Calcolo di integrali - svolgimento degli esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo di integrali - svolgimento degli esercizi"

Transcript

1 Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5 cos(+ e 5 sin(d 5 e5 e 5 5 cos(+ 5 5 sin( ] cos(e 5 d 5 5 e5 cos(+ 5 e5 sin( 9 cos(e 5 d. 5 Si oiene quindi 5 cos(e 5 d e5 ( 5cos( + sin(, 5 da cui cos(e 5 d e5 ( 5cos( + sin( + C. Indicando con I l inegrale richieso, si ha e 5 (5cos( + sin( ] (5e 5 5 (e. Lavoriamo come nell esercizio precedene, inegrando due vole per pari. A differenza dell esercizio, consideriamo sin(d come faore differenziale e e come faore finio. Si ha sin(e d cos( e + e cos(d cos( ] e sin( + e sin(e d cos( e + e sin( sin(e d. Si oiene quindi 5 sin(e d e ( sin( cos(, da cui sin(e d e ( sin( cos( + C. Indicando con I l inegrale richieso, si ha e ( sin( cos( ] ( e8.

2 Braides-Tauraso / Osserviamo che la funzione inegranda è pari. Indicao con I l inegrale richieso, risula arcan(d arcan d, avendo uilizzao la sosiuzione. Calcoliamo una primiiva di arcan, inegrando per pari. Scegliendo d come faore differenziale e arcan come faore finio, si ha arcan d arcan Effeuando la divisione ra i polinomi + d e +, si rova ( + + d. d. Ricordando ora che una primiiva di + è log( +, si ha arcan d arcan d + + d arcan + log( + +C. arcan + log( + ] ( + log. Di nuovo, la funzione inegranda è pari. Effeuando la sosiuzione, si ha arccos(d arccos d. Inegrando per pari, si ha ] arccos Per il calcolo dell ulimo inegrale, effeuiamo la sosiuzione sin y, da cui d cos ydy. In paricolare, i nuovi esremi di inegrazione sono y arcsin e y arcsin. Si ha sin ydy sin y( cos ydy (sin y sin y cos ydy cos y + cos y ]

3 inegrali ( Operando come nei due esercizi precedeni, si ha Inegrando per pari, si ha arcsin(d arcsin 9 ] d. arcsin d. d Per il calcolo dell ulimo inegrale, possiamo procedere come nell esercizio precedene o, in alernaiva, effeuare la sosiuzione y. Si oiene d y y dy y + dy y ( y ( y 5. ] ( y + y dy ] ( y ( y 9 ( 5 ( Si raa dell inegrale di una funzione razionale fraa in cui numeraore e denominaore hanno lo sesso grado. Possiamo effeuare la divisione ra i polinomi + + e + + 5oenendo , oppure, equivalenemene, decomporre nel modo seguene ( d + +5 d d d + ( + + d log( arcan( ++C.

4 Braides-Tauraso / Si ha quindi ] log( arcan( + log +. 7 Procedendo come nell esercizio precedene, si ha ( + + d + d d + + d + ( + d + log( + + arcan( + C. Si ha quindi + ] log( + + arcan( log +. 8 Usiamo la sosiuzione sinh, da cui si oiene sesinh log( + + e d cosh d. Inolre + sinh + cosh. I nuovi esremi di inegrazione sono sesinh e sesinh log( +. Si ha quindi log(+ sinh d. Calcoliamo una primiiva di sinh inegrando per pari. sinh d sinh cosh cosh d ( sinh cosh + sinh d sinh cosh sinh d. Si oiene sinh d sinh cosh + C. sinh cosh ]log(+.

