Esercizi sui sistemi non lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sui sistemi non lineari"

Transcript

1 Teoria dei sistemi ) Considera il sistema Esercizi si sistemi non lineari { ẋ = x + x ẋ = x x + g(x ). a- Verifica che il sistema è globalmente asintoticamente stabile se sign g(x ) = sign (x ). b- Verifica che è asintoticamente stabile se g(x ) = x 3 e trova na stima del dominio di attrazione. ) Considera il pendolo in figra e mostra che, chiamando x = θ, x = θ, la dinamica del sistema è descritta dalle eqazioni: { ẋ = x ẋ = g l sin x. Mostra che il sistema è semplicemente stabile scegliendo na opportna fnzione di Lyapnov. 3) Considera il sistema { ẋ = sat ( x + x ), ẋ = sat ( x x ), dove x se x < sat(x) = se x se x. Dimostra che il sistema è asintoticamente stabile e trova na stima del dominio di attrazione. 4) Stdia la stabilità dell origine del sistema: Nei casi k = 0 e k 0. 5) = x (k x x ) + x (x + x + k ) = x (k + x + x ) + x ( x x + k )

2 y 0 Molla con costante k M y(t) Considera il sistema mostrato in figra, assmendo na molla lineare e n attrito viscoso non lineare descritto da c ẏ + c ẏ ẏ. a- Trova n eqazione di stato per il sistema b- Mostra che il sistema ha n pnto di eqilibrio globalmente asintoticamente stabile 6) Dato il sistema: = x + x = (x + x ) sin(x ) x a- mostra attraverso la linearizzazione che l origine è stabile b- mostra che l origine è globalmente asintoticamente stabile 7) Dato il sistema: = x 3 + x = ax bx con a, b > 0.. a- mostra attraverso la linearizzazione che l origine è stabile b- mostra che l origine è globalmente asintoticamente stabile 8) Mostra che il sistema = +x 3 x = x x 3 = x 3x 3 ha n nico pnto di eqilibrio nella regione x > 0, x > 0, x 3 > 0 e che tale pnto è stabile. 9) Sia dato il sistema non lineare = x x = x x a- Determina i pnti di eqilibrio b- Stdia la stabilità dell eqilibrio nell origine e nei pnti di eqilibrio del primo qadrante 0)

3 Sia dato il sistema non lineare = x + q (x, x ) = 4x x + q (x, x ) Dove q e q sono polinomi contenenti solo monomi in x e x di grado non inferiore a de. a- Analizza la stabililità dell eqilibrio nell origine b- Costrisci na fnzione di Lyapnov che permetta di dimostrare che i valori dei coefficinti di q e q sono inessenziali nell analisi della stabilità nell origine. ) = x + x = x + x + Con l ingresso = k x + k x. Determina k e k in modo che l origine del sistema retroazionato sia asintoticamente stabile. ) = x x 3 = x x stdia la stabilità prima con il metodo della linearizzazione, poi con la fnzione V (x, x ) = x + x. 3) = x x x = x + αx x Stdia la stabilità di tale sistema: a- per α = con la fnzione V (x, x ) = x + x b-per α = con la fnzione V (x, x ) = x x. 4) : = 6x + x = x+x dove = + x. Sia V (x) = x + x +x a-mostra che V (x) > 0 e V (x) < 0, x 0. b-considera l iperbole x = x. Mostra che le traiettorie alla destra del ramo del primo qadrante non possono attraversare tale ramo. Sggerimento: Per fare qesto considera il campo vettoriale sll iperbole e mostra che esiste sempre na componente di tale campo diretta nella direzione della normale all iperbole rivolta verso destra. c-mostra che l origine non è n pnto di eqilibrio globalmente asintoticamente stabile. Solzioni ) 3

4 a- V = x + x, V = x x g(x )x x x, il sistema e globalmente asintoticamente stabile visto che le ipotesi del teorema di Lyapnov sono soddisfatte e V è radialmente illimitata. b- Stessa fnzione di Lyapnov, V = x x g(x )x = x x +x 4 = x x ( x ), qindi (V ) < 0 se x <. Il sistema è asintoticamente stabile, per avere na stima del dominio di attrazione osserviamo che le crve di livello della fnzione V sata sono cerchi centrati nell origine, qindi prendiamo il pi grande appartenente all insieme x <, che e qello di raggio, qindi l insieme x + x < rappresenta na stima del dominio di attrazione. ) Le eqazioni si trovano dall eqazione L = τ, dove il momento angolare è L = ml θ e la coppia torcente esercitata dalla forza di gravità è τ = mgl sin θ. La fnzione di Lyapnov che pò essere sata è l energia totale: V = mgl( cos x ) + m(lx ), dove il primo termine è l energia potenziale e il secondo qella cinetica, V è definita positiva sll insieme π < x π. Troviamo V = 0 dato che l energia totale si conserva e qindi il sistema è semplicemente stabile. 3) V = x + x, V = x x in A +x + x in B +x x x x in C x + x in D x + x x x in E x x in F x x x x in G x + x in H x x x x in I. Il sistema è asintoticamente stabil,e la crva di livello più grande di V contenta in A è il cerchio di raggio centrato nell origine, che rappresenta qindi na stima del dominio di attrazione. 4) a) k = 0, V (x) = x + x, V (x) = (x ) + (x ), stabile per Lyapnov. b) k 0, V (x) = x + x, V (x) = k (x ) + (x ), instabile per il teorema di Chetaev. 5) a) Mÿ = Mg ky c ẏ c ẏ ẏ. b) Si pone x = y M g k, x = ẏ, si sa la fnzione V (X) = ax + bx, scegliendo a = k e b = M si ottiene V (x) = c x c x x, si applica poi 4

5 il teorema di La Salle, verificando che l nico invariante dell insieme dei pnti per ci V (x) = 0 è l origine. [ ] 6) a) A = f x (0 = è na matrice di Hrwitz. b) 0 3 V (x) = x + x, da ci V (x) = x ( x + x ) + [ x (x + x )] sin(x ) 3x x + x x x < 0, x 0 0 7)a) A = f x (0) = è na matrice di Hrwitz. b) Si prova con il teorema di a b Lyapnov con V ((x)) = x + x a. 8)x = 5 3, x = 5 3, x 3 = La matrice del sistema linearizzato è na matrice di Hrwitz. 9)a) {(x, x ) : x = 0 x = 0}. b) L eqilibrio è sempre instabile, si dimostra per linearizzazione nei pnti di eqilibrio diversi dall origine, mentre nell origine si dimostra con il teorema di Chetaev con V (x) = x x. 0)a) Si pò provare per linearizzazione che l eqilibrio è stabile. b) La fnzione [ di Lyapnov 9 ] si trova risolvendo l eqazione di Lyapnov A T P + PA = I, si ottiene P =. )k < 0, + k < 0. )Con la linearizzazione non si pò dire nlla slla stabilità dell origine. Con il metodo della fnzione di Liapnov si ottiene V (x = x 4, per dimostrare ls stabilità si applica il teorema di La Salle, verificando che l nico invariante dell insieme dei pnti per ci x = 0 è l origine. 3)a) V (x) = x +x, il sistema è instabile per il teorema di Chetaev. b) V (x) = 0, il sistema è instabile in qanto si sposta slle crve di livello del tipo x x = k. 4)a) V (x) = x 4x 4 < 0, x 0. b) Vettore normale all iperbole in fnzione di x : n = [ (x 6x, ], si fa il prodotto scalare n[ ) + x, (x +x ) ] t e si verifica che è sempre > 0 sll iperbole. 5

POLITECNICO DI TORINO - III FACOLT A DI INGEGNERIA - sede di MONDOVI ESAME DI: PROVA DEL: Esercizio

POLITECNICO DI TORINO - III FACOLT A DI INGEGNERIA - sede di MONDOVI ESAME DI: PROVA DEL: Esercizio POLITECNICO DI TORINO - III FACOLT A DI INGEGNERIA - sede di MONDOVI COGNOME:... NOME:... ESAME DI: FONDAMENTI DI AUTOMATICA MATRICOLA:... PROVA DEL: Test prova N. Esercizio 8 9 Risposta Esercizio 8 9

Dettagli

Equilibrio e stabilità di sistemi dinamici. Linearizzazione di sistemi dinamici

Equilibrio e stabilità di sistemi dinamici. Linearizzazione di sistemi dinamici Eqilibrio e stabilità di sistemi dinamici Linearizzazione di sistemi dinamici Linearizzazione di sistemi dinamici Linearizzazione di na fnzione reale Linearizzazione di n sistema dinamico Esempi di linearizzazione

Dettagli

LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1

LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1 www.matefilia.it LICEO SCIENTIFICO 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori dei segenti

Dettagli

Modello matematico di un sistema fisico

Modello matematico di un sistema fisico Capitolo. NTRODUZONE. Modello matematico di n sistema fisico La costrzione del modello matematico è anche n procedimento che permette di comprendere a pieno il fenomeno fisico che si vol descrivere. Compromesso

Dettagli

Sistemi Dinamici 2. Esercitazioni

Sistemi Dinamici 2. Esercitazioni Sistemi Dinamici Laurea Triennale in Matematica Applicata - II anno - II semestre Esercitazioni Es. 1 Stabilità Esercizio 1 Dimostrare che per un sistema autonomo ẋ = f(x) in R valgono le seguenti proprietà:

Dettagli

1. Prima di tutto si osservi che il dominio massimale su cui definire la funzione

1. Prima di tutto si osservi che il dominio massimale su cui definire la funzione Prima di ttto si osservi che il dominio massimale s ci definire la fnzione f è R \ 0, 0}, insieme che non è limitato, per ci non è garantita l esistenza del minimo e del massimo Cerchiamo gli insiemi di

Dettagli

Note sulla stabilità assoluta

Note sulla stabilità assoluta Capitolo 7 Note slla stabilità assolta Come noto, nel caso di sistemi non lineari la stabilità è na proprietà riferita al singolo pnto di eqilibrio e, pertanto, non è na caratteristica intrinseca del sistema.

Dettagli

TEORIA DELLA STABILITÀ. Esercizi con soluzione. G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza

TEORIA DELLA STABILITÀ. Esercizi con soluzione. G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza TEORIA DELLA STABILITÀ Esercizi con soluzione G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Esercizio 1 Si consideri il sistema non lineare descritto dalle seguenti

Dettagli

Lezione 28. Sistemi dinamici a tempo discreto (approccio in variabili di stato) F.Previdi - Fondamenti di Automatica - Lez. 28

Lezione 28. Sistemi dinamici a tempo discreto (approccio in variabili di stato) F.Previdi - Fondamenti di Automatica - Lez. 28 Lezione 28. Sistemi dinamici a tempo discreto (approccio in variabili di stato) Schema. Introdzione 2. Segnali a tempo discreto 3. Rappresentazione di stato 4. Classificazione 5. Movimento 6. Eqilibrio

Dettagli

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1

COMUNICAZIONE OPZIONE SPORTIVA QUESTIONARIO QUESITO 1 www.matefilia.it COMUNICAZIONE OPZIONE SPORTIVA 2016 - QUESTIONARIO QUESITO 1 È noto che e x2 dx = π. Stabilire se il nmero reale, tale che e x2 dx = 1, è positivo o negativo. Determinare inoltre i valori

Dettagli

SECONDO METODO DI LYAPUNOV

SECONDO METODO DI LYAPUNOV SECONDO METODO DI LYAPUNOV Il Secondo Metodo di Lyapunov permette di studiare la stabilità degli equilibri di un sistema dinamico non lineare, senza ricorrere alla linearizzazione delle equazioni del sistema.

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Prima prova intermedia 19 aprile 2010

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Prima prova intermedia 19 aprile 2010 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Stdi in Ingegneria Informatica Ricerca Operativa Prima prova intermedia 9 aprile Esercizio Al ristorante Socari de primi de secondi tre dolci e qattro coperti

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Complementi di Controlli Automatici. Stabilizzazione via retroazione dallo stato

Complementi di Controlli Automatici. Stabilizzazione via retroazione dallo stato Università di Roma Tre Complementi di Controlli Automatici Stabilizzazione via retroazione dallo stato Prof. Giuseppe Oriolo DIS, Università di Roma La Sapienza Introduzione consideriamo un generico sistema

Dettagli

CIRCUITI RC IN REGIME SIMUSOIDALE

CIRCUITI RC IN REGIME SIMUSOIDALE CIRCUITI RC IN REGIME SIMUSOIDALE Lo stdio dei circiti RC in regime sinsoidale riveste particolare importanza, poiché essi costitiscono i più semplici esempi di filtri passa-basso e passa-alto. Inoltre

Dettagli

ESERCITAZIONE SULLE OSCILLAZIONI PERMANENTI IN UN SISTEMA DI LUR E

ESERCITAZIONE SULLE OSCILLAZIONI PERMANENTI IN UN SISTEMA DI LUR E ESERCITAZIONE SULLE OSCILLAZIONI PERMANENTI IN UN SISTEMA DI LUR E BREVE RIPASSO Stdio di oscillazioni permanenti in n sistema dinamico tempo inariante soggetto a ingressi costanti, composto da n elemento

Dettagli

Modelli di popolazioni multispecie

Modelli di popolazioni multispecie Corso di Biologia dei Sistemi A.A. 05/6 Modelli di popolazioni mltispecie Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli Stdi Magna Graecia di Catanzaro tel: 096-369405

Dettagli

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici Fondamenti di Automatica Unità 3 Equilibrio e stabilità di sistemi dinamici Equilibrio e stabilità di sistemi dinamici Equilibrio di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna

Dettagli

Richiami sui vettori geometrici. Lezioni 21-23: Geometria analitica. Versori di una retta. Geometria di R 2 [Abate, 2.3 e 10]

