Cinematica III. 11) Cinematica Rotazionale

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cinematica III. 11) Cinematica Rotazionale"

Transcript

1 Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al moto lungo una ciconfeenza di dato aggio è più comodo ifeisi alle coodinate polai P(,) (vedi fig. 1) in quando solo = (t) e lo studio del moto diviene un poblema unidimensionale. Si pala alloa di cinematica otazionale. y P l O O Fig. 1 x Detta l la lunghezza dell aco O P ovveo la coodinata cuvilinea del punto P ispetto a O, è pe definizione: (in adianti) Convenzione: > 0 pe otazioni antioaie ispetto al semiasse x positivo. Se P è in moto, esso saà in una posizione A al tempo t 0 e una posizione B a un tempo t 1 ; nell intevallo di tempo t = t 1 t 0 si avà una coispondente vaiazione della posizione angolae = 1 0 (Fig. 1). Ossevazioni: C B 1 O 0 A Fig. 1 x 1) non dipende dal pecoso del punto nell intevallo t infatti si ha lo stesso sia se, nell intevallo t, il punto P va diettamente da A a B sia se, pe esempio, aggiunge un alto punto C e poi tona indieto in B. ) può essee maggioe, minoe (o uguale) di zeo in elazione alla convenzione sul segno di. Nel nosto caso: è positivo pe moto in veso antioaio, negativo pe moto in veso oaio. 18/10/011 Lezioni di Fisica pe CTF MdP 1

2 La vaiazione di posizione angolae elativa all intevallo di tempo t, pemette di caatteizzae il moto intoducendo la gandezza velocità angolae media m Δ 1 0 m ( unità di misua = Δt t1 t0 ad ) s In un moto con m maggioe di un alto, si avà una maggioe vaiazione della posizione angolae nello stesso intevallo di tempo di ossevazione. Ossevato che t > 0 sempe, pe quanto detto nell ossevazione, segue che m può essee sia positiva che negativa (e ovviamente anche nulla). Essa, con la nosta convenzione pe il segno di, saà positiva se il moto è nel veso antioaio, negativa se il moto è nel veso oaio. Invetendo la convenzione pe, lo stesso moto avà m di segno opposto. (Si ea già detto che la descizione del moto dipende dal sistema di ifeimento). Anche m, come v m (vedi pa. 1) fonisce una non completa caatteizzazione dello stato di moto; se si è inteessati alla velocità angolae a un istante di tempo t ovveo alla velocità angolae istantanea ciò che possiamo eventualmente fae è calcolae m elativamente ad un intevallo di tempo piccolissimo t intono a t, al limite tendente a zeo. Dal punto di vista fomale (vedi pa 1): 11. i lim t0 t d i d Ossia la velocità angolae istantanea è la apidità di vaiazione della posizione angolae occupata dal punto con il tempo, ovveo la deivata pima ispetto al tempo della posizione angolae (t). Di seguito quando diemo velocità intendeemo ifeici alla i ( i ). Oa possiamo definie la velocità angolae 0 all istante di tempo t 0 e la velocità angolae 1 all istante di tempo t 1. In geneale dobbiamo aspettaci che sia = (t) cioè 1 0 e quindi in coispondenza dell intevallo di tempo di ossevazione t = t 1 t 0 iscontiamo una vaiazione di velocità angolae = 1 0. La vaiazione elativa all intevallo di tempo t, pemette un ulteioe caatteizzazione del moto intoducendo la gandezza acceleazione angolae media m Δ 1 0 m ( unità di misua = Δt t1 t0 ad ) s 18/10/011 Lezioni di Fisica pe CTF MdP

