ESERCIZI SUI SISTEMI LINEARI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI SUI SISTEMI LINEARI"

Transcript

1 ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione necessaria e sufficiente affinchè t = e λt v R n sia soluzione di SLO è che λ sia autovalore di A con v autovettore ad esso associato. Dim. Basta calcolare t e sostituire in SLO ottenendo e λt λv = e λt Av. Conseguentemente, poichè e λt > otteniamo subito λv = Av, cioè l asserto. Autovalori reali. Se A possiede n autovettori linearmente indipendenti v,..., v n, cioè A è diagonalizzabile, associati agli autovalori reali λ,..., λ n allora i t = e λ it v i, i =,..., n, sono n soluzioni linearmente indipendenti di SLO e dunque denotando con S la matrice costituita da tutti gli autovettori messi in colonna, precisamente S = [v,..., v n ], risulta che una matrice wronskiana è data da Wt = S diag [ e λ t,..., e λnt]. Autovalori reali e complessi semplici. Sia A M n n avente n autovalori semplici o regolari e denotiamo con λ,..., λ k i suoi autovalori reali mentre con λ j = a j + ib j e λj = a j ib j j = k +,..., m i suoi autovalori complessi, ove ovviamente m k = n. Siano ora u,..., u k autovettori reali corrispondenti agli autovalori reali λ,..., λ k, e siano u j = v j + iw j e ū j = v j iw j j = k +,..., m coppie di autovettori coniugati corrispondenti a λ j e λ j, j = k +,..., m. Sappiamo che l integrale generale di SLO è dato da t = WtC dove W è una matrice Wronskiana e C = c,..., c n, c i R. In particolare, denotando con S la matrice costituita da tutti gli autovettori messi in colonna, precisamente risulta Wt = S diag S = [u,..., u k, w k+, v k+,..., w m, v m ], [ e λt,... e λkt, e a jt cos bj t sin b j t sin b j t cos b j t ], j = k +,..., m. Esercizio. Risolvere il problema di Cauchy = = +, =, = 3.

2 Svolgimento Il sistema assegnato può essere scritto in forma compatta = A, =, ove 5 4 = A = e =. 3 Gli autovalori di A sono λ = e λ = 6, dunque siamo nel caso di autovalori reali semplici. Determiniamo ora gli autovettori di A risolvendo Av = λv, v =, y T, cioè risolviamo prima il sistema Av = λ v 5 + 4y = y =, + = y, e poi il sistema Av = λ v 5 + 4y = 6y + y = 6y. y = 4 Dunque scegliamo v =, e v = 4,. Conseguentemente una matrice Wronskiana sarà data da e Wt = [v, v ] diage t, e 6t t 4e = 6t e t e 6t dove [v, v ] è la matrice costituita dagli autovettori messi in colonna. Poichè W I, allora Wt non è la matrice risovente Rt, pertanto Rt = WtW = e t 4e 6t 4 5 e t e 6t = e t + 4e 6t 4e t + 4e 6t 5 e t + e 6t 4e 6t + e t La soluzione cercata è t = Rt = 5 e t + 4e 6t 4e t + 4e 6t e t + e 6t 4e 6t + e t 3 Esercizio. Scrivere l integrale generale del sistema = = + 3, 3 = e = 6t e t e 6t + e t Svolgimento Il sistema assegnato può essere scritto in forma compatta = A, ove = A =. 3 3 Gli autovalori di A sono λ =, λ = + i e λ 3 = i, dunque siamo nel caso di autovalori reali e complessi semplici. Determiniamo tre autovettori corrispondenti ai tre autovalori, per l autovalore reale λ otteniamo = = z + y z = y, y = y + z = z u =, 3,. Per l autovalore λ dobbiamo risolvere = + i + y z = + iy, 3 + y + z = + iz = y = iz

3 3 u = = i Analogamente per λ 3 si ha + y z 3 + y + z u 3 = i = + i = i = iy, = iz + i = v + iw. = y = iz = v iw. Conseguentemente S = [u, w, v ] = 3 una matrice Wronskiana è data da [ ] cos t sin t Wt = S diag e t, e t sin t cos t = 3 et e t cos t e t sin t e t sin t e t cos t = 3e t e t sin t e t cos t et e t e t cos t e t sin t Pertanto l integrale generale richiesto è t = WtC =. c e t 3c e t + c e t sin t + c 3 e t cos t c e t c e t cos t + c 3 e t sin t Autovalori multipli regolari, C = c, c, c 3 R 3. Ricordiamo che un autovalore si dice regolare quando la molteplicità algebrica è uguale a quella geometrica e dunque la dimensione dell autospazio ad esso associato coincide con la molteplicità algebrica. Esercizio 3. Risolvere il problema di Cauchy = = + 3 +, 3 = , =, =, 3 =. Svolgimento Il sistema assegnato non è omogeneo e può essere scritto in forma compatta = A + B, =, ove A =, B = =. 4

4 4 L equazione caratteristica associata alla matrice A è λ λ 3 = dunque A possiede un autovalore semplice λ = e un autovalore λ = 3 avente molteplicità algebrica. Calcoliamo gli autovettori associati a λ = e a λ = 3. Dal sistema + y + z = + y z = y, + y + 4z = z = z y = z deduciamo che u =,, è un autovettore di A corrispondente all autovalore λ =. Mentre dal sistema + y + z = 3 + y z = 3y, = y + z + y + 4z = 3z otteniamo che l autovalore λ = 3 possiede due autovettori lineramente indipendenti u =,, e u 3 =,,, pertanto λ = 3 è un autovalore multiplo regolare avendo molteplicità uguale a quella geometrica pari a due. Risulta allora che l integrale generale di è t = [u, u, u 3 ] diage t, e 3t, e 3t C = con c, c, c 3 R. Quindi una matrice wronskiana di è Wt = et e 3t e 3t e t e 3t. e t e 3t et e 3t e 3t c c c 3 In particolare W I 3 dunque Wt non è la matrice risolvente del sistema omogeneo associato a, pertanto risulta Rt = WtW = et e 3t e 3t e t e 3t e t e 3t 3 = e t + e 3t e t + e 3t e t e 3t et e t + e 3t e t + e 3t e t e 3t e t + e 3t e t + 3e 3t la soluzione del sistema omogeneo associato a è t = Rt = et e t + e 3t e t + e 3t e t + e 3t e t + e 3t e t e 3t = e 3t. e t e 3t e t + e 3t e t + 3e 3t Calcoliamo ora una soluzione particolare Φt di. Grazie al metodo di variazione delle costanti sappiamo che Φt = Wt t W sbsds poichè detwt = Wt = e 7t e essendo la matrice dei complementi algebrici data da Wt = e6t e 4t e 4t e 6t e 4t e 4t. e 6t e 4t 3e 4t Wt

5 5 Pertanto W t = Wt Wt T = e 7t e 4t e 4t e 4t e6t e 6t e 6t e 4t e 4t 3e 4t = e t e t e t e 3t e 3t e 3t e 3t e 3t 3e 3t Φt = t Wt e s e s e s e 3s e 3s e 3s ds = t e 3s e 3s 3e 3s Wt = et e 3t e 3t e t e 3t 3e t e t e 3t 3 e 3t = 6et + e 3t + 4 3e t e 3t e3t 8 3 3e t e3t + 3 La soluzione di è t = Rt + Φt = e 3t + e 3t 3e t + 5 = 6 e3t + 3 et e3t 3 et + 3 6et + e 3t + 4 3e t 3 e3t 8 3 3e t e3t + 3 3e s e 3s 7e 3s ds Autovalori multipli non regolari Esercizio 4. Risolvere il problema di Cauchy = + =, =, =. Svolgimento Il sistema assegnato può essere scritto in forma compatta = A, =, ove A = e =. La matrice A possiede un solo autovalore λ = con molteplicità algebrica, infatti la sua equazione caratteristica è λ + =. L integrale generale di sarà della forma t = C e t + C e t, con C, C, vettori di R le cui coordinate dovranno dipendere da due sole costanti reali arbitrarie. Calcolando e sostituendo nel sistema assegnato otteniamo C + C e t C e t = AC e t + AC e t, per il principio di identità segue AC = C + C 3 AC = C.

6 6 Dalla seconda uguaglianza deduco che il vettore costante C è un autovettore di A corrispondente all autovalore λ =. Calcoliamo allora C = t, y risolvendo il sistema + y = = y. Risulta C = α,, α R, dunque l autovalore λ = ha molteplicità geometrica, cioè l autospazio ad esso associato ha dimensione. Sostituisco nella prima uguaglianza per ricavare C = t, y + y = + α = y + α, C = β, α + β. Pertanto l integrale generale di è β α t = e α + β t + te α t, α, β R, in particolare e t te t = WtC = t β e t + te t α Tale matrice wronskiana non è la risolvente poichè W I, dunque t t t Rt = WtW = e t = + t t + t e dunque la soluzione di é t t = Rt = e t t t = + t. te t + te t. e t Esercizio 5. Risolvere il problema di Cauchy = + 3 =, 4 3 = 3, =, =, 3 =. Svolgimento Ovviamente tale esercizio può essere risolto direttamente in quanto la seconda e la terza equazione sono indipendenti e dalle condizioni iniziali segue immediatamente che t = 3 t =. Tuttavia risolveremo 4 con il metodo utilizzato nel precedente esercizio e relativo agli autovalori multipli non regolari, proprio per illustrare il metodo in una situazione molto semplice. Osserviamo che il sistema 4 può essere scritto in forma compatta = A, =, A = e = La matrice A possiede un solo autovalore λ = con molteplicità algebrica 3, infatti la sua equazione caratteristica è λ 3 =. L integrale generale di 4 sarà della forma t = C e t + C te t + C 3 t e t, con C i, i =,, 3, vettori di R 3 le cui coordinate dovranno dipendere da tre sole costanti reali arbitrarie. Calcolando e sostituendo nel sistema assegnato otteniamo C + C e t + C + C 3 te t + C 3 t e t = AC e t + AC te t + AC 3 t e t.

7 , per il principio di identità segue AC = C + C 5 AC = C + C 3 AC 3 = C 3. Dalla terza uguaglianza deduco che il vettore costante C 3 è un autovettore di A corrispondente all autovalore λ =. Calcoliamo allora C 3 =, y, z risolvendo il sistema + z = y = y z = z, deduco che vi sono autovettori lineramente indipendenti,, e,,, in altre parole l autospazio associato all autovalore λ = ha dimensione. Scegliamo C 3 = α,,, α R, e calcoliamo C =, y, z risolvendo la seconda uguaglianza in 5 + z = + α y = y z = z, C = γ, β, α, γ, β R, sostituendo nella prima equazione in 5 ricaviamo le coordinate di C =, y, z da Abbiamo β = α = + z = + γ y = y + β z = z + α. C = δ, µ, γ/, C = γ,,, C 3 =,,, δ, µ, γ R, abbiamo così trovato tre vettori costanti di R 3 che dipendono da tre sole costanti arbitrarie. Conseguentemente δ t = µ γ e t + γ δ + γt te t = µ γ e t, δ, µ, γ R. In particolare risulta t = WtC = e t te t e t et δ µ γ Per calcolare la soluzione del problema di Cauchy basta trovare la matrice risolvente Rt = WtW e moltiplicarla per, cioè t = Rt = et e t = et. e t 7

8 8 Ricordiamo che Complementi sulle matrici esponenziali e A = n= Teorema. Dato il sistema lineare omogeneo SLO = A. e considerato un arbitrario vettore R N, allora = e ta è una soluzione di SLO. Inoltre le colonne di e ta formano un sistema fondamentale di soluzioni. Infine il problema di Cauchy = A, t = ammette l unica soluzione = e t t A. Un caso semplice in cui è possibile calcolare la matrice esponenziale e quando la matrice è nilpotente di indice di nilpotenza m, cioè A m+ = O. In questo caso e A = I n + A + A + + Am.! m! Esempi di matrici nilpotenti sono quelle che hanno solo zeri al di sopra o al di sotto della diagonale principale, diagonale inclusa. Un caso riconducibile a questo ultimo è il seguente λ λ λ A =... oppure A = λ... λ λ A = D + N, con D = diagλ e N matrice nilpotente ottenuta da A annullando gli elementi della diagonale principale e supponiamo sia m l indice di nilpotenza di N. Ora poichè le matrici diagonali commutano con ogni altra matrice, quindi da DN = ND risulta Pertanto A n n!. e D+N = e D e N = e N e D. e ta = e td e tn = e λt I n + tn! + + tnm. m! Esercizio 6. Risolvere il problema di Cauchy = = +, 6 3 = + 3, =, =, 3 =. Svolgimento Scriviamo il sistema 6 in forma compatta = A, =, A = e =.

9 9 La matrice A può essere scritta come A = D + N ove D = e N = Risulta N nilpotente con indice di nilpotenza in quanto N 3 = O, in particolare N =. Pertanto dall osservazione fatta precedentemente segue e ta = e t I 3 + tn + tn = e t La soluzione cercata è e ta = t = e ta = e t te t e t t 4 + tet te t e t t t 4 + t t. e t, t + e t, t + 8et T. Equazioni differenziali lineari complete a coefficienti costanti Esercizio 7. Risolvere il problema di Cauchy = e t cos t 7 =, =. Svolgimento. Il problema dato ammette un unica soluzione in grande definita in I = π/4, π/4. L equazione caratteristica associata all equazione omogenea è λ + λ + 5 = λ = + i e λ = i, allora un sistema fondamentale per l omogenea associata è 8 e t cos t, e t sin t}. Pertanto l integrale generale di 7 è il seguente t = e t k cos t + k sin t + ϕt, k, k R, dove ϕt è un integrale particolare dell equazione in 7. Ora per calcolare ϕt applicheremo il metodo della variazione delle costanti. Trasformarmiano dunque 7 nel sistema equivalente ottenuto ponendo =, precisamente = = 5 + e t cos t,

10 che scritto in forma compatta diventa = Ay + Bt, A = 5 Cerchiamo ϕ del tipo dove Ct soddisfa ϕt = Ct e t cos t, e t sin t, Ct =, Bt = e t cos t W tbtdt, Ct = c t, c t con W matrice wronskiana relativa al sistema fondamentale 8 data da e Wt = t cos t e t sin t e t cos t + sin t e t. sin t + cos t Calcoliamo ora l inversa, poichè Wt = e, si ha dunque pertanto, poichè t I, W t = e t sin t + cos t et e t cos t + sin t Ct = W tbt = sin t cos t l integrale generale di 7 sarà = sin t cos t e t sin t e t cos t log cos t 4 ϕt = 4 e t cos t logcos t + t e t sin t,, t = e t k cos t + k sin t + 4 e t cos t logcos t + e t sin t. Basta ora utilizzare le condizioni iniziali per determinare k, k, precisamente da = segue k = e da = segue + k =, cioè k = /. La soluzione cercata è t = e t + 4 logcos t, cos t + e t + t sin t..

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 2 2 Sistemi lineari 3 3 2 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 Gli esercizi contrassegnati con il simbolo * presentano un

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Capitolo 6. Sistemi lineari di equazioni differenziali. 1

Capitolo 6. Sistemi lineari di equazioni differenziali. 1 Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

2.1 Esponenziale di matrici

2.1 Esponenziale di matrici ¾ ½ º¼ º¾¼½ Queste note (attualmente e probabilmente per un bel po sono altamente provvisorie e (molto probabilmente non prive di errori Esponenziale di matrici Esercizio : Data la matrice λ A λ calcolare

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

Caso di A non regolare

Caso di A non regolare Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

AUTOVALORI E AUTOVETTORI DISPENSA PER IL CORSO DI ALGEBRA LINEARE

AUTOVALORI E AUTOVETTORI DISPENSA PER IL CORSO DI ALGEBRA LINEARE AUTOVALORI E AUTOVETTORI DISPENSA PER IL CORSO DI ALGEBRA LINEARE ENRICO GREGORIO 1. Introduzione La nozione di autovalore di una matrice quadrata nasce insieme al concetto stesso di matrice o, meglio,

Dettagli

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata rgomento bis utovalori e autovettori di una matrice quadrata Trasformazioni di R n Consideriamo una matrice quadrata di ordine n a coefficienti, ad esempio, in R. Essa rappresenta una trasformazione di

Dettagli

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti

Dettagli

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni

Corso di Laurea in Fisica. Geometria. a.a Canale 3 Prof. P. Piazza Magiche notazioni Corso di Laurea in Fisica. Geometria. a.a. 23-4. Canale 3 Prof. P. Piazza Magiche notazioni Siano V e W due spazi vettoriali e sia T : V W un applicazione lineare. Fissiamo una base B per V ed una base

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI

SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI SISTEMI DI EQUAZIONI DIFFERENZIALI LINEARI DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 161 ROMA, ITALY andreucci@dmmm.uniroma1.it 1. Lo spazio delle soluzioni Un sistema

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

POTENZE DI MATRICI QUADRATE

POTENZE DI MATRICI QUADRATE POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)

Dettagli

Anno 3 Equazione dell'ellisse

Anno 3 Equazione dell'ellisse Anno Equazione dell'ellisse 1 Introduzione In questa lezione affronteremo una serie di problemi che ci chiederanno di determinare l equazione di un ellisse sotto certe condizioni. Al termine della lezione

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Esercizi di Algebra lineare

Esercizi di Algebra lineare Esercizi di Algebra lineare G. Romani December, 006 1. Esercizi sulle n-ple 1) Eseguire i seguenti calcoli. (, 1) + (1 3); 4(, ) + 3(4, ); 3(1,, 3) + ( )(,, 1) (3, 3, 3) + (4,, 1) + ( )(1, 4, ); (1, 4,

Dettagli

ESERCIZI SUI NUMERI COMPLESSI

ESERCIZI SUI NUMERI COMPLESSI ESERCIZI SUI NUMERI COMPLESSI Esercizio Calcolare il modulo e l argomento principale del seguente numero complesso: z = ) 5 + i i) 7 Per risolvere l esercizio proposto applichiamo le formule per il calcolo

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

MATEMATICA LA CIRCONFERENZA GSCATULLO

MATEMATICA LA CIRCONFERENZA GSCATULLO MATEMATICA LA CIRCONFERENZA GSCATULLO La Circonferenza La circonferenza e la sua equazione Introduzione e definizione La circonferenza è una conica, ovvero quella figura ottenuta tagliando un cono con

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Anno 2. Risoluzione di sistemi di primo grado in due incognite

Anno 2. Risoluzione di sistemi di primo grado in due incognite Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione

Dettagli

Prodotto scalare, ortogonalitá e basi ortonormali

Prodotto scalare, ortogonalitá e basi ortonormali CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5

Dettagli

Equazioni algebriche di terzo grado: ricerca delle soluzioni

Equazioni algebriche di terzo grado: ricerca delle soluzioni Equazioni algebriche di terzo grado: ricerca delle soluzioni 1 Caso particolare: x 3 + px + q = 0....................... Caso generale: x 3 + bx + cx + d = 0..................... 4 3 Esercizi.....................................

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri,

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri, ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 05/06 docente: Elena Polastri, plslne@unife.it Esercizi 3: SPAZI VETTORIALI e MATRICI Combinazioni lineari di vettori.. Scrivere il vettore

Dettagli

Capitolo 2. Equazioni differenziali lineari

Capitolo 2. Equazioni differenziali lineari 5. equazioni differenziali lineari omogenee del primo ordine 35 Capitolo 2. Equazioni differenziali lineari 5. Equazioni differenziali lineari omogenee del primo ordine 5.1. Introduzione. Come anticipato

Dettagli

Sistemi di equazioni differenziali. Filippo De Mari

Sistemi di equazioni differenziali. Filippo De Mari Sistemi di equazioni differenziali Filippo De Mari Sistemi di equazioni differenziali 3 Equazioni differenziali Definizioni e terminologia Molti problemi scientifici consistono nel tentare di determinare

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Forma canonica di Jordan

Forma canonica di Jordan Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:

Dettagli

Soluzioni della prova di Matematica Maturità 2015

Soluzioni della prova di Matematica Maturità 2015 Soluzioni della prova di Matematica Maturità 015 Lara Charawi 1, Alberto Cogliati e Luca Magri 1 Dipartimento di Matematica, Università degli Studi di Pavia Dipartimento di Matematica, Università degli

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2 1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

DIAGONALIZZAZIONE. M(f) =

DIAGONALIZZAZIONE. M(f) = DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,

Dettagli

z =[a 4 a 3 a 2 a 1 a 0 ] 10

z =[a 4 a 3 a 2 a 1 a 0 ] 10 Esercizio 1. Sia z =[a 4 a 3 a 2 a 1 a 0 ] 10 un numero intero (la notazione significa che le cifre con cui rappresento z in base 10 sono a 4,..., a 0 {0, 1,..., 9}, ecioè z = a 4 10 4 + a 3 10 3 + a 2

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli