Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U U

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6"

Transcript

1 EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano sono equiprobabili ( hanno la stessa probabilità di verificarsi), la probabilità di un evento E è il rapporto tra il numero dei casi favorevoli all evento E e il numero di tutti i casi possibili. Es. EVENTO E : lancio un dado ed esce un numero primo o dipari P(E)= /=/ Es. EVENTO E: lancio un dado e esce un numero che non è primo e neanche dipari P(E)= / = / l evento E è detto evento contrario all evento E e si indica con. evento A: Lancio un dado ed esce un numero minore o uguale a P(A)=/ Determina l evento contrario: =. P( - evento B: Estraggo da un mazzo di 0 carte una figura o un asso P(B)=.. = P( )= Il lancio di due dadi secondo dado,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, secondo dado Esempio: Qual è la probabilità di ottenere due numeri uguali lanciando due dadi? P= P( P( due numeri uguali)= /=/ P( )=P( non ottenere due numeri uguali )= -/=/ differenza in valore assoluto dei punteggi Esempio : Qual è la probabilità che lanciando due dadi si ottenga per somma 0? P(A)=P(somma dei punti =0) = /=/ P( P(somma dei punti diversa da 0) = - /=/ esercizi A : nel lancio di due dadi si ottiene per somma P(A)= B: nel lancio di due dadi si ha per somma un numero diverso da P(B)=. P(B) = P( )? C: lancio due dadi e la differenza in valore assoluto dei punteggi è. P(C )=. P( )= D: lancio due dadi e la somma è minore di P(D)= E: lancio due dadi e la somma è maggiore di P(E)= F: lancio due dadi e sul secondo dado esce un numero compreso tra e P(F)=. G: lancio due dadi ed esce il sul P(G)=.

2 lancio di monete: TESTA-CROCE Lancio di una moneta T C Lancio di monete T T C T T C C C Lancio di monete T T T C T T T C T C C T T T C C T C T C C C T C GLI EVENTI POSSONO COMBINARSI TRA LORO Lancio di monete T T T T C T T T T C T T C C T T T T C T C T C T T C C T C T C T T T T C C T T C T C T C C C T C T T C C C T C C T C C C C T C C A: lancio tre monete, viene testa sulla prima moneta P(A)=.. B: lancio tre monete, viene testa sulla prima moneta e sulla seconda moneta P(B)=.. C: lancio tre monete ed esce croce esattamente due volte P( C ) = D: lancio quattro monete e ottengono croce esattamente volte P(D)=.. E: lancio quattro monete ed esce croce solo una volta P(E)=. A ed B sono due eventi. A: pesco una carta dal mazzo di 0 carte e esce un re P(A)=/0=/0 B: pesco un asso da un mazzo di 0 carte ed esce un asso P(B)= $/0=/0 prima considerazione: i due eventi sono incompatibili o mutuamante escludentesi : se esce un re non può uscire un asso!!!!!!! Evento composto: UNIONE DI DUE EVENTI A U B = pesco una carta da un mazzo di 0 e esce un re o un asso P (A U B )= 8/0= / in questo caso P (A U B )= P(A) + P(B) = /0+/0=/ A re B assi MA NON è SEMPRE COSì! A ed B sono due eventi. A: pesco una carta dal mazzo di 0 e esce una regina P(A)=/0=/0 B: pesco un carta da un mazzo di 0 carte ed esce una carta di cuori P(B)= 0/0=/ i due eventi sono compatibili : infatti può uscire una regina di cuori!!!!!!! P(A U B) = P(A) + P(B) - P(A B ) = A regine regina B 9 carte di cuori A: lancio due dadi sul esce il B: lancio due dadi sul esce il una di cuori A U B = lancio due dadi, sul esce o esce secondo dado P(A U B) = P(A)+P(B) ( eventi incompatibili) P( sul esce o )= /=/