3 In un moto con m maggioe di un alto si avà una maggioe vaiazione della velocità angolae nello stesso intevallo di tempo di ossevazione. Ossevato che t > 0 e che V può essee sia positiva che negativa (e ovviamente anche nulla) segue che anche m può essee sia positiva che negativa (e ovviamente anche nulla). Il suo segno non è diettamente coelato al veso del moto, ma saà positiva se la velocità aumenta, negativa se la velocità diminuisce. Si è genealmente inteessati all acceleazione angolae a un istante di tempo t ovveo l acceleazione angolae istantanea come l acceleazione angolae media elativa a un intevallo di tempo piccolissimo t intono a t, al limite tendente a zeo, ovveo: 11.4 i lim t0 t d i d Ossia l acceleazione angolae istantanea è la apidità di vaiazione della velocità angolae con il tempo, ovveo la deivata pima ispetto al tempo della velocità angolae (t). Di seguito quando diemo acceleazione intendeemo ifeici alla i ( i ). Il moto otazionale di un punto mateiale è quindi caatteizzato dalla sua velocità angolae e dalla sua acceleazione angolae ; in paticolae se = (t) il moto è detto otatoio vaio, se = cost il moto è detto otatoio unifomemente acceleato e in paticolae se =cost =0 il moto è detto otatoio unifome. Nel caso di = (t), non c è un espessione semplice pe l equazione del moto = (t) in quanto essa dipende esplicitamente dall'espessione di, mente è possibile scivee l equazione del moto nel caso di = cost. Se confontiamo le definizioni di,, qui date con le elazioni di x, v, a pe il moto unidimensionale (pa. ) vediamo che esse sono fomalmente identiche se sostituiamo con x, con v e con a; di conseguenza possiamo sostituie i simboli x,v,a con,, nei calcoli del pa. 3 ottenendo, con ovvio significato dei simboli, pe il moto otatoio unifomemente acceleato le seguenti elazioni: 11.5 = cost, (t) = 0 +t, 1 ( t ) 0 0t t Le gandezze otazionali,, sono ovviamente coelate alle gandezze lineai l, v, a. Infatti, dato un in intevallo di ossevazione t = t 1 t 0 e vista la definizione di 18/10/011 Lezioni di Fisica pe CTF MdP 3

4 , la vaiazione della coodinata cuvilinea l (ovveo lo spostamento lungo la ciconfeenza) è data da: l = l 1 l 0 = 1 0 = ( 1 0 )= l=. Δ Δθ d dθ Essendo costante v con v modulo della velocità Δt Δt lineae. Deivando quest ultima elazione abbiamo: dv d dv d a t Notiamo che nella elazione pecedente dv/ è elativa alla sola vaiazione del modulo di v e, pe quando visto nel pa. 9, questa è legata alla sola componente tangenziale dell acceleazione lineae. Le elazioni che legano le vaiabili lineae a quelle otazionali sono: 11.6 l=, v =, a t = Ossevazione. Pe la 11.5, in un moto cicolae unifome (ossia con 0 = cost e = 0) lo spostamento angolae in un intevallo t è dato da = 0 t. Se indichiamo con T l intevallo di tempo necessaio a compiee un gio completo (ossia pe avee = ) si ha: 0T T. 1 Il tempo T è detto peiodo e il suo inveso f detto fequenza (misuata in T Hz = s -1 ) appesenta il numeo di gii effettuati nell unità di tempo. Segue che: f. 0 18/10/011 Lezioni di Fisica pe CTF MdP 4

5 Un esempio impotante: Il cambio Consideiamo (vedi fig. ) due moti cicolai lungo ciconfeenze di aggi 1 ed, con 1 >, vincolati in modo da avee lo stesso spostamento lineae (ossia misuato lungo le ispettive ciconfeenze) l 1 e l in un intevallo di tempo t. Segue, con ovvio significato dei simboli, che: 1 Δ 1 1 Δ Δ1 1 Δt Δθ Δt ovveo se fissiamo la velocità angolae del moto 1, la velocità angolae del moto dipende dal appoto 1 /, in questo esempio > 1. 1 Fig a Fig. b Questa situazione si ealizza su una bicicletta (vedi fig. b) dove il moto 1 è quello di un punto peifeico della moltiplica e il moto quello di un punto peifeico del appoto solidale con la uota, mente la condizione di stesso spostamento lineae è imposta dalla catena che vincola il moto della moltiplica e quello dei appoti. Il sistema costituisce un cambio ossia un dispositivo che pemette, tamite la elazione pecedente, di cambiae la velocità angolae della uota, mantenendo costante la velocità di otazione della moltiplica scegliendo un oppotuno appoto 1 /. 18/10/011 Lezioni di Fisica pe CTF MdP 5

