PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6."

Transcript

1 Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6. E nll sgunti? Ch la lunghzza dlla lancia A sta alla lunghzza dlla lancia B com 5 sta a, cioè ch la lancia A è lunga,5 volt la lancia B. Il rapporto è il più antico di mzzi scogitati dall uomo pr comunicar ad un altro uomo dimnsioni di animali. Supponiamo di volr spigar ad un ragazzo africano quanto psa un orso bianco (circa 600 Kg): lo capirà bn s gli diciamo psa quanto loni (circa 00 Kg). 1

2 Usando il pso dl lon com unità di misura si potrà pnsar = 6 = In gnral il rapporto vin usato pr confrontar fra loro du grandzz d sprim la misura dlla prima pr mzzo dlla sconda, prsa com unità di misura. Matmaticamnt il rapporto si sprim pr mzzo dl quozint tra du numri rali si sprim sotto forma di frazion o division: a : b = a b Così i du poligoni stanno fra loro nl rapporto :6 (ch si può indicar anch com 6 ), nl scondo nl rapporto 5: (o anch 5 ). Il primo di du numri è dtto antcdnt, il scondo consgunt dv ssr divrso da zro (non ha snso dividr un numro pr zro). Un rapporto non cambia s moltiplichiamo o dividiamo antcdnt consgunt pr una stssa quantità: = = 8 = 8 = 1 8 = 1 Vrificar ch dividndo pr una stssa quantità il rapporto riman inaltrato. Il fatto di sprimr una grandzza pr mzzo dl rapporto è usato anch nl linguaggio di tutti i giorni: La mia casa è grand du volt qulla di Mara. Cosa vuol dir? Ch l du cas stanno nl rapporto :1. Ni casi visti stavamo confrontando grandzz dllo stsso tipo (ar, lunghzz, psi), cioè con grandzz omogn; tuttavia il rapporto si usa anch pr confrontar grandzz non omogn, com avvin in fisica o in statistica. Pr smpio, in fisica, si sprim la vlocità com il rapporto fra lo spazio impigato il tmpo impigato pr prcorrrlo: V = s t

3 In statistica, lo si usa quando fra du fnomni sist un nsso logico, cioè una rlazion tal ch ci prmtta, pr mzzo dl rapporto, di ottnr un informazion più comprnsibil; pr smpio: Il numro di abitanti di uno stato diviso pr l ara dllo stato stsso è un rapporto ch fornisc informazioni sulla dnsità di popolazion. Dividndo il numro di tlfoni, o di autovttur, pr il numro dgli abitanti di una provincia ottrrmo un rapporto ch fornisc il numro di tlfoni fra abitanti in qulla provincia. Com pr qualsiasi frazion, di un rapporto è possibil avr il rapporto invrso. Esso si ottin scambiando l antcdnt con il consgunt. RAPPORTO DIRETTO RAPPORTO INVERSO 5/=.5 /5=0, 5: :5 I rapporti possono ssr variabili o costanti. Pnsat alla vlocità: ssa è divrsa s, nllo stsso tmpo, prcorriamo più strada, oppur s prcorriamo la stssa distanza in un tmpo divrso. Considriamo du blocchi di ghiaccio di volum divrso n confrontiamo il pso con blocchi dllo stsso volum di acqua distillata a C Volum Pso dl ghiaccio Pso dll acqua Rapporto (dm ) (Kg) (Kg) (PESO SPECIFICO) :00 =0, :750=0,9 Troviamo ch il rapporto riman invariato: il pso spcifico è infatti una carattristica costant di ogni singolo matrial. Anch in matmatica ci sono di rapporti ch rimangono smpr costanti: qullo fra la diagonal il lato di un quadrato qullo fra l altzza il lato di un triangolo quilatro qullo fra l apotma di un qualsiasi poligono rgolar il lato

4 Quadrato d = =1,1 L Triangolo h = =0,866 L Il rapporto fra l ombra proittata al suolo da un uomo alto 170 cm ch cammina sotto il sol la sua altzza è ugual al rapporto fra l ombra proittata al suolo, nllo stsso momnto, da un bambino alto 10 cm la sua altzza.