5 5 inegrali Per calcolare comodamene sinh e cosh in log( +, può essere uile riornare alla variabile, ricordando che sinh, cosh + e log( + +. Si ha, perciò sinh cosh ]log(+ + log( + ] + ( log( +. 9 Per la parià della funzione inegranda, si ha +d. Effeuiamo ora la sosiuzione sinh, da cui si oiene sesinh log( + + e d cosh d. Inolre + sinh + cosh. Si ha log(+ cosh d. Inegrando per pari o, in alernaiva, uilizzando la relazione cosh cosh +, si rova che una primiiva di cosh sinh cosh + è. Calcoliamo ora una primiiva di cosh uilizzando un alro meodo. Ricordando che cosh e + e, si ha ( e cosh + e d d (e + e +d 8 e 8 e + (( e e + (( ( e e e + e + sinh cosh +, avendo ricordao che sinh e e. Si oiene quindi sinh cosh + ]log(+

6 Braides-Tauraso / e, riornando alla variabile sinh cosh + ]log(+ + + log( + + ( + log( +. ] Uilizzando la sosiuzione sinh, si ha d cosh d e + sinh + cosh. Si oiene quindi log(+ cosh cosh d ]log(+ log( +. Osserviamo che la funzione inegranda è pari. Inolre, la presenza di cos al numeraore suggerisce la sosiuzione sin. Si ha subio d sesinh + ] log( + ] + log( +. Effeuiamo la sosiuzione cos, da cui si oiene d + uilizzando il cono eseguio nell esercizio precedene. + d log( +, Si raa di un inegrale che deve essere raao con un po di aenzione. Effeuiamo un raccoglimeno al denominaore. Si ha cos (an + d. A queso puno, sembra naurale usare la sosiuzione an, mediane la quale i nuovi esremi di inegrazione sono an e an. Ne risulerebbe. Il risulao è, evidenemene, falso dao che I è un inegrale di una funzione posiiva su un inervallo di ampiezza non nulla. La sosiuzione an è lecia sugli inervalli in cui la funzione an è inieiva, e ciò non si verifica nell inervallo, ]. Per poerla uilizzare, è necessario suddividere, ] in sooinervalli nei quali an sia inveribile.

7 7 inegrali Grazie alla periodicià (di periodo di f( sin + cos d sin, valgono le segueni uguaglianze + cos sin + cos d sin + cos d + cos (an + d. sin + cos d Nell inervallo (,, la sosiuzione an è lecia. Effeuandola, si oiene + + d + + d, grazie alla parià della funzione inegranda. Calcoliamo l inegrale improprio mediane la definizione, ricordando che una primiiva di ( ( è arcan. Si ha + lim b + ( ] b arcan. + Operando come nell esercizio precedene, si ha sin + cos d + lim b + sin + cos d sin + cos d + cos ( an d + + d + arcan ( ] b sin + cos d + + d ( + d. 5 Effeuiamo qualche passaggio che ci permee di eliminare il valore assoluo. Si ha arcan + d arcan +d arcan d,

8 Braides-Tauraso / 8 avendo usao la sosiuzione +. Calcoliamo una primiiva di arcan inegrando per pari. arcan d arcan arcan + d ( + arcan + arcan + C. d ( + arcan ] 5 +. Eliminiamo il valore assoluo con gli sessi passaggi dell esercizio precedene. Si ha arcsin ( d + arcsin d, avendo usao la sosiuzione +. Inegriamo per pari e oeniamo arcsin ( d arcsin ( ] ( ] arcsin + d + d + ] +, ( d avendo osservao che una primiiva di è. 7 Uilizziamo la sosiuzione +, da cui si ha d d. Si oiene sin d. Calcoliamo una primiiva di sin inegrando due vole per pari. sin d cos + cos d ( cos + sin sin d ( cos + sin + C. ( cos + sin ] (.

9 9 inegrali 8 È dello sesso ipo dell inegrale dell esercizio precedene. Effeuando gli sessi passaggi, si ha sin d ( cos + sin ] 9. 9 Lavoriamo sul denominaore. Si ha 8+ + ( ( + d 8 + d, avendo usao la sosiuzione. Proseguiamo ora uilizzando la sosiuzione + y, da cui si ha d ydy e y. Si oiene Perciò d + d y y(y dy y dy log 8 log. ( y y y + ] y + dy log. Ripercorriamo i passaggi dell esercizio precedene operando in modo leggermene differene. Si ha 8+ ( ( + d y dy, + avendo usao la sosiuzione ( + y, da cui si ha quano calcolao nell esercizio precedene, si rova ( d ydy. Uilizzando log log.