6 1) Moto amonico Il moto amonico è un moto unidimensionale (assumiamo lungo l asse x) la cui equazione oaia è: 1.1 x(t) = A cos(t + ). La gandezza (t + ) è detta fase del moto amonico. La sua analisi dimensionale dice che A è una lunghezza (m), è un angolo/tempo (ad/s) e è un angolo (ad). Vediamone il significato fisico: a) Significato di A (detta ampiezza): poiché la quantità cos(t + ) è limitata fa i valoi 1, duante il moto amonico x può assumee solo valoi compesi fa A ossia: A < x(t) < A quindi il moto amonico è un moto limitato nello spazio e A appesenta la massima distanza dal punto centale (x = 0) che è possibile aggiunge. Un pecoso completo (da un punto x i ad +A, quindi da +A a A e infine da A a x i ) è detto oscillazione completa. b) Significato di (detta pulsazione): poiché ha le dimensioni di ad/s la quantità T = / è un tempo (s). Calcoliamo la posizione di un punto in moto amonico a un tempo T dopo un geneico istante t: x( t T ) Acos x( t T ) Acos T t Acos t Acos t t x( t ) Risulta: x(t+t) = x(t) ossia dopo un tempo T il punto si itova nella stessa posizione quindi T è il tempo necessaio a compiee una oscillazione completa. 1 T è detto peiodo e il suo inveso f detto fequenza (misuata in Hz = s -1 ) T appesenta il numeo di oscillazioni complete nell unità di tempo. Il significato di è nella definizione di T. c) Significato di (detta fase iniziale): In fig. 3 è ipotato, pe A = 0.6 e = 0,90,45 il gafico di x(t) = A cos(t +). E evidente che valoi divesi di potano solo ad una taslazione della cuva con conseguente cambio del valoe di x a un fissato t. In paticolae a t = 0 si ha x(0) = 0,6; 0; 0,4 ispettivamente pe =0, 90, 45 quindi l angolo specifica la posizione iniziale del moto ossia x 0 = x(t=0) = Acos. 18/10/011 Lezioni di Fisica pe CTF MdP 6

7 Fig. 3 L equazione oaia pemette in calcolo della velocità v(t) e della acceleazione a(t): x( t ) dx v( t ) dx a( t ) Acos( t ) d d Acos( t ) Asen(ωs φ) Asen( t ) Acos( t ) Ax( t ) Si nota (vedi anche fig. 4) che v(t) e a(t) vaiano con la stessa pulsazione, ma non sono in fase fa loo, e si ha, in modulo, v Max = A e a Max = A. E impotante notae che ha: 1. a(t) = x(t) ossia l acceleazione è diettamente popozionale all opposto dello spostamento e la costante di popozionalità è il quadato della pulsazione. Useemo in seguito questa popietà pe iconoscee come amonico il moto di un sistema. 18/10/011 Lezioni di Fisica pe CTF MdP 7