3 A: lancio due dadi, sul secondo dado esce un numero compreso tra e secondo dado P( sul secondo dado esce un numero compreso tra e )= /=/ B: lancio due dadi e la somma del risultato è minore di secondo dado P( la somma dei punti è minore di )= /=/ esempio di due eventi incompatibili B: lancio due dadi e la somma dei punti è minore di o maggiore di 7 P( A U B) = P(A)+P(B) secondo dado P( la somma dei punti è minore di o maggiore di 7)= /= 7/ P( la somma dei punti è minore di o maggiore di 7)= /+/ =/= 7/ esempio di due eventi compatibili P(A U B)= P(A) + P(B) - P(A B) teorema della somma logica B: lancio due dadi, sul oppure sul secondo dado esce un numero minore di secondo dado A B P( sul o sul secondo esce un numero < ) = 0/= /9 P( sul o sul secondo esce un numero < ) = / + / - / = 0/= /9

4 L EVENTO INTERSEZIONE DI DUE EVENTI P ( A B) = p(a)+p(b) E: lancio due dadi, sul e sul secondo esce il numero oppure il numero secondo dado P( esce o sul e sul secondo)= /=/9 P(A U B) = / + / - /= 0/=/9 E: lancio due dadi, sul o sul secondo esce il numero oppure il numero secondo dado P( esce o sul o sul secondo)= 0/=/9 bisogna considerare l intersezione dei due eventi A B : lancio due dadi ed esce un numero compreso tra e sul e anche sul secondo secondo dado A B P( esce numero compreso tra e sul e anche sul secondo)= /=/9 AUB : lancio due dadi, esce un numero compreso tra e sul o sul secondo secondo dado P( esce numero compreso tra o sul o sul secondo)= 0/=/9

5 A : lancio due dadi ed esce almeno un secondo dado P( lancio due dadi ed esce almeno un tre)= / B: lancio due dadi e la somma è dispari secondo dado P( la somma dei punti è dispari)= 8/=/ EVENTI INDIPENDENTI Due eventi sono indipendenti quando il verificarsi di un evento non modifica la probabilità di verificarsi dell altro evento. Esempio: lancio un dado ed esce il P(esce)=/ Lancio un dado ed esce un numero pari P(num. pari) = ½ lancio un dado ed esce un numero pari P(num. pari )=/ lancio un dado ed esce un numero minore di p( num <): /=/ i due eventi sono indipendenti Estraggo, da un urna con 0 palline rosse e verdi, una pallina rossa. P(pall. rossa ) = 0/= / Rimetto la pallina estratta nell urna e procedo a una seconda estrazione P(pall. rossa ) = 0/= / i due eventi sono compatibili e quindi dipendenti Estraggo, da un urna con 0 palline rosse e verdi, una pallina rossa. P(pall. rossa ) = 0/= / NON rimetto la pallina estratta nell urna e procedo a una seconda estrazione P(pall. rossa ) = 9/ I due eventi sono indipendenti I due eventi sono dipendenti

Probabilità esempi. Aiutiamoci con una rappresentazione grafica:

Probabilità esempi. Aiutiamoci con una rappresentazione grafica: Probabilità esempi Paolo e Francesca giocano a dadi. Paolo scommette che, lanciando due dadi, si otterrà come somma 8 oppure 9. Francesca scommette che si otterrà come somma un numero minore o uguale a

Dettagli

Evento Aleatorio. Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado)

Evento Aleatorio. Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado) ELEMENTI DI CALCOLO DELLE PROBABILITA Evento Aleatorio Un evento si dice aleatorio se può o non può verificarsi (Alea in greco vuol dire dado) Esempi di eventi aleatori 1. Ottenere un certo numero nel

Dettagli

CALCOLO DELLE PROBABILITA

CALCOLO DELLE PROBABILITA CALCOLO DELLE PROBABILITA Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma Nella ricerca scientifica, così come nella vita, trionfa l incertezza Chi guiderà il prossimo governo? Quanto

Dettagli

Matematica con elementi di statistica ESERCIZI: probabilità

Matematica con elementi di statistica ESERCIZI: probabilità Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.