Richiami sui vettori geometrici. Lezioni 21-23: Geometria analitica. Versori di una retta. Geometria di R 2 [Abate, 2.3 e 10] Richiami si vettori geometrici Lezioni 21-23: Geometria analitica Siano A, B, P tre pnti del piano, di coordinate date dalle coppie a = (a 1, a 2 ), b = (b 1, b 2 ), p = (p 1, p 2 ), in n sistema di riferimento

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Equilibrio e stabilità di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna di sistemi dinamici Stabilità interna di sistemi dinamici LTI Criteri di stabilità per sistemi dinamici

Dettagli

4. Linearità e Linearizzazione

4. Linearità e Linearizzazione 4. Linearità e Linearizzazione 4 Linearità e Linearizzazione Principio di sovrapposizione degli effetti Considera il sistema lineare tempo-discreto, tempo-invariante: < : x(k +) = Ax(k)+Bu(k) x() = x La

Dettagli

Esercizi commentati sugli schemi a blocchi

Esercizi commentati sugli schemi a blocchi Esercizi commentati sgli schemi a blocchi rno Picasso 1 Notazione e preliminari 1.1 Notazione on T 2 1 (s) iene indicata la fnzione di trasferimento dalla ariabile 1 alla ariabile 2. Se in n nodo della

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Prima Prova Scritta [26-1-212] Soluzioni Problema 1 1. Riscriviamo il sistema come e risolviamo la prima equazione: xt) = x e 3t + 2 ẋ = 3x + 2, ẏ = y + z 3, ż = 2x + z, Inserendo

Dettagli

Figura 1: Modello del sistema.

Figura 1: Modello del sistema. Esercitazione Scritta di Controlli Atomatici 9--8 Qesito Si consideri il sistema meccanico in figra. M m b f θ mg k b b k Figra : Modello del sistema. Essoècostititodancorpodimassamliberodimoversisdinapiattaformarotantedimassa

Dettagli

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 Si consideri il sistema dinamico con { ẋ = y ẏ = d U(x) U(x) = 2 ( x 2 3 x + 4 ) e x/2. (2) 1. Tracciare qualitativamente le curve di fase del sistema

Dettagli

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es.

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es. Equilibrio di sistemi dinamici Esercizio (derivato dall es. #8 del 8/9/22) Dato il sistema dinamico, non lineare, a tempo continuo, descritto dalle seguenti equazioni: ẋ (t) = x (t).5x 2 2 (t)+4u(t) ẋ

Dettagli

Tutorato Calcolo 2 Simone La Cesa, 15/11/2017

Tutorato Calcolo 2 Simone La Cesa, 15/11/2017 1 Tutorato Calcolo Simone La Cesa, 15/11/017 Esercizi stabilità dei sistemi di equazioni differenziali e Funzioni di Lyapunov 1. Si consideri l equazione: mx + k(x + x 3 ) = 0 moto di una particella di

Dettagli

Parte 1. Fisica Matematica I Compitino 7 Maggio 2015 Durata: 3 ore

Parte 1. Fisica Matematica I Compitino 7 Maggio 2015 Durata: 3 ore Fisica Matematica I Compitino 7 Maggio 015 Durata: 3 ore Scrivete cognome e nome in ogni foglio consegnato. Consegnate lo svolgimento della parte 1 (il FRONTE di questo foglio) nella pila etichettata 1,

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 06 febbraio 01 D Esercizio 1. Nel meccanismo in figura la manovella AB (lunghezza L) ruota a velocità angolare α = costante. Alla sua estremità B un pattino

Dettagli

Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del ẋ = y y 2 + 2x

Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del ẋ = y y 2 + 2x Sistemi Dinamici Corso di Laurea in Matematica Prova parziale del --08 Esercizio. 0 punti Studiare al variare del parametro µ R con µ, la stabilità dell origine per il sistema ẋ = µy + y x 3 x 5 ẏ = x

Dettagli

Controllo Sliding Mode

Controllo Sliding Mode Capitolo 1. INTRODUZIONE 7.1 Controllo Sliding Mode Esempio. Si consideri il seguente sistema: ẋ 1 = x 2 ẋ 2 = a x 1 a 1 x 2 + u e si analizzi il comportamento dinamico del sistema retroazionato nel caso

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 giugno 24 Esercizio In riferimento allo schema a blocchi in figura. y r s s s2 y 2 K s dove Domanda.. Determinare una realizzazione in equazioni di

Dettagli

Stabilità dei sistemi dinamici

Stabilità dei sistemi dinamici Stabilità dei sistemi dinamici Luigi Glielmo Università del Sannio glielmo@unisannio.it September 28, 2016 Stabilità interna Un sistema lineare è asintoticamente stabile (a.s.) quando la risposta libera