8 Pe capie meglio v(t) e a(t) ipotiamo in fig. 4 il loo andamento in funzione della fase t + pe =0 ad, =0,7 ad/s ed A= 10 cm. Fig. 4 E evidente, come appesentato anche in fig. 5, che agli estemi del moto, quando lo spostamento è massimo, è nulla la velocità ed è massima l acceleazione; al cento dell oscillazione, ossia quando lo spostamento è nullo, è massima la velocità e nulla l acceleazione. Questo compotamento saà ivelante quando si discuteanno gli aspetti enegetici connessi al moto amonico. t=, =0 x = x Max = A v =0 a = a Max = A t=/, =0 x = 0 v = v Max = A a = 0 t=0, =0 x = x Max = A v =0 a = a Max = A Moto da +A ad A Moto da A ad +A 0 x t=3/, =0 x = 0 v = v Max = A a = 0 Fig. 5 18/10/011 Lezioni di Fisica pe CTF MdP 8

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

32. Significato geometrico della derivata. 32. Significato geometrico della derivata.

32. Significato geometrico della derivata. 32. Significato geometrico della derivata. 32. Significato geometico della deivata. Deivata Definizione deivata di una funzione in un punto (30) Definizione deivata di una funzione (30) Significato della deivata Deivata in un punto (32) Deivata

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio e ampiezza (

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 PRV RDINMENT 009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio

Dettagli

9 GRAVITAZIONE UNIVERSALE

9 GRAVITAZIONE UNIVERSALE 9 GRAVIAZIONE UNIVERSAE e conoscenze elative alla foza di gavitazione si sono sviluppate a patie dalle ossevazioni astonomiche del moto dei pianeti del sistema solae Attaveso tali ossevazioni yco Bahe

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

Campo elettrico e potenziale di un disco uniformemente carico

Campo elettrico e potenziale di un disco uniformemente carico Campo elettico e poteniale di un disco unifomemente caico q S densità supeficiale di caica Consideo l anello di aggio e spessoe d calcolo l anello sommo sugli anelli ho due integaioni dq da πd d Σ anello

Dettagli

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso Il volano 1 Dinamica del copo igido Il poblema dello studio del moto di un copo igido libeo è il seguente: data una ceta sollecitazione F e del copo, cioè cete foze estene F i applicate nei punti del copo

Dettagli

Grandezze cinematiche angolari (1)

Grandezze cinematiche angolari (1) Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5 8360 - FISICA MATEMATICA 1 A.A. 014/15 Poblemi dal libo di testo: D. Giancoli, Fisica, a ed., CEA Capitolo 5 Poblema 1 Un bimbo su una giosta si muove con una velocità di 1.5 m/s quando è a 1.10 m dal

Dettagli

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998 LIBRO DI TESTO S.Melone, F.Rustichelli Intoduzione alla Fisica Biomedica Libeia Scientifica Ragni Ancona, 1998 TESTO DI CONSULTAZIONE E WEB F.Bosa, D.Scannicchio Fisica con Applicazioni in Biologia e Medicina

Dettagli

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi Le 5 espessioni del Q nel campo dei vapoi satui A C K B Consideiamo la tasfomazione AB che si svolge tutta all inteno della campana dei vapoi satui di una sostanza qualsiasi. Supponiamo quindi di andae

Dettagli

Attività didattica Determinazione della massa di Giove tramite le osservazioni dei satelliti galileiani

Attività didattica Determinazione della massa di Giove tramite le osservazioni dei satelliti galileiani Piazza. Ungaetti, 1 81100 Caseta tel. 08/44580 - www.planetaiodicaseta.it, info@planetaiodicaseta.it Attività didattica Deteminazione della massa di iove tamite le ossevazioni dei satelliti galileiani

Dettagli

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis 1 Un punto di vista euistico elativo alla evoluzione del Sistema Solae Paolo Allievi Albeto Totta Convegno Mathesis Tento,3,4 Novembe 006 Ipotesi di base: ogni copo emette natualmente e continuamente enegia

Dettagli

LEZIONE 09 MOMENTO DI UNA FORZA Torque

LEZIONE 09 MOMENTO DI UNA FORZA Torque LEZIONE 09 OENO DI UNA ORZA oque Nella dinamica del punto mateiale, fissata la massa e la foa, si deduce una sola acceleaione lineae. Nelle otaioni, la stessa foa applicata sulla stessa massa, può invece