5 Ci sono prciò condizioni o situazioni nll quali il rapporto fra l du grandzz non cambia, anch s cambia la misura dll grandzz. In qusto caso si dic ch siamo di front a una situazion di proporzionalità. Una proporzion è un uguaglianza di rapporti. Tra l coppi di numri (6, ) (9, ) sist lo stsso rapporto 6 : = ; 9 : = Allora qusti numri possono ssr disposti in una proporzion, in qusto modo 6 6 : = 9 : oppur = 9 ch si lgg si sta a du com nov sta a tr. TERMINI DI UNA PROPORZIONE. In una proporzion distinguiamo trmini: a:b=c:d a b = c d a,d si dicono ESTREMI a:b=c:d a b = c d c,b si dicono MEDI a:b=c:d a b = c d a,c si dicono ANTECEDENTI a:b=c:d a b = c d b,d si dicono CONSEGUENTI PROPORZIONE CONTINUA Una proporzion si dic continua quando i trmini mdi dlla proporzion sono uguali: 1 1 : 6 = 6 : ovvro 6 = 6 Il valor 6 è dtto mdio proporzional. ALTRA DEFINIZIONE Quattro numri, dati in un crto ordin formano una proporzion s il rapporto fra i primi du è ugual al rapporto tra gli altri du. Pr smpio, i 5

6 numri, 8, 1, 6 sono proporzionali, infatti 8 = = 1 Invc i numri 5, 9, 0, 18 non lo sono, infatti 5 9 = = 10 9 PROPRIETA DELLE PROPORZIONI: PROPRIETA FONDAMENTALE In una proporzion il prodotto di mdi è ugual al prodotto tra gli strmi. Cioè s è vro ch Esmpio: : = 6 : = 6 a : b = c : d allora ad = bc = ; = 6; infatti = 1 6 = 1 PROPRIETA DELL INVERTIRE S in una proporzion si scambiano ntrambi gli antcdnti con i rispttivi consgunti si ha ancora una proporzion. a : b = c : d b : a = d : c a b = c d b a = d c Esmpio: : = 6 : = 6 = ; : = : 6; infatti = 1 PROPRIETA DEL PERMUTARE S in una proporzion si scambiano fra loro i mdi, oppur gli strmi, si ha ancora una proporzion. a : b = c : d a : c = b : d oppur d : b = c : a a b = c d Esmpio: : = 6 : = 6 inf atti a c = b d oppur d b = c a 6 = 1 = ; : = 6 : ; oppur : 6 = : = 6 = 6 oppur 6 = =

7 LE DUE PROPRIETA DEL COMPORRE. In ogni proporzion la somma di primi du trmini sta al primo (o al scondo) trmin com la somma dgli altri du trmini sta al trzo (o al quarto) trmin. a : b = c : d (a+b) : a = (c+d) : c oppur (a+b) : b = (c+d) : d In ogni proporzion la somma dgli antcdnti sta alla somma di consgunti com un antcdnt sta al proprio consgunt. a : b = c : d (a+c) : (b+d) = a : b oppur (a+c) : (b+d) = c : d Vrificar la proprità. LE DUE PROPRIETA DELLO SCOMPORRE. In ogni proporzion la diffrnza fra i primi du trmini (quando è possibil sguirla) sta al primo (o al scondo) trmin com la diffrnza fra gli altri du trmini sta al trzo (o al quarto) trmin. a : b = c : d (a b) : a = (c d) : c oppur (a b) : b = (c d) : d In ogni proporzion la diffrnza dgli antcdnti (quando è possibil sguirla) sta alla diffrnza di consgunti com un antcdnt sta al proprio consgunt. a : b = c : d (a c) : (b d) = a : b oppur (a c) : (b d) = c : d Vrificar la proprità. 7

8 VERIFICA DELLE PROPRIETA Pr uguaglianza di rapporti Pr la proprità fondamntal 0:1=5: 0:1=1,6 0 = 60 5:=1,6 1 5=60 (0+1):1=(5+): :1=,6 =96 8:=,6 1 8=96 (0+1):0=(5+):5 :0=1,6 5=160 8:5=1,6 0 8=160 (0-1):1=(5-): 8:1=0,6 8 = :=0,6 1 = (0-1):0=(5-):5 8:0=0, 8 5=0 :5=0, 0 =0 8

9 COME SI DETERMINA UN TERMINE INCOGNITO IN UNA PROPORZIONE Pr dtrminar un trmin incognito in una proporzion si usa la proprità fondamntal dll proporzioni; si trasforma cioè la proporzion nll guaglianza dl prodotto dgli strmi risptto al prodotto di mdi. Si hanno du casi, scondo ch il trmin incognito sia un mdio (o un strmo), oppur sia il mdio proporzional (o siano incogniti ntrambi gli strmi). 1 caso Il trmin incognito è un mdio o un strmo. Esmpio: x : 5 = 6 :. Sappiamo ch x = 5 6 ssndo la division l oprazion invrsa dlla moltiplicazion: x = 5 6 x = 10 PROPORZIONE PROPRIETA CALCOLO VALORE PROPORZIONE DATA FONDAMENTALE DELLA x DELLA x RISOLTA x : 6 = : x = 6 x = 6 x = 8 8 : 6 = : 5 : x = : 5 = x x = 5 x = 10 5 : 10 = : 8 : = x : = x x = 8 1 x = 8 : = : 1 9 : = 6 : x 9 x = 6 x = 6 9 x = 9 : = 6 : caso Il trmin incognito è mdio proporzional (o sono incogniti ntrambi gli strmi). Esmpio: 1 : x = x :. Applicando la proprità fondamntal si ha ch 1 = x 6 = x x = 6 9

10 Infatti 1 : 6 = 6 :. Esmpio: x : 8 = : x. Si ha Infatti : 8 = :. x = 8 x = 16 = A COSA SERVONO LE PROPRIETA DELLE PROPORZIONI? La proprità fondamntal abbiamo visto ch srv pr calcolar il trmin incognito di una proporzion, quando si conoscano i valori dgli altri trmini. Nlla risoluzion di problmi con l proporzioni, tuttavia, possono prsntarsi casi ni quali è ncssario ricorrr all altr proprità pr riportar a una forma ch si prsti alla risoluzion. Esmpio 1. Data la proporzion x : (x+) = 1 : 16 Non riuscirmo, con la rgola nota, a trovar il valor di x: bisogna quindi farlo sparir da uno di du trmini x o x+. Bastrbb usar la proprità dllo scomporr, ma pr farlo occorr ch il trmin da sottrarr (sottando) sia minor dl minundo. Usiamo la proprità dll invrtir: (x + ) : x = 16 : 1 Applichiamo la proprità dllo scomporr (x + x) : x = (16 1) : 1 : x = : 1 x = 1 Infatti 6 : (6+) = 1 : 16. = 6 Esmpio. Data la proporzion Proprità dll invrtir: x : (1-x) = 15 : 7 (1 x) : x = 7 : 15 10

11 Proprità dl comporr (1 x + x) : x = (7 + 15) : 15 1 : x = : 15 x = 1 15 = 5 ESERCIZI a. Risolvr l sgunti proporzioni 1) x : 7 = 9 : ) 15 : x = 1 : ) 1 : 8 = x : ) 0 : = 10 : 5) 8 : x = : 81 6) : x = 1 8 : 5 6 7) x : 5 = 15 : 75 8) 6 : x = : 1 9) 7 : 7 = 9 10 : x 10) 5 : = x : ) 1, :, = x : 6,8 1),5 : x = 9 : 16 1) x : = 1 : b. Calcola il mdio proporzional 1) 1 : x = x : 5 0 ) 8 : x = x : 5 5 ) 50 : x = x : ) 16 : x = x : 7 c. Pr ultriori srcizi vari vdr il foglio allgato. 11

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

La proporzione è un uguaglianza tra due rapporti. Es 3:4 =6:8. a:b = c:d

La proporzione è un uguaglianza tra due rapporti. Es 3:4 =6:8. a:b = c:d LE PROPORZIONI La proporzione è un uguaglianza tra due rapporti. Es 3:4 =6:8 In generale una proporzione si indica usando le lettere: a:b=c:d a e c sono antecedenti nei loro rispettivi rapporti così come

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

Rapporti e proporzioni

Rapporti e proporzioni Rapporti e proporzioni Si dice RAPPORTO FRA DUE NUMERI, il secondo dei quali sia diverso da zero, il quoziente ottenuto dividendo il primo per il secondo. a b = a b a e b si dicono TERMINI del rapporto

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

novembre 2015 suddivisioni di quantità, retta numerica, lunghezze e superfici, altezza di figure 2D e 3D

novembre 2015 suddivisioni di quantità, retta numerica, lunghezze e superfici, altezza di figure 2D e 3D MATEMATICA 2^ VERSO I TRAGUARDI DI COMPETENZA L alunno: gg scriv i numri naturali snza limiti prfissati; riconosc il valor posiziona dl cifr; calcola riga addizioni, moltiplicazioni; calcola divisioni

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

RAPPORTI E PROPORZIONI

RAPPORTI E PROPORZIONI RAPPORTI E PROPORZIONI RAPPORTI E PROPORZIONI Definizione: Dicesi rapporto fra due numeri, preso in un certo ordine, il quoziente della divisione fra il primo di essi e il secondo. Il rapporto tra i numeri

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui 1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di

Dettagli

Progettazione di sistemi distribuiti

Progettazione di sistemi distribuiti Progttazion di sistmi distribuiti Valutazion dll prstazioni: cnni Prformanc Cosa vuol dir ch un sistma è più vloc di un altro? Tmpo di risposta (tmpo di scuzion): diffrnza tra T c, l'istant in cui un task

Dettagli

I CAMBIAMENTI DI STATO

I CAMBIAMENTI DI STATO I CAMBIAMENTI DI STATO Il passaggio a uno stato in cui l molcol hanno maggior librtà di movimnto richid nrgia prché occorr vincr l forz attrattiv ch tngono vicin l molcol Ni passaggi ad uno stato in cui

Dettagli

a b a : b Il concetto di rapporto

a b a : b Il concetto di rapporto 1 Il concetto di rapporto DEFINIZIONE. Il rapporto fra due valori numerici a e b è costituito dal loro quoziente; a e b sono i termini del rapporto, il primo termine si chiama antecedente, il secondo si

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali:

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali: Fisica Gnral VI Schda n. 1 srcizi di ripilogo di contnuti di bas ncssari 1.) Dimostrar l sgunti idntità vttoriali:. A (B C) = B (A C) C (A B) (A B) = ( A) B ( B) A ( A) = ( A) 2 A. suggrimnto: è important

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

LE PROPORZIONI. Stefania Sciuto numeri&molecole.wordpress.com

LE PROPORZIONI. Stefania Sciuto numeri&molecole.wordpress.com LE PROPORZIONI Stefania Sciuto PROPORZIONE = UGUAGLIANZA TRA DUE RAPPORTI 3 5 6 10 3 5 6 10 3 : 5 = 6 : 10 3 sta a 5 come 6 sta a 10 TERMINI DELLE PROPORZIONI CONSEGUENTI 3 : 5 = 6 : 10 ANTECEDENTI TERMINI

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

REGRESSIONE LOGISTICA

REGRESSIONE LOGISTICA 0//04 METODI E TECNICHE DELLA RICERCA IN PSICOLOGIA CLINICA E LABORATORIO AA 04/05 PROF. V.P. SENESE Sconda Univrsità di Napoli (SUN) Facoltà di Psicologia Dipartimnto di Psicologia METODI E TECNICHE DELLA

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

di disequazioni lineari

di disequazioni lineari Capitolo Disquazioni Esrcizi sistmi di disquazioni linari Toria p. 68 L disquazioni l loro soluzioni Pr ciascuna dll sgunti disquazioni, invnta un problma ch possa ssr risolto con la disquazion stssa.

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando

Dettagli

Appendice A Richiami di matematica

Appendice A Richiami di matematica Appndic A Richiami di matmatica A. Notazion scintifica Uso dgli sponnti I numri ch incontriamo in chimica sono spsso strmamnt grandi (pr s. 8 80 000 000) o strmamnt piccoli (pr s. 0,000 004 63). Quando

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9 1 IL CONCETTO DI FUNZIONE 1 II-1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 5 3 Funzion invrsa 7 4 Rstrizion prolungamnto di una funzion 9 5 Soluzioni dgli srcizi 9 In qusta dispnsa affrontiamo

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N. TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è

RISOLUZIONI cap (a) La resistenza termica totale dello scambiatore di calore, riferita all'unità di lunghezza, è "Trmodinamica trasmission dl calor 3/d" 1 - Yunus A. Çngl RISOLUZIONI cap.19 19.1 (a) La rsistnza trmica total dllo scambiator di calor, rifrita all'unità di lunghzza, è (b) Il cofficint global di scambio

Dettagli

QUADRATI 60X60. ARTICOLO DESCRIZIONE SP (mm) MISURA (cm) 5 60x60 Non illuminato / 5 60x led da 0,06W. 5 60x60 Non illuminato Radio integrata

QUADRATI 60X60. ARTICOLO DESCRIZIONE SP (mm) MISURA (cm) 5 60x60 Non illuminato / 5 60x led da 0,06W. 5 60x60 Non illuminato Radio integrata Antprima Gli spcchi sono complmnti d arrdo molto importanti, in una casa così com in un ufficio o in un ngozio. Uno spcchio ha una funzion dcorativo-ornamntal fondamntal poiché, com pzzo d arrdo, può arricchir

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

la mente cosciente... oltre i neuroni?

la mente cosciente... oltre i neuroni? la mnt coscint... oltr i nuroni? smbra ch ci sia un problma insolubil pr la scinza! com puo il mondo fisico produrr qualcosa con l carattristich dlla mnt coscint? un problma cosi difficil ch qualcuno lo

Dettagli

0.06 100 + (100 100)/4 (100 + 2 100)/3

0.06 100 + (100 100)/4 (100 + 2 100)/3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

3 :

3 : COMPITI VACANZE 0 MATEMATICA CLASSE SECONDA Espressioni con le frazioni......... 0. Numeri decimali. Dopo aver stabilito che numero decimale puoi ottenere (osservando il denominatore), determina il numero

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

Lezione 24: Equilibrio termico e calore

Lezione 24: Equilibrio termico e calore Lzion 4 - pag. Lzion 4: Equilibrio trmico calor 4.. Antich spigazioni: il calorico Abbiamo visto ch, mttndo in contatto un corpo caldo con uno frddo, si avvia un procsso ch ha trmin quando i du corpi raggiungono

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

RAPPORTI E PROPORZIONI

RAPPORTI E PROPORZIONI MATEMATICA RAPPORTI E PROPORZIONI Prof.ssa M. Rosa Casparriello Scuola media di Fontanarosa PREREQUISITI Conoscere e saper applicare la proprietà invariantiva della divisione e la proprietà fondamentale

Dettagli

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor)

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor) Sommario Dispositivi lttronici l transistor bipolar a giunzion (bjt( bjt) l transistor bipolar a giunzion (bjt) com è fatto un bjt principi di funzionamnto (giunzion a bas corta) fftto transistor (

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.