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Stdi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia gigno Nome: Cognome: Matricola: voglio sostenere la prova orale il giorno venerdì //

Dettagli

Dispensa per il modulo METODI MATEMATICI Corso di Laurea in Fisica. La Trasformata Di Fourier

Dispensa per il modulo METODI MATEMATICI Corso di Laurea in Fisica. La Trasformata Di Fourier 1 Dispensa per il modlo METODI MATEMATICI Corso di Larea in Fisica La Trasformata Di Forier G. Nisticò 2 1. INTRODUZIONE Sia f na fnzione complessa di variabile reale, integrabile in modlo, cioè tale che

Dettagli

Nota sull iperbole equilatera

Nota sull iperbole equilatera Paolo iviglia Nota sll iperbole eqilatera Un eqazione del tipo = rappresenta na crva detta iperbole eqilatera, la qale è costitita da de rami sitati nel primo e terzo qadrante se > 0, nel secondo e qarto

Dettagli

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 1 01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 Esercizio 1 - Date le matrici A = 2p 1 1 2p 2 C = 1 p di un modello LTI in variabili di stato a tempo

Dettagli

Sistemi Dinamici Corso di Laurea in Matematica Compito del

Sistemi Dinamici Corso di Laurea in Matematica Compito del Sistemi Dinamici Corso di Laurea in Matematica Compito del 6--9 Esercizio. punti) i) Studiare al variare del parametro µ R, il ritratto di fase del sistema meccanico dato da un punto materiale di massa

Dettagli

Esercizi di Fondamenti di Automatica

Esercizi di Fondamenti di Automatica Esercizi di Fondamenti di Automatica Bruno Picasso Esercizio Sia dato il sistema lineare { ẋ(t) = Ax(t), x R n x() = x.. Mostrare che se x è tale che Ax = λx, λ R, allora il corrispondente movimento dello

Dettagli

Stabilizzazione di Sistemi Non Lineari via Retroazione dallo Stato

Stabilizzazione di Sistemi Non Lineari via Retroazione dallo Stato Stabilizzazione di Sistemi Non Lineari via Retroazione dallo Stato G. Oriolo Sapienza Università di Roma Introduzione consideriamo un generico sistema dinamico non lineare stazionario ẋ = f(x, u) y = g(x)

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 18-09 - Esercizio 1. Un disco di raggio R, massa m e momento d inerzia baricentrico J, posto in un piano verticale, rotola senza strisciare su una guida circolare

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre

Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale. Dip. Matematica - Università Roma Tre Prova Finale di Tipo B e Prova di Accesso alla Laura Magistrale Dip. Matematica - Università Roma Tre Prof. U. Bessi, S. Gabelli, G. Gentile, M. Pontecorvo 3 Ottobre 2006 Istruzioni. a) La sufficienza

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 03 settembre 2012

DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 03 settembre 2012 DINAMICA DI SISTEMI AEROSPAZIAI Tema d esame 3 settembre 1 / Esercizio 1. Il meccanismo in figura presenta due aste / B identiche AB e CD di lunghezza e massa trascurabile. e F due aste sono incernierate

Dettagli

RAPPRESENTAZIONE MATEMATICA DELLE CURVE

RAPPRESENTAZIONE MATEMATICA DELLE CURVE RAPPRESENTAZIONE MATEMATICA DELLE CURVE Argomenti della lezione: crve arametriche crve sline crve di Bezier crve B-sline crve NURBS Pag. 1 1 Disegno tradizionale aroccio: costrzione grafica es: ellisse

Dettagli

Prova Scritta di Robotica II. 5 Aprile 2005

Prova Scritta di Robotica II. 5 Aprile 2005 Esercizio Prova Scritta di Robotica II 5 Aprile 005 Per il robot a due gradi di libertà RP in figura, in moto su un piano verticale (x, y), sono indicate le coordinate generalizzate q e q, le masse m ed

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Primo Scritto [1-6-018] 1. Si consideri il sistema meccanico bidimensionale per x R. ẍ = ( x 4 1)x, (a) Si identifichino due integrali

Dettagli

Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore

Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore Controlli Automatici e Teoria dei Sistemi Stabilità dei Moti e delle Risposte nei Sistemi a Stato Vettore Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica Università di Bologna

Dettagli

Esercizio: pendolo sferico. Soluzione

Esercizio: pendolo sferico. Soluzione Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle

Dettagli

5 a lezione - laboratorio

5 a lezione - laboratorio 5 a lezione - laboratorio Corso di Larea Ingegneria CIVILE Larea Specialistica Ingegneria CHIMICA ed AMBIENTE a.a 003-004 Problema del ordine di tipo IPERBOLICO ( ) tt = v xx x x0, xn t > t0 condizioni

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Teoria dei Sistemi s + 1 (s + 1)(s s + 100)

Teoria dei Sistemi s + 1 (s + 1)(s s + 100) Teoria dei Sistemi 03-07-2015 A Dato il sistema dinamico rappresentato dalla funzione di trasferimento 10s + 1 (s + 1)(s 2 + 16s + 100) A.1 Si disegnino i diagrammi di Bode, Nyquist e i luoghi delle radici.