Dettagli

I.14. Le forze conservative e l'energia potenziale

I.14. Le forze conservative e l'energia potenziale I.14. Le foze consevative e l'enegia potenziale Ripendiamo la definizione di lavoo Il lavoo di alcune foze speciali Le foze consevative e la enegia potenziale L enegia potenziale pe le foze costanti, elastica

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

v t V o cos t Re r v t

v t V o cos t Re r v t Metodo Simbolico, o metodo dei Fasoi Questo metodo applicato a eti lineai pemanenti consente di deteminae la soluzione in egime sinusoidale solamente pe quanto attiene il egime stazionaio. idea di appesentae

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E.

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E. Univesità La Sapienza - Ingegneia Infomatica e Automatica Coso i Fisica Geneale: MOTI RELATIVI A. Bosco, F. Pettazzi e E. Fazio Consieiamo un punto mateiale P che si muove i moto abitaio all inteno i un

Dettagli

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica.

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica. 7. LA DINAMICA Ta la foza applicata ad un copo e il moto che essa povoca esistono dei appoti molto stetti che sono studiati da una banca della fisica: la dinamica. Lo studio della dinamica si è ilevato

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

Fisica Generale II con Laboratorio. Lezione - 3

Fisica Generale II con Laboratorio. Lezione - 3 Fisica Geneale II con Laboatoio Lezione - 3 Richiami - I Riassunto leggi della meccanica: Leggi di Newton 1) Pincipio di inezia Esistono sistemi di ifeimento ineziali (nei quali un copo non soggetto a

Dettagli

Momenti. Momento di una forza, momento di inerzia, momento angolare

Momenti. Momento di una forza, momento di inerzia, momento angolare Momenti Momento di una foza, momento di inezia, momento angolae Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Fondamenti di Gravitazione

Fondamenti di Gravitazione Fondamenti di Gavitazione Intoduzione all Astofisica AA 205/206 Pof. Alessando Maconi Dipatimento di Fisica e Astonomia Univesità di Fienze Dispense e pesentazioni disponibili all indiizzo http://www.aceti.asto.it/

Dettagli

ed è pari a: 683 lumen/watt, pertanto:

ed è pari a: 683 lumen/watt, pertanto: RICIAI GRADEZZE FOTOMETRICHE Fattoe di visibilità (o di sensibilità visiva) K ( λ) : funzione che appesenta la sensibilità media dell occhio umano a adiazioni di diffeente lunghezza d onda ma di eguale

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

7. Sistemi articolati.

7. Sistemi articolati. 7. Sistemi aticolati. In questo capitolo sono fonite alcune infomazioni di base sui meccanismi aticolati piani. Si affonteanno essenzialmente poblematiche elative alla analisi di posizione. Vediamo alcuni

Dettagli

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II)

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II) isica Geneale A 9. oze Ineziali http://campus.cib.unibo.it/2429/ ctobe 21, 2010 ambiamento di istema di ifeimento ome cambia la descizione del moto passando da un d a un alto? In paticolae, come cambia

Dettagli

Sulla carica viene esercitata la forza magnetica. traiettoria circolare.

Sulla carica viene esercitata la forza magnetica. traiettoria circolare. Moto di caiche in Campo Magnetico Consideiamo una paticella di massa m e caica puntifome +q in moto con velocità v pependicolae ad un campo B unifome. B α v + F F v Nel piano α, B veso l alto Sulla caica

Dettagli

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude Legge di Ohm. Obiettivi didattici: Veifica della elazione ta coente e d.d.p. pe un conduttoe metallico. Veifica della elazione ta la esistenza di un conduttoe e le sue dimensioni (lunghezza, sezione) Misua

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

E1.2 Velocità della luce in un cavo coassiale

E1.2 Velocità della luce in un cavo coassiale E1.2 Velocità della luce in un cavo coassiale Obiettivo Misuae la velocità di popagazione di un segnale elettomagnetico (velocità della luce) in un cavo coassiale. Mateiali e stumenti Un cavo coassiale

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

Nicola De Rosa maturità 2015

Nicola De Rosa maturità 2015 www.matematicamente.it Nicola De Rosa matuità 5 Esame di stato di istuzione secondaia supeioe Indiizzi: LI SCIENTIFICO LI - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica (Testo valevole anche

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

RANGO DI UNA MATRICE RAN. 1 Operazioni elementari di riga

RANGO DI UNA MATRICE RAN. 1 Operazioni elementari di riga RN RNGO DI UN MTRICE Opeazioni elementai di iga Data una matice IR (mn) si dice opeazione elementae di iga ciascuna delle seguenti opeazioni: scambio della iesima iga con la jesima; moltiplicazione della

Dettagli

5 DINAMICA DEL PUNTO MATERIALE: Lavoro ed energia.

5 DINAMICA DEL PUNTO MATERIALE: Lavoro ed energia. 5 DINAMICA DEL PUNTO MATERIALE: Lavoo ed enegia. 5.1 Intoduzione Il poblema fondamentale della dinamica del punto mateiale consiste nel deteminae la legge oaia del moto di un copo, una volta note le foze

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari Coso di Pogetto di Stuttue POTENZA, a.a. 3 Le piaste anulai Dott. aco VONA Scuola di Ingegneia, Univesità di Basilicata maco.vona@unibas.it http://www.unibas.it/utenti/vona/ LE PIASTE CICOLAI CAICATE ASSIALENTE

Dettagli

Vista dall alto. Vista laterale. a n. Centro della traiettoria

Vista dall alto. Vista laterale. a n. Centro della traiettoria I poblema Un ciclista pedala su una pista cicolae di aggio 5 m alla velocità costante di 3.4 km/h. La massa complessiva del ciclista e della bicicletta è 85.0 kg. Tascuando la esistenza dell aia calcolae

Dettagli

Cambiamento del Sistema di Riferimento

Cambiamento del Sistema di Riferimento Cambiamento del Sistema di Rifeimento Il moto dipende dal sistema di ifeimento dal quale viene ossevato: Un viaggiatoe seduto sul sedile di una caozza feoviaia non si muove ispetto al vagone Se ossevato

Dettagli

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I.

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. SIMULAZINE DELLA PRVA D ESAME DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. Risolvi uno dei due poblemi e 5 dei quesiti del questionaio. PRBLEMA In un piano è data la ciconfeenza di cento e aggio A ; conduci

Dettagli

1 Definizioni e proprietà

1 Definizioni e proprietà Definizioni e popietà Retta e ciconfeenza ngoli al cento ed angoli alla ciconfeenza Equazione della ciconfeenza nel piano catesiano 5 Posizioni elative ed asse adicale di due ciconffeenze Definizioni e

Dettagli

Momenti d'inerzia di figure geometriche semplici

Momenti d'inerzia di figure geometriche semplici Appofondimento Momenti d'inezia di figue geometice semplici Pidatella, Feai Aggadi, Pidatella, Coso di meccanica, maccine ed enegia Zanicelli 1 Rettangolo Pe un ettangolo di ase e altezza (FGURA 1.a),

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

1. INTRODUZIONE TRAIETTORIA E LEGGE ORARIA ESEMPIO DI CALCOLO DELLA LEGGE ORARIA IN FORMA PARAMETRICA VARI TIPI DI MOTO

1. INTRODUZIONE TRAIETTORIA E LEGGE ORARIA ESEMPIO DI CALCOLO DELLA LEGGE ORARIA IN FORMA PARAMETRICA VARI TIPI DI MOTO CINEMATICA 1. INTRODUZIONE... 2 2. TRAIETTORIA E LEGGE ORARIA... 3 3. ESEMPIO DI CALCOLO DELLA LEGGE ORARIA IN FORMA PARAMETRICA... 7 4. VARI TIPI DI MOTO... 9 5. IL MOTO DI UN GRAVE... 10 6. IL MOTO CIRCOLARE...