10 Braides-Tauraso / Decomponiamo opporunamene la funzione inegranda. Si ha +5 ( + 5( + ( + ( + ( + e +5 ( + d 5arcan + + ( + d. Calcoliamo ora una primiiva di ( + inegrando per pari. Consideriamo come faore finio e ( + d come faore differenziale, osservando che una primiiva di ( + ( + è daa da. Si ha +, una primiiva di +5 ( + è daa da ( + d ( + d ( d ( + + arcan + C. 5arcan arcan arcan e l inegrale richieso vale ] + arcan Ripeendo i passaggi effeuai nel calcolo dell inegrale precedene, si rova +. Lavorando sul denominaore, si oiene d avendo usao la sosiuzione., si rova arcsin ]. d,

11 inegrali In alernaiva, l esercizio può essere svolo nel modo seguene. d ( d arcsin( ]. Ques ulimo procedimeno è uilizzao anche per il calcolo dell inegrale successivo. Si ha d ( arcsin( ]. 5 Si ha d. Uilizzando la sosiuzione sin si rova d cos d e sin cos cos, osservando che, nell inervallo di inegrazione, cos è posiivo. Perciò si oiene sin d sin cos ] 8. Ricordiamo che una primiiva di sin si può rovare inegrando per pari, analogamene a quano fao nell esercizio 8. Per il calcolo di queso inegrale, uilizziamo un meodo alernaivo a quello proposo nell esercizio precedene. Decomponiamo in queso modo d d + 9 ] + 9 d 9 d 9 8 ( +. 8 Per il calcolo dell ulimo inegrale, abbiamo uilizzao il risulao oenuo nell esercizio. 7 Decomponiamo la funzione inegranda nel seguene modo sin sin ( cos.

12 Braides-Tauraso / Si oiene (sin sin cos d ] cos + cos 5. 8 Decomponiamo la funzione inegranda nel seguene modo an an ( + an ( + an an an. Ricordando che una primiiva di ( + an an è an ] + log cos an, si ha log. 9 Poniamo e inegriamo per pari. Si ha log( d log d log ] ( log 5 log 5. Inegrando per pari si ha log d log ] ( 7 log 8 log 9. Scrivendo opporunamene la quanià soo radice, si ha ( + d sesinh log ( d + log( log ( ] ( + + ( log( +.

13 inegrali Lavorando come nell esercizio precedene, si ha ( + d sesinh ( d + ( ] (sesinh sesinh ( (sesinh + sesinh log( +. Moliplichiamo numeraore e denominaore per cos. Uilizziamo, inolre, la formula di duplicazione cos cos sin sin e la relazione fondamenale cos sin. Oeniamo ( sin cos ( sin + ( sin d. Effeuando la sosiuzione sin, si oiene l inegrale di una funzione razionale fraa. ( ( + ( d. ( Cerchiamo una primiiva di ( + ( usando il meodo di decomposizione per frai semplici. ( ( + ( ( + A + + B + C + ( A +B C +(5B C + A +B +C, ( + ( ( + da cui si rova 7 5 A 5,B,C. + d + d + d 7 5 log + + log log + 5 log log log 7 5 log ( 5 + ( 7 log 5 + log 5 9 log log. ]

14 Braides-Tauraso / Ripercorrendo i passaggi svoli nell esercizio precedene, si rova 7 log + log log. 5 Usiamo la sosiuzione log mediane la quale l inegrale proposo si riconduce a un inegrale di una funzione razionale fraa. Si ha log d. Uilizziamo il meodo di decomposizione per frai semplici e oeniamo A + B (A B +(A + B +, da cui si ricava A e B. log ( d log ] log + ( log( log log log log( log. Osserviamo che l inegrale proposo può essere calcolao più rapidamene osservando che una primiiva di è log, oppure usando la sosiuzione log,come illusrao nell esercizio successivo. Poniamo log.si oiene log log d d e d log ]log log log( log. 7 Per il calcolo dell inegrale richieso, uilizziamo la decomposizione sin sin ( cos e la sosiuzione cos.si oiene ( log( + d ( log( + d.