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME Prima prova in itinere 07 maggio 014 Anno Accademico 013/014 ESERCIZIO 1 Si consideri il sistema S descritto

Dettagli

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici Introduzione all'analisi dei sistemi dinamici lineari Prof. Carlo Rossi DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi. 2. movimento e stabilità del

Dettagli

Soluzione del Compitino di Sistemi Dinamici del 16 novembre 2016

Soluzione del Compitino di Sistemi Dinamici del 16 novembre 2016 Soluzione del Compitino di Sistemi Dinamici del 6 novembre 6 Esercizio Sia data la seguente matrice 3 3 a coecienti reali 4 A = 3. / 9/ Si consideri il seguente sistema dinamico continuo lineare: Ẋ = AX

Dettagli

Sia dato il sistema LTI descritto dalla seguente funzione di trasferimento: 31250(s + 4) d u. K c +

Sia dato il sistema LTI descritto dalla seguente funzione di trasferimento: 31250(s + 4) d u. K c + Esercizio 1 Sia dato il sistema LTI descritto dalla segente fnzione di trasferimento: 3150(s 4) F(s) = 3 (s s )(s 50) controllato mediante n controllore statico di gadagno K c =, chiso in n anello di retroazione

Dettagli

FM1 - Equazioni differenziali e meccanica

FM1 - Equazioni differenziali e meccanica Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica Prima prova d esonero (03-04-2006) CORREZIONE Esercizio 1. Lo spettro Σ(A) della matrice A si trova risolvendo

Dettagli

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici lineari

Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici lineari Controlli Automatici LA Introduzione all'analisi dei sistemi dinamici lineari Prof. Carlo Rossi DEIS-Università di Bologna Tel. 051 2093020 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

Teorema 14 Un insieme compatto e invariante M 6= ; è stabile se e solo se ogni sua componente connessa è stabile.

Teorema 14 Un insieme compatto e invariante M 6= ; è stabile se e solo se ogni sua componente connessa è stabile. Capitolo 8 Stabilità In questo capitolo diamo le definizioni fondamentali di stabilità per insiemi compatti. Definizione 20 Un insieme compatto M, M 6= ;, si dice stabile se ogni intorno U M di M contiene

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A. 15 16 Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 4 LUGLIO 16

Dettagli

CORSO SERALE DI ECONOMIA POLITICA - anno accademico 2005-06 Facoltà di Scienze Politiche - Università degli Studi di Milano ANTONIO FILIPPIN

CORSO SERALE DI ECONOMIA POLITICA - anno accademico 2005-06 Facoltà di Scienze Politiche - Università degli Studi di Milano ANTONIO FILIPPIN CORSO SERALE DI ECONOMIA OLITICA - anno accademico 005-06 Facoltà di Scienze olitiche - Università degli Stdi di Milano ANTONIO FILIIN LEZIONE 0: SCELTA DEL CONSUMATORE: SOLUZIONE FORMALE DISEGNARE LE

Dettagli

TEORIA DEI SISTEMI STABILITA

TEORIA DEI SISTEMI STABILITA TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI STABILITA Ing. Cristian Secchi Tel. 0522

Dettagli

Punti di equilibrio: sistemi tempo continui

Punti di equilibrio: sistemi tempo continui Capitolo 3 ANALISI DELLA STABILITÀ 31 Punti di equilibrio: sistemi tempo continui Si consideri il seguente sistema tempo continuo: ẋ(t) A x(t) + B u(t) y(t) C x(t) + D u(t) I punti di equilibrio x 0 del

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA ESERCIZIO Si consideri il seguente sistema S. INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 7/06/09 Prof. Marcello Farina TESTO DEGLI ESERCIZI E SOLUZIONI x = u (sin(πx)) A. Si scrivano le equazioni

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 0 Settembre 005 PARTE A Esercizio 1. Nel piano cartesiano Oxy con asse y verticale ascendente, un punto materiale P di massa m è

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

Complementi di Controlli Automatici. Controllo del Robot Pendubot

Complementi di Controlli Automatici. Controllo del Robot Pendubot Università di Roma Tre A.A. 25/6 Complementi di Controlli Automatici Controllo del Robot Pendubot Marilena Vendittelli DIS, Università di Roma La Sapienza Sommario Il sistema Quanser Pendubot Obiettivi

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 5 IS-LM in economia aperta Mercato del lavoro

ECONOMIA POLITICA II - ESERCITAZIONE 5 IS-LM in economia aperta Mercato del lavoro ECONOMIA OITICA II - ESERCITAZIONE IS-M in economia aperta Mercato del lavoro Esercizio Considerate n economia aperta agli scambi con l estero, con n tasso di cambio flessibile, caratterizzata dalle segenti

Dettagli

GRAFICI DI RETTE. Calcolando i valori delle coordinate è possibile trovare i punti e disegnare il grafico di una qualsiasi relazione come y = 2x 5.