Dettagli

Docente Francesco Benzi

Docente Francesco Benzi MACCHINE ELETTRICHE Coso di Lauea in Ingegneia Industiale Anno Accademico 2015-2016 CONVERSIONE ELETTROMECCANICA - PRINCIPI Docente Fancesco Benzi Univesità di Pavia e-mail: fbenzi@unipv.it Dispense in

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

f = coefficiente di attrito

f = coefficiente di attrito La tasmissione di potenza ta albei con uote di fizione non è utilizzata peché ichiedeebbe enomi foze di contatto a fonte di modeste coppie tasmesse M = F t = N f f = coefficiente di attito Angolo d attito

Dettagli

Lezione mecc n.13 pag 1

Lezione mecc n.13 pag 1 Lezione mecc n.3 pag Agomenti di questa lezione Intoduzione alla dinamica dei sistemi Definizione di cento di massa Foze estene ed intene ad un sistema Quantità di moto e sue vaiazioni (pima equazione

Dettagli

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica Il campo magnetico caica genea campo elettico campo elettico impime foza su caica e allo stesso modo caica in moto genea campo magnetico campo magnetico impime foza su caica in moto campo magnetico (si

Dettagli

Utilizzando la forma complessa della legge di Ohm calcoliamo la corrente che scorre nel circuito r r

Utilizzando la forma complessa della legge di Ohm calcoliamo la corrente che scorre nel circuito r r Yui Geelli, uca Fontanesi, Riccado Campai ab. Elettomagnetismo INDUZIONE Scopo dell espeimento è duplice: dappima la misuazione dell induttanza di un solenoide, poi del coefficiente di mutua induzione

Dettagli

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme Le leggi Newtoniane del moto Le foze sono vettoi I 0 Pincipio o legge d inezia: un copo non soggetto ad alcuna sollecitazione estena mantiene il suo stato di quiete o di moto ettilineo unifome Moto acceleato:

Dettagli

Integrazione indefinita di funzioni irrazionali

Integrazione indefinita di funzioni irrazionali Esecizi di iepilogo e complemento Integazione indefinita di funzioni iazionali 0.5 setgay0 0.5 setgay Denotiamo con R(,,..., n ) una funzione azionale delle vaiabili indicate. Passiamo in assegna alcuni

Dettagli

Moto di puro rotolamento

Moto di puro rotolamento oto-taslaione di un copo igido di seione cicolae (disco,cilindo,sfea) su di un piano, pe il quale il punto (o i punti) di contatto ta il copo ed il piano è femo ispetto a questo ( non vi è stisciamento

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2 Enegia cinetica di un copo igido in otazione z Copo igido con asse di otazione fisso (Z) 1 1 ogni eleento del copo ha la stessa velocità angolae K un eleento a distanza K dall asse di otazione ha velocità

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi Capitolo 7 Costi e minimizzazione dei costi Soluzioni dei Poblemi 7.1 a) 500 b) 30% di 500, ossia 150 c) Senza idue il pezzo e posto che l impesa non possa vendee alte stampanti, il meglio che essa può

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione:

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione: oze di attito f N P Le foze di attito adente si geneano sulla supeficie di contatto di due copi e hanno la caatteistica di opposi sepe al oto elativo dei due copi. Le foze di attito adente non dipendono,

Dettagli

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia.