lim x 3 lim Servendosi della definizione, verifica l esattezza dei limiti seguenti Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no. Edutcnica.it Dfinizion di it Srvndosi dlla dfinizion, vrifica l sattzza di iti sgunti Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. ( ) Esrcizio no. Soluzion

Dettagli

x 1 = t + 2s x 2 = s x 4 = 0

x 1 = t + 2s x 2 = s x 4 = 0 Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 prof. Cigliola Foglio n.10 Somma intrszion di sottospazi vttoriali Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove

Esercizio 3. Determinare la dimensione, la codimensione, una base, equazioni cartesiane, equazioni parametriche ed un complemento per U R 3, dove Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 Foglio n.10 Somma intrszion di sottospazi vttoriali prof. Cigliola Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi Capitolo 1 L insim di numri complssi 11 Introduzion ai numri complssi Dfinizion 111 Sia assgnata una coppia ordinata (a, b) di numri rali Si dfinisc numro complsso l sprssion z = a + ιb I numri a b sono

Dettagli

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO)

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) 10.11.2010 IT Gazztta ufficial dll'union uropa C 304 A/1 V (Avvisi) PROCEDIMENTI AMMINISTRATIVI UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) BANDO DI CONCORSI GENERALI EPSO/AST/109-110/10 CORRETTORI

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli

E ora qualche proporzione!

E ora qualche proporzione! CLASSE II B COMPITI PER LE VACANZE Come d accordo risolvi le espressioni ed i problemi con le frazioni del libro delle vacanze dello scorso anno; risolvi tante espressioni quante ti servono per un ripasso

Dettagli

IV-3 Derivate delle funzioni di più variabili

IV-3 Derivate delle funzioni di più variabili DERIVATE PARZIALI IV-3 Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma di Schwarz 8 6 Soluzioni dgli srcizi

Dettagli

UNITÀ 9 LE GRANDEZZE E LA PROPORZIONALITÀ

UNITÀ 9 LE GRANDEZZE E LA PROPORZIONALITÀ UNITÀ 9 LE GRANDEZZE E LA PROPORZIONALITÀ 9. Generalità Nelle unità precedenti abbiamo considerato insiemi di elementi (segmenti, angoli, superfici piane) con i quali abbiamo operato il confronto e la

Dettagli

Distanze di sicurezza e prevenzione degli infortuni. Distanze di sicurezza secondo le norme EN 349 e EN ISO 13857

Distanze di sicurezza e prevenzione degli infortuni. Distanze di sicurezza secondo le norme EN 349 e EN ISO 13857 Distanz di sicurzza prvnzion dgli infortuni Distanz di sicurzza scondo l norm EN 349 EN ISO 13857 Suva Tutla dlla salut Caslla postal, 6002 Lucrna Informazioni Tl. 041 419 58 51 Download www.suva.ch/waswo-i/66137

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

Parte IV: Spin e fisica atomica

Parte IV: Spin e fisica atomica Part IV: Spin fisica atomica Atomo in un campo magntico Esprinza di Strn Grlach Spin dll lttron Intrazion spin orbita doppitti spttrali Spin statistica 68 Atomo in un campo magntico Efftto classico: prcssion

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Albri di coprtura minimi Albro di coprtura (spanning tr) Dato un grafo G=(V, E, w) non orintato, connsso psato, un albro di coprtura di G è un sottografo X=(V, T) tal ch X è un albro (quindi connsso) T

Dettagli

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3.

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3. INDICE Torma di Cayly-Hamilton, forma canonica triangolazioni. Vrsion dl Maggio Argomnti sclti sulla triangolazion di matrici, il torma di Cayly-Hamilton sulla forma canonica dll matrici 3 3 pr i corsi

Dettagli

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza Qual quantità produrr? Massimizzazion dl profitto offrta concorrnzial In ch modo l imprsa scgli il livllo di produzion ch massimizza il profitto. Com l sclt di produzion dll singol imprs contribuiscono

Dettagli