GRAFICI DI RETTE. Calcolando i valori delle coordinate è possibile trovare i punti e disegnare il grafico di una qualsiasi relazione come y = 2x 5. GRAFICI DI RETTE Calcolando i valori delle coordinate è possibile trovare i pnti e disegnare il grafico di na qalsiasi relazione come = 2 5. ESEMPIO 1 - a. Completa le segenti coppie di coordinate relative

Dettagli

Pendolo senza attrito

Pendolo senza attrito Pendolo senza attrito l m ϕ equazione del moto : mlϕ '' = mg sinϕ ϕ '' = y'' = k sin y, k > 0 g sinϕ l Pendolo senza attrito Trasformiamo l equazione in un sistema autonomo bidimensionale conservativo

Dettagli

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2 Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. Corso di laurea in Matematica, a.a. 003-004 17 dicembre 003 1. Si consideri la funzione f : R R definita da f(x, y) = x 4 y arctan

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI STABILITA NEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Lab 2: Progettazione di controllori PID e con retroazione stato per un motore elettrico

Lab 2: Progettazione di controllori PID e con retroazione stato per un motore elettrico Lab 2: Progettazione di controllori PID e con retroazione stato per n motore elettrico Lca Schenato Email: schenato@dei.nipd.it 15 Aprile 2015 1 Scopo L obiettivo di qesto laboratorio è di procedere alla

Dettagli

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 2008 PARTE A

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 2008 PARTE A LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 008 PARTE A Esercizio 1. Si consideri il sistema di equazioni differenziali in R (x, y) ẋ = x 3x + y 3y +

Dettagli

Controlli Automatici

Controlli Automatici Controlli Atomatici (Prof. Casella) II Prova in Itinere 31 Gennaio 2005 SOLUZIONE DEGLI ESERCIZI PROPOSTI Esercizio 1 Si consideri lo schema di controllo in cascata rappresentato in figra: la dinamica

Dettagli

Insiemi di generatori e basi

Insiemi di generatori e basi Insiemi di generatori e basi Proposizione (Corollario al Teorema di Steinitz) Siano V (K) uno spazio vettoriale, B una sua base di cardinalità n e A un sottoinsieme di V di n vettori. Allora: se A è libero,

Dettagli

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE A.A. 25/6 Prima prova di Fondamenti di Automatica (CL Ing. Gestionale) 27 Novembre 25 ESERCIZIO punti: 8 su 32 Si consideri il sistema

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI orso 01/013 METODO DEGI EEMENTI FINITI Analisi di Problemi di Instabilità (ckling) Il fenomeno dell'instabilità rigarda i corpi con almeno na dimensione molto piccola rispetto alle altre (ad esempio na

Dettagli

ESERCIZI DEL TUTORATO DI FISICA MATEMATICA. 1. Prima parte Esercizio 1.1 (G. Stefani). Sia X il campo vettoriale lineare associato alla matrice A =.

ESERCIZI DEL TUTORATO DI FISICA MATEMATICA. 1. Prima parte Esercizio 1.1 (G. Stefani). Sia X il campo vettoriale lineare associato alla matrice A =. ESERCIZI DEL TUTORATO DI FISICA MATEMATICA GIORGIO STEFANI Sommario. I seguenti esercizi sono stati svolti durante il tutorato per il corso di Fisica Matematica dell a.a. 0-03, tenuto dal Prof. A. Lovison.

Dettagli

Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale:

Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale: Tabella 3: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 3 Meccanica Razionale 1: Scritto Generale: 16.9.211 Cognome e nome:....................................matricola:......... 1.

Dettagli

2.1 Osservazioni sull esercitazione del

2.1 Osservazioni sull esercitazione del ¾ ½¾º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. 2.1 Osservazioni sull esercitazione del 5.3.214 2.1.1 Equazione

Dettagli

2 Stabilità dei sistemi dinamici

2 Stabilità dei sistemi dinamici 2 Stabilità dei sistemi dinamici 2.1 STABILITÀ DEI MOTI E DELLE RISPOSTE Con il termine stabilità si indica in genere l attitudine di un sistema dinamico a reagire con variazioni limitate del moto o della

Dettagli

ESERCIZI 53. i=1. i=1

ESERCIZI 53. i=1. i=1 ESERCIZI 53 Esercizio 47 Si dimostri la 57.10). [Suggerimento. Derivando la seconda delle 57.4) e utilizzando l identità di Jacobi per il prodotto vettoriale cfr. l esercizio 46), si ottiene d N m i ξ

Dettagli

Esercizio 1. Si consideri il sistema di equazioni differenziali lineari. ẋ = Ax, x R 4, A =

Esercizio 1. Si consideri il sistema di equazioni differenziali lineari. ẋ = Ax, x R 4, A = Tutorato I - Roberto Feola e Luca Battaglia (04-03-09) Esercizio. Si consideri il sistema di equazioni differenziali lineari 2 0 0 ẋ = Ax, x R 3, A = 2 0, 5 3 con dato iniziale x(0) = (,,0). Se ne trovi

Dettagli

Corso di Fluidodinamica delle Macchine

Corso di Fluidodinamica delle Macchine Corso di Flidodinamica delle Macchine A.A. 0-03 Capitolo I-3: Flssi non viscosi sbsonici, transonici e spersonici Flsso Transonico Trbine Nozzle Pagina Flsso sbsonico stazionario Qesti sono rappresentati

Dettagli

2. ANALISI DELLA DEFORMAZIONE

2. ANALISI DELLA DEFORMAZIONE . ANALISI DELLA DEFORMAZIONE Un elemento monodimensionale soggetto ad na forza di trazione o compressione sbisce na variazione di lnghezza Δl (rispettivamente n allngamento o n accorciamento) rispetto

Dettagli

26 - Funzioni di più Variabili Limiti e Derivate

26 - Funzioni di più Variabili Limiti e Derivate Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 26 - Funzioni di più Variabili Limiti e Derivate Anno Accademico 2013/2014 M.

Dettagli

Complementi di Controlli Automatici. Teoria della stabilità

Complementi di Controlli Automatici. Teoria della stabilità Università di Roma Tre Complementi di Controlli Automatici Teoria della stabilità Prof. Giuseppe Oriolo DIS, Università di Roma La Sapienza Introduzione consideriamo un generico sistema dinamico non lineare

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Energetica-Meccanica- Aerospaziale

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Energetica-Meccanica- Aerospaziale Politecnico di Milano Fondamenti di Fisica Sperimentale a.a. 8-9 - Facoltà di Ingegneria Indstriale - Ind. Energetica-Meccanica- Aerospaziale II prova in itinere - /7/9 Gistificare le risposte e scrivere

Dettagli

Lab 2: Progettazione di controllori PID e in spazio di stato per un motore elettrico (20+2 punti)

Lab 2: Progettazione di controllori PID e in spazio di stato per un motore elettrico (20+2 punti) Lab 2: Progettazione di controllori PID e in spazio di stato per n motore elettrico (202 pnti) Lca Schenato Email: schenato@dei.nipd.it 13 Febbraio 2006 1 Scopo L obiettivo di qesto laboratorio è di procedere

Dettagli

Prova Finale di Tipo B e Prova di Accesso alla Laura Special. Dip. Matematica - Università Roma Tre. 2 febbraio 2005

Prova Finale di Tipo B e Prova di Accesso alla Laura Special. Dip. Matematica - Università Roma Tre. 2 febbraio 2005 Prova Finale di Tipo B e Prova di Accesso alla Laura Special Dip. Matematica - Università Roma Tre 2 febbraio 2005 Istruzioni. a) La sufficienza viene raggiunta con un punteggio di almeno 20 punti in ciascuno

Dettagli

Controllo del robot Pendubot

Controllo del robot Pendubot Università di Roma La Sapienza Corso di Laurea in Ingegneria Elettronica Corso di Fondamenti di Automatica Controllo del robot Pendubot Ing. Massimo Cefalo I sistemi meccanici sottoattuati Il sistema Quanser

Dettagli

ESERCITAZIONE RIASSUNTIVA

ESERCITAZIONE RIASSUNTIVA ESERCITAZIONE RIASSUNTIVA ESERCIZIO 1 Si consideri il sistema lineare con funzione di trasferimento controllato da un relè con zona morta come mostrato in figura y e u N y -a 1 u -1 a e Noto che la funzione

Dettagli

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale Soluzioni Prova Scritta di di Meccanica Analitica 17 aprile 15 Problema 1 Un punto di massa unitaria si muove lungo una retta soggetto al potenziale V x = exp x / a Tracciare il grafico del potenziale

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 26 luglio 213 Anno Accademico 212/213 ESERCIZIO 1 Si consideri il sistema descritto dalla equazione

Dettagli