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia. Il campo elettico La stuttua dell atomo L'atomo è così chiamato peché inizialmente dai filosofi geci ea consideato l'unita più piccola ed indivisibile della mateia. In ealtà sappiamo che non è così. Cecando

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti icuiti R RIASSUNTO: () seie: impedenza () valoe isposta in fequenza () paallelo icuiti isonanti icuiti anti-isonanti icuito in seie I cicuiti pesentano caatteistiche inteessanti. Ad esempio, ponendo un

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

1 Le funzioni reali di variabile reale

1 Le funzioni reali di variabile reale 1.1 Le funzioni Definizione 1 Le funzioni eali di vaiabile eale Una funzione f: A B è una elazione che associa a ciascuno degli elementi di un insieme A (il dominio) uno ed uno solo degli elementi di un

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

MECCANICA. APPUNTI di. 1. Introduzione, leggi della dinamica

MECCANICA. APPUNTI di. 1. Introduzione, leggi della dinamica APPUNTI di MECCANICA pe gli allievi del coso di TEORIA E PROGETTO DI COSTRUZIONI E STRUTTURE 1. Intoduzione, leggi della dinamica In Fisica si assumono come fondamentali le gandezze seguenti: lunghezza,

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica wwwmatematicamenteit Nicola De osa matuità Esame di stato di istuzione secondaia supeioe Indiizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica Il candidato isolva uno dei due

Dettagli

La geometria di Schwarzschild

La geometria di Schwarzschild La geometia spaziotempoale dei buchi nei La geometia di Schwazschild In elatività non si pala di campo gavitazionale ma di geometia dello spaziotempo. L attazione ta due copi viene spiegata come effetto

Dettagli

Concetto di capacità

Concetto di capacità oncetto di capacità Il teoema di Gauss stabilisce che, posta una caica su un conduttoe isolato, il campo elettico E da essa podotto nello spazio cicostante è diettamente popozionale alla caica stessa:

Dettagli

Campo magnetico: concetti introduttivi

Campo magnetico: concetti introduttivi Appunti di Fisica II Campo magnetico: concetti intoduttivi Intoduzione ai fenomeni magnetici...1 Azione dei magneti su caiche elettiche in moto... Foza di Loentz...5 Selettoe di velocità...5 Invaianza

Dettagli

CAPACITA' Capacità pag 11 A. Scimone

CAPACITA' Capacità pag 11 A. Scimone Capacità pag 11 A. Scimone CAPACITA' Ci occupiamo aesso elle popietà ei conensatoi, ispositivi che accumulano la caica elettica. I conensatoi vengono usati in vai tipi i cicuiti. Un conensatoe è un insieme

Dettagli

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s.

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s. Potenziale elettostatico e lavoo Potenziale elettostatico Enegia potenziale elettostatica Esempi Moto di una caica in un potenziale e.s. Potenziale elettostatico Campo e.s. geneato da una caica puntifome

Dettagli

Docente Francesco Benzi

Docente Francesco Benzi MACCHINE ELETTRICHE Coso di Lauea in Ingegneia Industiale Anno Accademico 015-016 MACCHINE ELEMENTARI Docente Fancesco Benzi Univesità di Pavia e-mail: fbenzi@unipv.it Dispense in collaboazione con Giovanni

Dettagli

GRAVITAZIONE. F = G m 1m 2 d 2. 2.3 10 12 = 19 m. F S L = G m Sm L d 2 S L F T L = G m T m L d 2 T L. = G m Sm L S L. 20 kg 7.0 kg 18 2 = 2.

GRAVITAZIONE. F = G m 1m 2 d 2. 2.3 10 12 = 19 m. F S L = G m Sm L d 2 S L F T L = G m T m L d 2 T L. = G m Sm L S L. 20 kg 7.0 kg 18 2 = 2. GAVITAZIONE Esecizi svolti e discussi dal pof. Gianluigi Tivia scitto con Lyx - www.lyx.og. Legge di gavitazione Esecizio. Tovae la distanza che sepaa due copi puntifomi, con masse 5. kg e.4 kg, anché

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli