appunti di supporto didattico al corso di APPLICAZIONI DELLA RICERCA OPERATIVA Indice 1 Introduzione alla teoria dello Scheduling

Dettagli

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching POLITECNICO DI TORINO I Facoltà di Ingegneria Corso di Laurea in Matematica per le Scienze dell Ingegneria Tesi di Laurea Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria L. De Giovanni 1 Introduzione I metodi visti finora garantiscono, almeno in linea teorica, di risolvere

Dettagli

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2)

Algoritmi per la Visualizzazione. Disegno 2D ortogonale. Disegno ortogonale 2D (1) Disegno ortogonale 2D (2) Algoritmi per la visualizzazione DISEGNO DI GRAFI: ALCUNI CASI PARTICOLARI Disegno 2D ortogonale Disegno ortogonale 2D () Disegno ortogonale 2D (2) Punto di vista umano: primo criterio per giudicare la

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione:

Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione: COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Pre-appello del 15 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché

Dettagli

Modelli di scheduling su macchina singola. relazione alle macchine che devono eseguire le varie operazioni, allora ogni singola macchina nello shop è

Modelli di scheduling su macchina singola. relazione alle macchine che devono eseguire le varie operazioni, allora ogni singola macchina nello shop è . Modello base Consideriamo il caso in cui ogni job consiste di una sola operazione. Poiché un insieme di job è partizionato in relazione alle macchine che devono eseguire le varie operazioni, allora ogni

Dettagli

Ingegneria del Software MINR. Esercitazione: esempi di esercizi di esame

Ingegneria del Software MINR. Esercitazione: esempi di esercizi di esame Ingegneria del Software MINR Esercitazione: esempi di esercizi di esame EserciziEsame.1 Struttura del compito 2/3 ore di tempo esercizi su Function point Test scatola nera Test scatola bianca Pianificazione

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Algoritmi esatti per la ricerca di strategie ottime nel problema di pattugliamento con singolo pattugliatore

Algoritmi esatti per la ricerca di strategie ottime nel problema di pattugliamento con singolo pattugliatore POLITECNICO DI MILANO FACOLTÀ DI INGEGNERIA DELL INFORMAZIONE Corso di Laurea Specialistica in Ingegneria Informatica Algoritmi esatti per la ricerca di strategie ottime nel problema di pattugliamento

Dettagli

Minimo Albero Ricoprente

Minimo Albero Ricoprente Minimo lbero Ricoprente Pag. 1/20 Minimo lbero Ricoprente Il problema della definizione di un Minimo lbero Ricoprente trova applicazione pratica in diverse aree di studio, quali ad esempio la progettazione

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

Ant Colony Optimization (ACO) e Swarm Intelligence

Ant Colony Optimization (ACO) e Swarm Intelligence Università degli Studi di Milano Facoltà di scienze Matematiche, Fisiche e Naturali Ant Colony Optimization (ACO) e Swarm Intelligence Seminario per il corso di Sistemi Intelligenti Prof. N. Alberto BORGHESE

Dettagli

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni Scopo intervento Integrazione scorte e distribuzione Modelli a domanda costante Presentare modelli e metodi utili per problemi di logistica distributiva Indicare limiti degli stessi e come scegliere tra

Dettagli

Programmazione dinamica

Programmazione dinamica Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/33 Sommario della lezione Ancora sui cammini minimi: Cammini minimi in grafi con archi di costo negativo Algoritmi

Dettagli

Ambienti più realistici. Ricerca online. Azioni non deterministiche L aspirapolvere imprevedibile. Soluzioni più complesse. Alberi di ricerca AND-OR

Ambienti più realistici. Ricerca online. Azioni non deterministiche L aspirapolvere imprevedibile. Soluzioni più complesse. Alberi di ricerca AND-OR Ambienti più realistici Ricerca online Maria Simi a.a. 2011/2012 Gli agenti risolutori di problemi classici assumono: Ambienti completamente osservabili e deterministici il piano generato può essere generato

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati schifano@fe.infn.it Laurea di Informatica - Università di Ferrara 2011-2012 [1] Strutture dati Dinamiche: Le liste Una lista è una sequenza di elementi di un certo tipo in cui è possibile aggiungere e/o

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi Problemi di soddisfacimento di vincoli Maria Simi a.a. 2014/2015 Problemi di soddisfacimento di vincoli (CSP) Sono problemi con una struttura particolare, per cui conviene pensare ad algoritmi specializzati

Dettagli

Testing. Definizioni. incomprensione umana nel tentativo di comprendere o risolvere un problema, o nell uso di strumenti

Testing. Definizioni. incomprensione umana nel tentativo di comprendere o risolvere un problema, o nell uso di strumenti Definizioni Problemi del testing:criterio di selezione dei casi di test Test Funzionale: suddivisione in classi di equivalenza e analisi dei valori limite Test Strutturale: basato sul flusso di controllo

Dettagli

DESMATRON TEORIA DEI GRAFI

DESMATRON TEORIA DEI GRAFI DESMATRON TEORIA DEI GRAFI 0 Teoria dei Grafi Author: Desmatron Release 1.0.0 Date of Release: October 28, 2004 Author website: http://desmatron.altervista.org Book website: http://desmatron.altervista.org/teoria_dei_grafi/index.php

Dettagli

Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma

Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma Corso di Ricerca Operativa per il Corso di Laurea Magistrale

Dettagli

Introduzione alla Programmazione Lineare

Introduzione alla Programmazione Lineare Introduzione alla Programmazione Lineare. Proprietà geometriche Si definiscono come problemi di Programmazione Lineare (PL) tutti quei problemi di ottimizzazione in cui la funzione obiettivo è lineare

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Esercitazione di laboratorio: Problema del venditore Terza parte 2 1 Esercizio del venditore

Dettagli

Tecniche Reticolari. Problema: determinare l istante di inizio di ogni attività in modo che la durata complessiva del progetto sia minima

Tecniche Reticolari. Problema: determinare l istante di inizio di ogni attività in modo che la durata complessiva del progetto sia minima Project Management Tecniche Reticolari Metodologie per risolvere problemi di pianificazione di progetti Progetto insieme di attività A i di durata d i, (=,...,n) insieme di relazioni di precedenza tra

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Esercizi Capitolo 2 - Analisi di Algoritmi

Esercizi Capitolo 2 - Analisi di Algoritmi Esercizi Capitolo - Analisi di Algoritmi Alberto Montresor 19 Agosto, 014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Problemi di trasporto merci

Problemi di trasporto merci Problemi di routing di veicoli: 1 - Introduzione Daniele Vigo DEIS, Università di Bologna dvigo@deis.unibo.it Problemi di trasporto merci Trasporto merci 10% - 25% del costo totale dei beni di consumo

Dettagli

Soluzione di problemi di ottimizzazione

Soluzione di problemi di ottimizzazione Soluzione di problemi di ottimizzazione Problema di programmazione lineare: Possibili ulteriori vincoli (Es.: x INTERO) Soluzione: Trovare x* tale che per ogni LE.1 Input: Solutori di problemi di PL/PLI

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 2011/2012 Lezione 10: Variabili e vincoli logici Variabili logiche Spesso nei problemi reali che dobbiamo affrontare ci sono dei

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

The Directed Closure Process in Hybrid Social-Information Networks

The Directed Closure Process in Hybrid Social-Information Networks The Directed Closure Process in Hybrid Social-Information Networks with an Analysis of Link Formation on Twitter Dario Nardi Seminario Sistemi Complessi 15 Aprile 2014 Dario Nardi (CAS) 15/4/14 1 / 20

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna

Dettagli

2.3.4 Pianificazione di progetti

2.3.4 Pianificazione di progetti .. Pianificazione di progetti Un progetto è costituito da un insieme di attività i, con i =,..., m, ciascuna di durata d i. stima Tra alcune coppie di attività esistono relazioni di precedenza del tipo

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

RISOLUZIONE TRAMITE ALGORITMO EURISTICO DEL PROBLEMA DEL TRASPORTO DELLE PELLI FRESCHE DAI MACELLI ALLA CONCERIA

RISOLUZIONE TRAMITE ALGORITMO EURISTICO DEL PROBLEMA DEL TRASPORTO DELLE PELLI FRESCHE DAI MACELLI ALLA CONCERIA UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria Gestionale DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI Tesi di Laurea Triennale RISOLUZIONE TRAMITE ALGORITMO EURISTICO DEL PROBLEMA

Dettagli

CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE

CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE Negli ultimi anni si è compreso che sistemi anche molto diversi tra loro possono essere efficacemente descritti in termini di cosiddetti "networks" o reti complesse.

Dettagli

Contenuto e scopo presentazione. Crew Scheduling e Crew Rostering. Gestione del personale. Motivazioni

Contenuto e scopo presentazione. Crew Scheduling e Crew Rostering. Gestione del personale. Motivazioni Contenuto e scopo presentazione Crew Scheduling e Crew Rostering Contenuto vengono introdotti modelli e metodi per problemi di turnazione del personale Raffaele Pesenti 07/02/2002 14.41 Scopo fornire strumenti

Dettagli

Livello di Rete. Prof. Filippo Lanubile. Obiettivo

Livello di Rete. Prof. Filippo Lanubile. Obiettivo Livello di Rete Circuiti virtuali e datagram La funzione di instradamento Costruzione della tabella di routing Algoritmi di routing adattivi: distance vector routing e link-state routing Routing gerarchico

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

Uso di Excel per l analisi e soluzione di Modelli di Programmazione Matematica

Uso di Excel per l analisi e soluzione di Modelli di Programmazione Matematica Capitolo 9 Uso di Excel per l analisi e soluzione di Modelli di Programmazione Matematica 9.1 Introduzione La soluzione grafica di problemi di ottimizzazione che abbiamo visto nel Capitolo 4 può essere

Dettagli

Sistemi Informativi Multimediali Indicizzazione multidimensionale

Sistemi Informativi Multimediali Indicizzazione multidimensionale Indicizzazione nei sistemi di IR (1) Sistemi Informativi Multimediali Indicizzazione multidimensionale ugusto elentano Università a Foscari Venezia La struttura fondamentale di un sistema di information

Dettagli

Appunti di Ricerca Operativa

Appunti di Ricerca Operativa Appunti di Ricerca Operativa 0/0 Prefazione La Ricerca Operativa è un campo in continua evoluzione, il cui impatto sulle realtà aziendali ed organizzative è in costante crescita. L insegnamento di questa

Dettagli

Test del Software. Definizione SCOPO LIMITI DEL TEST

Test del Software. Definizione SCOPO LIMITI DEL TEST Definizione! Verifica dinamica del comportamento del software rispetto a quello atteso, utilizzando un insieme finito di casi di test, appropriatamente selezionati nel dominio di tutti i casi possibili

Dettagli

PROPRIETÀ DEI CIRCUITI DI RESISTORI

PROPRIETÀ DEI CIRCUITI DI RESISTORI CAPITOLO 5 PROPRIETÀ DEI CIRCUITI DI RESISTORI Nel presente Capitolo, verrà introdotto il concetto di equivalenza tra bipoli statici e verranno enunciati e dimostrati alcuni teoremi (proprietà) generali

Dettagli

Contenuto e scopo presentazione. Decisioni tattiche. Decisioni tattiche. Decisioni tattiche

Contenuto e scopo presentazione. Decisioni tattiche. Decisioni tattiche. Decisioni tattiche Contenuto e scopo presentazione Decisioni tattiche 21/05/2002 12.01 Contenuto vengono discusse alcune problematiche decisionali tattiche tipicamente affrontate dalle aziende di trasporto. Scopo fornire

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11 Modelli dei Sistemi di Produzione Modelli e lgoritmi della Logistica 00- Scheduling: Macchina Singola CRLO MNNINO Saienza Università di Roma Diartimento di Informatica e Sistemistica Il roblema /-/ w C

Dettagli

Indirizzo Giuridico Economico Aziendale

Indirizzo Giuridico Economico Aziendale Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali necessari per il raggiungimento degli obiettivi

Dettagli

Tecniche di decomposizione e rilassamenti Lagrangiani

Tecniche di decomposizione e rilassamenti Lagrangiani Tecniche di decomposizione e rilassamenti Lagrangiani Antonio Frangioni Sommario Una tecnica molto diffusa per costruire rilassamenti di problemi di Programmazione Lineare Intera (PLI) o mista, ed anche

Dettagli