15 5 inegrali Calcoliamo una primiiva di ( log( + inegrando per pari, considerando ( d come faore differenziale e log( + come faore finio. ( ( log( + d log( + + d ( log( d. Per calcolare l ulimo inegrale, effeuiamo la divisione ra i polinomi e +. Si oiene Perciò e l inegrale richieso vale d + arcan + C ( log( + + ( + 8 ] arcan log Usiamo la decomposizione cos cos ( sin e la sosiuzione sin.si oiene ( log( + d. Ripercorrendo i passaggi svoli nell esercizio precedene, si rova ( log( + + ( + ( ] arcan ( log Esaminiamo il segno della quanià log.si ha log > < log < e <<e. Si rova, quindi, che nell inervallo di inegrazione risula log > e log log. Si ha (9 log d. Uilizzando la sosiuzione log,si oiene log 9 d log ( + + d log + ] log + log log log.

16 Braides-Tauraso / Osserviamo che log è posiivo nell inervallo di inegrazione. Procedendo come nell esercizio precedene, si rova + log log 8 log. Uilizzando la seguene decomposizione sin sin( + sin cos + cos sin si oiene sin d + cos sin d. cos Il primo inegrale è immediao e vale, il secondo si può risolvere uilizzando la sosiuzione cos. Si ha cos sin d cos ( cos sin d cos ( d d ( log ] + log. + log ( + log. Uilizzando la seguene decomposizione cos cos( + cos cos sin sin si oiene Ora, si ha cos cos d sin sin d. sin d.

17 7 inegrali Il primo inegrale si può risolvere uilizzando la sosiuzione sin.si ha cos cos d sin ( sin cos d sin ( d ( d log ] log. log. Uilizzando la sosiuzione,si ha e d. Ora, una primiiva di e può essere facilmene oenua inegrando per pari, considerando come faore finio e e d come faore differenziale. e d e e e ( + C. Si ha quindi e ( ]. Procedendo come nell esercizio precedene, si oiene. 5 Dalla disparià della funzione f( arcan, segue Usando poi la semplice sosiuzione,si ha arcan( arcan(. arcan ( + d.

18 Braides-Tauraso / 8 Cerchiamo una primiiva di finio e d come faore differenziale. ( + Ricordando che una primiiva di Decomponiamo ora oenendo A C arcan ( + inegrando per pari, considerando arcan come faore, si ha + ( + è arcan arcan d ( + ( + ( + ( + A + + B + C + e B. Si ha ( + ( + d ( + ( + d. (A + B +(B + C + A + C ( + ( + + d + d + + d log + log( + + arcan + C. Si oiene quindi ( + arcan log + + ] log( + ( log + log log. 8 Procedendo come nell esercizio precedene, si rova log. 7 Per calcolare queso inegrale, uilizziamo la sosiuzione cos( da cui si oiene sin(d d, cioè 8 sin cos d d. Si ha quindi ( + d. Calcoliamo una primiiva di ( + uilizzando quano oenuo nell esercizio. Si ha ( + d + ( + d ( + d arcan + ( + arcan ( arcan + ( + + C.

19 9 inegrali, si oiene ] arcan + ( Uilizziamo la formula di duplicazione sin( sin cos e la sosiuzione cos da cui si oiene sin d d., si ha sin cos cos d ( d ] / 5/ ( ( / / d 9 Uilizzando la formula di bisezione si ha ( sin cos, ( cos d ( cos d ] cos d. Calcoliamo ques ulimo inegrale inegrando per pari. Si oiene cos d sin + cos + C. sin + cos ] +.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del..9 TEMA Esercizio Si consideri la funzione f(x) = e x 6 x+, x D =], [. i) deerminare i ii di f agli esremi di D e gli evenuali asinoi;

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

FORMULE GONIOMETRICHE

FORMULE GONIOMETRICHE FORMULE GONIOMETRICHE sapendo che sen e 90 < < 80 calcolare sen, cos Ricordiamo le formule: sen cos cos sen per poer procedere dobbiamo quindi calcolare il coseno: ± sen ± ± 8 l ambiguià del segno può

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 06/07 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

dx =? 1 + y ) dy = 2( y ln 1 + y ) + C = 2 ( sin x ln 1 + sin x ) + C. N.B.: si sarebbe potuta eettuare n dall'inizio la sostituzione y = sin x.

dx =? 1 + y ) dy = 2( y ln 1 + y ) + C = 2 ( sin x ln 1 + sin x ) + C. N.B.: si sarebbe potuta eettuare n dall'inizio la sostituzione y = sin x. CALCOLO INTEGRALE per Informaica Risolzione dell'eserciazione n., aprile Es.. Calcolare i segeni inegrali indenii (i primi con pochi passaggi: + cos cos + osservando che D(cos + = cos = ( + cos, la sosizione

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± + 8 4 cos cos 80 + k60 ± 60 + k60 6)

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale e Meccanica, Prof. P. Mannucci Soluzioni degli esercizi di auoverifica.. Inegrali di superficie.. Dae la superficie Vicenza

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

( ) I METODI DI INTEGRAZIONE. f x da integrare nella somma di più. x,..., f n x che si sappiano già integrare. Ne segue che:

( ) I METODI DI INTEGRAZIONE. f x da integrare nella somma di più. x,..., f n x che si sappiano già integrare. Ne segue che: I METODI DI INTEGRAZIONE In queso paragrafo verranno illusrai i vari meodi di inegrazione che, pur non cosiuendo un procedimeno generale per effeuare l'inegrazione indefinia, permeono senz'alro di calcolare

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y ANALISI VETTORIALE ESERCIZI SU EQUADIFF Esercizio Calcolare l inegrale generale dell equazione differenziale = ( ) e deerminare quali soluzioni sono definie su uo R. Risposa Fuori dagli equilibri = 0 e

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Probabilià e Saisica 26-7 PBaldi, GTerenzi Tuorao 5, 2 aprile 27 Corso di Laurea in Maemaica Esercizio Dire se esisono delle cosani c ali che le funzioni a) f (x)

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013 UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA - Seconda prova scria di ANALISI MATEMATICA - APPELLO DEL 9 seembre 0 COGNOME... NOME... MATRICOLA... IMPORTANTE Al ermine della prova

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Universià degli Sudi di Firenze Corso di Laurea riennale in Fisica e Asrofisica Analisi Maemaica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Seconda prova inercorso ( Dicembre 5). Dimosrare che per ogni

Dettagli

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27 ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA SETTIMANA 27.. Convergenza di inegrali generalizzai. () Per ognuno dei segueni inegrali impropri deerminae qual è l insieme dei valori del paramero α > per

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale, Doc. M. Motta e G. Zanzotto

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale, Doc. M. Motta e G. Zanzotto Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale, oc. M. Moa e G. Zanzoo Soluzioni degli esercizi di auoverifica. 3. Inegrali di superficie.. ae la superficie Vicenza

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite INTEGRALI IMPROPRI Tes di auovaluazione. L inegrale improprio 5 d : (a) vale 4 5 (c) vale 5 4 (d) è negaivo.. L inegrale improprio 4 + 5 d : (a) vale 4 5 (c) vale 4 5 (d) ende a.. L inegrale improprio

Dettagli

TRASFORMATA DI FOURIER DI DISTRIBUZIONI

TRASFORMATA DI FOURIER DI DISTRIBUZIONI TRASFORMATA DI FOURIER DI DISTRIBUZIONI Tue le proprieà vise per la rasformaa di Fourier sono applicabili alle funzioni dello spazio S. Queso permee di rasferire le sesse proprieà alle disribuzioni di

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli 6 Aenzione: u() = l(). Si deermini il periodo fondamenale T e i coefficieni di Fourier a k del segnale a empo coninuo sen + 4 cos + cos(6 π 4

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR

ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR ESERCIZI SUL CALCOLO DI LIMITI CON GLI SVILUPPI DI TAYLOR a cura di Michele Scaglia SVILUPPI DI MACLAURIN DELLE PRINCIPALI FUNZIONI Ricordiamo nella abella che segue gli sviluppi di Taylor per x 0 delle

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST) V foglio di esercizi ESERCIZIO. Siano f(t) = t t + per ogni t R ed F una primitiva di f. Se F () =, si calcoli F (). Le primitive di f(t) sono tutte della forma

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati.

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in Farmacia - anno acc / docente: Giulia Giantesio, gntgli@unifeit Esercizi : Calcolo Integrale Integrali indefiniti

Dettagli

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona La cicloide Flaviano Baelli Diparimeno di Scienze Maemaiche Universià Poliecnica delle Marche, Ancona In una circonferenza γ di raggio r che poggia su una rea fissiamo un puno P e facciamo roolare senza

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del Analisi Maemaica II Corso di Ingegneria Gesionale Compio A del -6-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 Complemeni di Maemaica e Calcolo Numerico A.A. 2018-2019 Laboraorio 12 Cosideriamo il Problema di Cauchy: y () = f(,y()) I = [ 0, max ], y( 0 ) = y 0 y 0 R Scegliamo di suddividere I in sooinervalli di

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

Esercizi sulla soluzione dell equazione del calore

Esercizi sulla soluzione dell equazione del calore Esercizi sulla soluzione dell equazione del calore Corso di Fisica Maemaica 2, a.a. 202-203 Diparimeno di Maemaica, Universià di Milano 5 Dicembre 202 Equazione del calore omogenea Esercizio.. Si consideri

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 13

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 13 Complemeni di Maemaica e Calcolo Numerico A.A. 2017-2018 Laboraorio 13 Cosideriamo il Problema di Cauchy: y () = f(,y()) I = [ 0, max ], y( 0 ) = y 0 y 0 R Scegliamo di suddividere I in sooinervalli di

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

0.1 Formula di Gauss e formula di Stokes

0.1 Formula di Gauss e formula di Stokes 1.1 Formula di Gauss e formula di Sokes Siano Ω un apero di R 3, F un campo veoriale definio su Ω, S una superficie la cui chiusura è conenua in Ω. Supponiamo inolre che in S si possano disinguere due

Dettagli

Esercizi di Teoria dei Segnali. La Trasformata di Fourier

Esercizi di Teoria dei Segnali. La Trasformata di Fourier Esercizi di Teoria dei Segnali La Trasformaa di Fourier 1 Esercizio 1 Calcolare la rasformaa di Fourier del segnale di fig. 1.1. x() A B - T/ T/ fig.1.1 Per calcolare la rasformaa di queso segnalesi può

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

Analisi e Geometria 2 Docente: 2 luglio 2015

Analisi e Geometria 2 Docente: 2 luglio 2015 Analisi e Geomeria Docene: luglio 15 Cognome: Nome: Maricola: Ogni risposa deve essere giusificaa. Gli esercizi vanno svoli su quesi fogli, nello spazio soo il eso e, in caso di necessià, sul rero. I fogli

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

Professionisti, tecnici e imprese Gruppo Editoriale Esselibri - Simone. sistemi editoriali

Professionisti, tecnici e imprese Gruppo Editoriale Esselibri - Simone. sistemi editoriali Copyrigh 5 Esselibri S.p.A. Via F. usso, /D 8 Napoli Azienda con sisema qualià cerificao ISO : Tui i dirii riservai. È vieaa la riproduzione anche parziale e con qualsiasi mezzo senza l auorizzazione scria

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Esercizi di Analisi Matematica Equazioni differenziali

Esercizi di Analisi Matematica Equazioni differenziali Esercizi di Analisi Maemaica Equazioni differenziali Tommaso Isola 8 gennaio 00 Indice Generalià. Equazioni del primo ordine inegrabili 3. Teoria............................................ 3. Equazioni

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli. Si esprima la pare reale di x() = e ( +j) j, R nella forma Ae a cos(ω + ϕ) con A, a, ω, φ reali con A > e π < φ π. Svolgimeno. Applicando la

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: sin x = m con m x = arcsin m + k6 x = 8 arcsin m + k6 sin x = x = + k6 x = 5 + k6 sin(f (x)) = sin(g(x)) f(x) = g(x) + k6 o f (x) = 8 g(x)

Dettagli

Approccio Classico: Metodi di Scomposizione

Approccio Classico: Metodi di Scomposizione Approccio Classico: Meodi di Scomposizione Il Modello di Scomposizione Il modello maemaico ipoizzao nel meodo classico di scomposizione è: y =f(s, T, E ) dove y è il dao riferio al periodo S è la componene

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

SISTEMI DINAMICI DEL PRIMO ORDINE

SISTEMI DINAMICI DEL PRIMO ORDINE SISTEMI DINAMICI DEL PRIMO ORDINE I sisemi dinamici del primo ordine sono sisemi dinamici SISO rappresenai da equazioni differenziali lineari e a coefficieni cosani del primo ordine (n=): dy() dx() a +

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE. EQUAZIONI ELEMENTARI: A FUNZIONE SENO: m con m x arcsin m k6 x 8 arcsin m k6 x k6 x 5 k6 sin(f (x)) sin(g(x)) f (x) g(x) k6 o f(x) 8 g(x) k6 sin(x ) sin(x ) x x k6 o x 8 (x ) k6

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

e sostituendo il valore =6 si ottiene che:

e sostituendo il valore =6 si ottiene che: ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 011 CORSO DI ORDINAMENTO Quesionario Quesio 1 Poniamo = con i limii geomerici 0

Dettagli

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti

Recupero 1 compitino di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2018/2019. Prof. M. Bramanti Recupero 1 compiino di Analisi Maemaica Ingegneria Eleronica. Poliecnico di Milano Es. Puni A.A. 18/19. Prof. M. Bramani 1 Tema n 1 3 4 5 6 To. Cognome e nome in sampaello codice persona o n di maricola

Dettagli

1) Data la funzione f(x) =

1) Data la funzione f(x) = Analisi I per Ingegneria Online Prova scria del 0 0 06 A.A. 05/06 Si possono consulare libri, appuni, noe ec. Nome(Sampaello) Cognome(Sampaello) Maricola ) Daa la funzione f(x) = segueni domande (le dimosrazioni

Dettagli

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3 10 SRCITAZION sercizi svoli: Capiolo 15 Curva di Phillips sercizio 2 Capiolo 16 Disinflazione, disoccupazione e crescia sercizio 3 1 CAPITOLO 15 CURVA DI PHILLIPS Curva di Phillips Relazione che lega inflazione

Dettagli

Perturbazione armonica : teoria generale

Perturbazione armonica : teoria generale Perurbazione armonica : eoria generale Absrac Queso documeno rispecchia buona pare del capiolo XIII del Cohen. Si raa dapprima la ransizione ra due sai dello spero discreo di un non meglio specificao sisema,

Dettagli

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Velocià isananea Al diminuire dell inerallo di empo Δ, fissao il empo, la elocià ende ad un alore limie. Riducendo a zero l ampiezza dell inerallo di empo equiarrebbe a deerminare la elocià del puno maeriale

Dettagli

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica

Anno Scolastico maggio Esercitazione Prova Scritta di Matematica Anno Scolasico 15-16 5 maggio 16 - Eserciazione Prova Scria di Maemaica Il candidao svolga, a sua scela, uno dei problemi e quaro dei quesii proposi. ➊ L inflazione, cioè l aumeno generalizzao e prolungao

Dettagli

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1 Moo smorzao Nel precedene paragrafo abbiamo risolo il caso in cui l'accelerazione del puno maeriale è cosane. In queso paragrafo affroneremo il caso di una accelerazione dipendene dalla elocià. Consideriamo

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

Capitolo 1 - Introduzione ai segnali

Capitolo 1 - Introduzione ai segnali Appuni di eoria dei egnali Capiolo - Inroduzione ai segnali egnali coninui... Definizioni inroduive... Esempio: segnale esponenziale...3 Esempio: coseno...3 Osservazione: poenza di un segnale periodico...5

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Trasformata di Laplace e Trasformata Z

Trasformata di Laplace e Trasformata Z Teoria dei sisemi - Appendice Trasformaa di Laplace e Trasformaa Z Trasformaa di Laplace... Inroduione ai segnali (causali, regolari, di ordine esponeniale)... Il segnale di Heavyside...3 Definiione di

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez Facolà di Economia - Universià di Sassari Anno Accademico 2004-2005 Dispense Corso di Economeria Docene: Luciano Guierrez Uilizzo dei modelli di regressione per l analisi della serie soriche Programma:

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011 GEOMETRIA svolgimeno di uno scrio del Gennaio ) Trovare una base per lo spaio delle soluioni del seguene sisema omogeneo: + + 9 + 6. Il sisema può essere scrio in forma mariciale nel modo seguene : 9 6

Dettagli

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx.

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx. Calcolo Integrale 8 Soluzioni. Calcolare l integrale indefinito + d. R. Procediamo effettuando il cambio di variabile t = ossia = t e d = t dt. d = + t dt = t + t dt = log + t + c + t Se torniamo alla

Dettagli

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6. Argomenti 19 ottobre 2017

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6. Argomenti 19 ottobre 2017 Analisi Maemaica Ingegneria Informaica Gruppo 4, canale 6 Argomeni 9 oobre 207. Esercizio. Da p://www.ma.unip.i/~moni/a_ing_205/appuni2.pf (Maeriali iaici Successioni numerice.) suiare il capiolo 3 fino

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

Esercizi 5. Sistemi lineari

Esercizi 5. Sistemi lineari Esercizi 5 10\04\017 Sisemi lineari David Barbao Esercizio 1 (Appello 014-015 ese 3). Dao il sisema lineare: x 1 + x + 3x 3 + 4x 4 = 0 x + x 3 + 3x 4 = 0 x 1 x x 3 x 4 = 0 (1) sia T lo spazio delle soluzioni

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo appello 14 Febbraio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo appello 14 Febbraio 2011 Poliecnico di Milano Ingegneria Indusriale Analisi e Geomeria Primo appello 4 Febbraio 0 Cognome: Nome: Maricola: Compio A Es. : 7 puni Es. : 0 puni Es. 3: 7 puni Es. 4: 6 puni Es. 5: 3 puni Toale. a Scrivere

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

5 Soluzioni numeriche di equazioni differenziali

5 Soluzioni numeriche di equazioni differenziali 5 Soluzioni numeriche di equazioni differenziali 5. Meodo di Eulero per la soluzione approssimaa di equazioni differenziali del primo ordine in forma normale Dao un problema di Cauch { = f (,) ( ) =, il

Dettagli

SOLUZIONE = p 4 x = 1 4 x2 +

SOLUZIONE = p 4 x = 1 4 x2 + SOLUIONE (a) Per rovare che F () = + arcsin è una rimitiva di f() = sull intervallo (, ) è su ciente rovare che F () =f(), er ogni (, ) F () = + + / / = + + = = + + = + = f() (b) Sicuramente G() è una

Dettagli

Integrali impropri - svolgimento degli esercizi

Integrali impropri - svolgimento degli esercizi Integrali impropri - svolgimento degli esercizi La funzione integranda è continua su [, + e quindi localmente integrabile. Esaminiamone il segno: si ha < < sin5 > log 2 + 2 log log 2 + log 2 > ; quindi

Dettagli

Capitolo 5 - I sistemi lineari

Capitolo 5 - I sistemi lineari Appuni di Teoria dei segnali Capiolo 5 - I sisemi lineari Definizioni principali... Esempio: moliplicaore...3 Esempio: sommaore...3 Esempio: derivaore...4 Esempio: inegraore...5 Esempio: sommaoria discrea...6

Dettagli