Dettagli

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA

Dettagli

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.

È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo. A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di

Dettagli

Probability of Simple Events

Probability of Simple Events Probability of Simple Events vocabolario Evento: risultato di un esperimento. Spazio campionario omega Ω: insieme di tutti i casi possibili di un esperimento. Es: nel lancio di un dado: Ω={1,2,3,4,5,6}

Dettagli

Probability of Simple Events

Probability of Simple Events Probability of Simple Events Probabilità di semplici eventi Vocabolario: parole con significato speciale Evento: risultato di un esperimento. Spazio campionario omega Ω: l insieme di tutti i casi possibili

Dettagli

La probabilità matematica

La probabilità matematica 1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi

Dettagli

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi. La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA

Dettagli

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria

LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria ALGEBRA IL CALCOLO DELLE PROBABILITAÁ richiami della teoria n un evento E si dice casuale o aleatorio, quando il suo verificarsi dipende unicamente dal caso; n un evento si dice certo quando eá possibile

Dettagli

La probabilità composta

La probabilità composta La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il

Dettagli

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosiddette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

CALCOLO DELLE PROBABILITA' risultato non può essere previsto con certezza ogni risultato possibile di un esperimento

CALCOLO DELLE PROBABILITA' risultato non può essere previsto con certezza ogni risultato possibile di un esperimento CALCOLO DELLE PROBABILITA' Esperimento o prova Evento Spazio Campionario (Ω) una qualsiasi operazione il cui risultato non può essere previsto con certezza ogni risultato possibile di un esperimento insieme

Dettagli

A B. Si descrivano i seguenti eventi: ESEMPIO: {B1, C1, D1, S1} dove: B1 asso di bastoni, C1 asso di coppe, D1 asso di denari, S1 asso di spade

A B. Si descrivano i seguenti eventi: ESEMPIO: {B1, C1, D1, S1} dove: B1 asso di bastoni, C1 asso di coppe, D1 asso di denari, S1 asso di spade ESERCIZIO 1 1) Si consideri l'esperimento consistente nell'estrazione di una carta da un mazzo di carte napoletane. Siano: = evento consistente nell'estrazione di un asso B = evento consistente nell'estrazione

Dettagli

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti:

Scopo del Corso: Lezione 1. La Probabilità. Organizzazione del Corso e argomenti trattati: Prerequisiti: Lezione 1 La Probabilità Scopo del Corso: Introduzione alla probabilità e alle procedure di inferenza statistica Introduzione ad alcune importanti tecniche di analisi multivariata dei dati Organizzazione

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,

Dettagli

Elementi di Calcolo delle probabilità

Elementi di Calcolo delle probabilità Elementi di Calcolo delle probabilità Docente: Francesca Benanti 13 Dicembre 2007 1 Definizioni di Probabilità La teoria della probabilità è quella parte della matematica che, sulla base delle informazioni

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 51 Introduzione Il Calcolo delle

Dettagli

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina?

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? [4/52] 2. Estratta una Q, P che ad una seconda estrazione si presenti ancora

Dettagli

Probabilità. Spazi di probabilità

Probabilità. Spazi di probabilità Probabilità Paolo Montanari Appunti di Matematica Probabilità 1 Spazi di probabilità Un esperimento si dice casuale quando esso può essere ripetuto quante volte si vuole, ed il risultato di ogni esecuzione

Dettagli

Psicometria II: Laura Picconi.

Psicometria II: Laura Picconi. Psicometria II: Laura Picconi http://www.psicometria.unich.it/ http://www.psicometria.unich.it/ Sezione avvisi E necessario leggere con attenzioni gli avvisi e le comunicazioni che sono pubblicati sul

Dettagli

Test di preparazione all esame. Attenzione a non confonedere il coefficiente. n(n 1) (n m + 1) m(m 1) 2 1

Test di preparazione all esame. Attenzione a non confonedere il coefficiente. n(n 1) (n m + 1) m(m 1) 2 1 Test di preparazione all esame. Attenzione a non confonedere il coefficiente binomiale ( ) n m con la frazione n m. I coefficiente binomiale si può calcolare come ( ) n m = n(n 1) (n m + 1). m(m 1) 2 1

Dettagli

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3.

1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. Corso di Laurea INTERFACOLTÀ - Esercitazione di Statistica n 6 ESERCIZIO 1: 1. Descrivere gli spazi campionari dei seguenti esperimenti casuali: 1. lancio di un dado 2. lancio di due dadi 3. lancio di

Dettagli

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna.

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna. Università di Siena a.a. 28/9 Docente D. Papini COMPITO n. 1 a) Un dado non truccato viene lanciato due volte. Quant è la probabilità dell evento: al primo lancio esce un numero minore o uguale a 2 ed

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

DIPARTIMENTO SCIENZE POLITICHE E SOCIALI ABILITÀ LOGICO-MATEMATICHE A.A. 2018/2019 PROBABILITÀ

DIPARTIMENTO SCIENZE POLITICHE E SOCIALI ABILITÀ LOGICO-MATEMATICHE A.A. 2018/2019 PROBABILITÀ 1 PROBABILITÀ DI UN EVENTO PROBABILITÀ Si parla di eventi probabili o improbabili quando non si è sicuri se essi si verificheranno. Quando lanciamo in aria una moneta, da cosa dipende se dopo la caduta

Dettagli

La probabilità. Monia Ranalli. Ranalli M. Probabilità Settimana # 5 1 / 20

La probabilità. Monia Ranalli. Ranalli M. Probabilità Settimana # 5 1 / 20 La probabilità Monia Ranalli Ranalli M. Probabilità Settimana # 5 1 / 20 Sommario Concetti base Evento elementare, spazio campionario ed evento complementare Rappresentazioni dello spazio campionario Intersezione

Dettagli

Test di autovalutazione

Test di autovalutazione Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n Confronta le tue risposte con le soluzioni. n

Dettagli

Probabilità I Calcolo delle probabilità

Probabilità I Calcolo delle probabilità Probabilità I Calcolo delle probabilità Nozioni di eventi. Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Concetto di probabilità Cos'è una probabilità? Idea di massima:

Dettagli

5 di tutti i possibili risultati relativi a un determinato esperimento si chiama spazio probabilistico

5 di tutti i possibili risultati relativi a un determinato esperimento si chiama spazio probabilistico Gli eventi Torniamo ora a occuparci degli eventi. Qualunque sia la concezione utilizzata per determinare la probabilità di un evento, si lavora all'interno di un insieme determinato di casi possibili.

Dettagli

Foglio di Esercizi 10 con Risoluzione 18 dicembre 2017

Foglio di Esercizi 10 con Risoluzione 18 dicembre 2017 Matematica per Farmacia, a.a. 07/8 Foglio di Esercizi 0 con Risoluzione 8 dicembre 07 ATTENZIONE: in alcuni degli esercizi di Probabilità puó essere utile usare il Teorema di Bayes. Esercizio (Vedere il

Dettagli

Probabilità. Cominciamo dando una definizione operativa di probabilità.

Probabilità. Cominciamo dando una definizione operativa di probabilità. Probabilità Cominciamo dando una definizione operativa di probabilità. Definizione: Si dice probabilità di un evento X il rapporto p(x) fra il numero di casi favorevoli e il numero di casi possibili, nell

Dettagli

Probabilità delle cause:

Probabilità delle cause: Probabilità delle cause: Probabilità condizionata 2 Teorema delle probabilità composte A B) A) B/A) 3 Teorema delle probabilità totali B )! 4 Teorema delle probabilità delle cause n i A! B ) A / B ) B

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica niroma1.it. Probabilità

Esercitazioni di Statistica Dott.ssa Cristina Mollica niroma1.it. Probabilità Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@u niroma1.it Probabilità Esercizio 1. Un esperimento casuale consiste nel lanciare tre volte una moneta. Si determini lo spazio campionario

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 5. Introduzione alla probabilità: Definizioni di probabilità. Evento, prova, esperimento. Eventi indipendenti e incompatibili. Probabilità condizionata. Teorema di Bayes CONCETTI

Dettagli

Probabilità I. Concetto di probabilità. Definizioni di base: evento

Probabilità I. Concetto di probabilità. Definizioni di base: evento Concetto di probabilità Nozioni di eventi. Probabilità I Calcolo delle probabilità Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Cos'è una probabilità? Idea di massima:

Dettagli

Seconda legge di Mendel

Seconda legge di Mendel Seconda legge di Mendel Capitolo 2 semi rotondi P X semi grinzosi P F1 SOLO SEMI LISCI? F2 F2 AUTOIMPOLLINAZIONE SULLA STESSA PIANTA SI ORIGINA LA F2! Risultati di un incrocio diibrido I ncro c io pa r

Dettagli

ESERCIZI SULLA PROBABILITA

ESERCIZI SULLA PROBABILITA PROBABILITA CLASSICA ESERCIZI SULLA PROBABILITA 1) Si estrae una carta da un mazzo di 40 carte ; calcolare la probabilità che la carta sia: a. una figura; b. una carta di danari; c. un asso. 2) Un urna

Dettagli

Probabilità. Decisioni in condizioni di incertezza:

Probabilità. Decisioni in condizioni di incertezza: Probabilità Decisioni in condizioni di incertezza: Casi quotidiani e no Probabile / certo. Incertezza e futuro / incertezza e quantità-qualità delle informazioni. Probabilità come misura del grado di fiducia

Dettagli

Soluzione esercizi (quarta settimana)

Soluzione esercizi (quarta settimana) Soluzione esercizi (quarta settimana) Marco Riani Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? 1 Esempio Gioco la schedina mettendo a caso i segni (1 X

Dettagli

f(1, C) = 1; f(2, C) = 1; f(3, C) = 3; f(4, C) = 2; f(5, C) = 5; f(6, C) = V ar(x) = E[X 2 ] (E[X]) 2 =

f(1, C) = 1; f(2, C) = 1; f(3, C) = 3; f(4, C) = 2; f(5, C) = 5; f(6, C) = V ar(x) = E[X 2 ] (E[X]) 2 = SOLUZIONI DEGLI ESERCIZI SULLE VARIABILI ALEATORIE DISCRETE Esercizio. Si lanciano un dado equilibrato a sei facce e una moneta equilibrata. Se esce testa e il valore del dado è pari oppure croce e il

Dettagli

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9 Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4 o ancora: uscirà il numero 9 Possiamo dire che le previsione del tuo compagno sono la prima certa, la seconda

Dettagli

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari;

CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari; ARITMETICA ELEMENTIDICALCOLO DELLE PROBABILITAÁ PREREQUISITI l l l conoscere e costruire tabelle a doppia entrata conoscere il significato di frequenza statistica calcolare rapporti e percentuali CONOSCENZE.

Dettagli

Somma logica di eventi

Somma logica di eventi Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero

Dettagli

STATISTICA: esercizi svolti su ESPERIMENTI CASUALI, EVENTI e PROBABILITA

STATISTICA: esercizi svolti su ESPERIMENTI CASUALI, EVENTI e PROBABILITA STATISTICA: esercizi svolti su ESPERIMENTI CASUALI, EVENTI e PROBABILITA 1 1 ESPERIMENTI CASUALI, EVENTI E PROBABILITA 2 1 ESPERIMENTI CASUALI, EVENTI E PROBABILITA 1.1 Calcolo combinatorio. 1. Una squadra

Dettagli

ISTITUTO D ARTE A.VENTURI PROGRAMMA DI MATEMATICA SVOLTO A.S classe 4^ N grafica professionale

ISTITUTO D ARTE A.VENTURI PROGRAMMA DI MATEMATICA SVOLTO A.S classe 4^ N grafica professionale ISTITUTO D ARTE A.VENTURI PROGRAMMA DI MATEMATICA SVOLTO A.S. - classe ^ N grafica professionale Geometria analitica definizione di parabola e di circonferenza come sezione conica; definizione di parabola

Dettagli

258 Capitolo 9. La probabilità

258 Capitolo 9. La probabilità 258 Capitolo 9 La probabilità 96 Esercizi 96 Esercizi dei singoli paragrafi 9 - Gli eventi 9 Quali dei seguenti eventi sono certi, probabili, impossibili a ) Il giorno di Pasquetta pioverà; b ) il giorno

Dettagli

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità

Dettagli

Mappe concettuali. 1 Calcolo combinatorio. Le domande più importanti della vita sono, per la gran parte, davvero soltanto problemi di probabilità.

Mappe concettuali. 1 Calcolo combinatorio. Le domande più importanti della vita sono, per la gran parte, davvero soltanto problemi di probabilità. Le domande più importanti della vita sono, per la gran parte, davvero soltanto problemi di probabilità. La probabilità è ormai entrata a far parte della vita di ognuno. Inconsapevolmente viene citata nei

Dettagli

Si descrivano i seguenti eventi: ESEMPIO: {B1, C1, D1, S1} dove: B1 asso di bastoni, C1 asso di coppe, D1 asso di denari, S1 asso di spade

Si descrivano i seguenti eventi: ESEMPIO: {B1, C1, D1, S1} dove: B1 asso di bastoni, C1 asso di coppe, D1 asso di denari, S1 asso di spade ESERCIZIO 1 1) Si consideri l'esperimento consistente nell'estrazione di una carta da un mazzo di carte napoletane. Siano: = evento consistente nell'estrazione di un asso B = evento consistente nell'estrazione

Dettagli

incompatibili compatibili complementari eventi composti probabilità composta

incompatibili compatibili complementari eventi composti probabilità composta Un evento si dice casuale, o aleatorio, se il suo verificarsi dipende esclusivamente dal caso. La probabilità matematica p di un evento aleatorio è il rapporto fra il numero dei casi favorevoli f e il

Dettagli

La probabilità: introduzione

La probabilità: introduzione P a g. 1 La probabilità: introduzione Nei giochi e nella "realtà" spesso si devono fare scelte di cui non si sanno prevedere esattamente le conseguenze (quale carta conviene scartare? in quale orario conviene

Dettagli

STATISTICA A K (63 ore)

STATISTICA A K (63 ore) STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Esercizi Dati i tre insiemi A={x: 0 x 4} B={x: 3 x 10} C={x: -1 x 3} Si determinino gli eventi A U B U C A B C A B C c 1 A={x: 0

Dettagli

CALCOLO delle PROBABILITA

CALCOLO delle PROBABILITA Eventi certi : è certo che si verifichino es. il prossimo mese sarà luglio, domani sorgerà il sole Eventi probabili: non è certo che si verifichino es. domani pioverà? Quanti giorni di ricovero avrà quel

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Definizione di Spazio Campionario Definizione di Probabilità Eventi mutuamente esclusivi Eventi indipendenti Pricipio della somma Principio del prodotto Eventi certi : è certo

Dettagli

PROBABILITÀ. P ( E ) = f n

PROBABILITÀ. P ( E ) = f n PROBABILITÀ GLI EVENTI E LA PROBABILITÀ EVENTI CERTI, IMPOSSIBILI E ALEATORI Ci sono avvenimenti che accadono con certezza, mentre altri sicuramente non possono mai verificarsi. Per esempio, se una scatola

Dettagli

Probabilità I. Concetto di probabilità. Definizioni di base: evento

Probabilità I. Concetto di probabilità. Definizioni di base: evento Concetto di probabilità Nozioni di eventi. Probabilità I Calcolo delle probabilità Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Cos'è una probabilità? Idea di massima:

Dettagli

Note di probabilità. Mauro Saita Versione provvisoria, maggio 2014.

Note di probabilità. Mauro Saita Versione provvisoria, maggio 2014. Note di probabilità Mauro Saita Versione provvisoria, maggio 2014. Indice 1 Note di probabilità. 2 1.1 Eventi elementari. Spazio degli eventi.............................. 2 1.2 Definizione assiomatica

Dettagli

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi

Lezione 2. La probabilità oggettiva : definizione classica e frequentistica e loro problemi Lezione 2 La probabilità oggettiva : definizione classica e frequentistica e loro problemi La definizione classica Definizione classica: La probabilità di un evento E è il rapporto tra il numero dei casi

Dettagli

IL CALCOLO DELLA PROBABILITÀ

IL CALCOLO DELLA PROBABILITÀ IL LOLO LL PROILITÀ 1 Una scatola contiene quattro dischetti rossi numerati da 1 a 4, sei dischetti verdi numerati da 1 a e cinque dischetti bianchi numerati da 1 a 5. Si estrae un dischetto. Scrivi gli

Dettagli

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,

Dettagli

Calcolo della probabilità: quadro riassuntivo.

Calcolo della probabilità: quadro riassuntivo. Logicamente Calcolo della probabilità: quadro riassuntivo. Che cosa dobbiamo fare? Per risolvere gli esercizi relativi al calcolo delle probabilità, devi: 1. Sapere calcolare la probabilità di un evento

Dettagli

NOZIONI DI CALCOLO DELLE PROBABILITÀ

NOZIONI DI CALCOLO DELLE PROBABILITÀ NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni

Dettagli

QLaprobabilità dell'evento intersezione

QLaprobabilità dell'evento intersezione QLaprobabilità dell'evento intersezione Dati due eventi A e B consideriamo l'evento intersezione C'-A H B C. Prima di illustrare come si calcola la probabilità dell'evento intersezione, vediamo insieme

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4. CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente

Dettagli

ELEMENTI DI PROBABILITA (parte 2) 1 / 27

ELEMENTI DI PROBABILITA (parte 2) 1 / 27 ELEMENTI DI PROBABILITA (parte 2) 1 / 27 Combinazioni 2 / 27 Supponiamo di non essere interessati all ordine in cui sono disposti gli oggetti, per cui la parola abc sia indistinguibile dalla parola bca.

Dettagli

p. 1/24 INFORMAZIONI Prossime lezioni Giorno Ora Dove 26/01 14:30 P50 28/01 14:30 Laboratorio (via Loredan) 02/02 14:30 P50

p. 1/24 INFORMAZIONI Prossime lezioni Giorno Ora Dove 26/01 14:30 P50 28/01 14:30 Laboratorio (via Loredan) 02/02 14:30 P50 p. 1/24 INFORMAZIONI Prossime lezioni Giorno Ora Dove 26/01 14:30 P50 28/01 14:30 Laboratorio (via Loredan) 02/02 14:30 P50 p. 2/24 Ricapitolando... A causa dell ineliminabile presenza degli errori accidentali,

Dettagli

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è

Sia f la frequenza di un evento A e n sia la dimensione del campione. La probabilità dell'evento A è Cenni di probabilità di Carlo Elce Definizioni Lo spazio campionario per un esperimento è l'insieme di tutti i suoi possibili esiti. Per esempio, se l'esperimento è il lancio di due di dadi e si rappresentano

Dettagli

Probabilità: valutazione della possibilità che accada (o sia accaduto) r = 1 (c è un asso di cuori nel mazzo)

Probabilità: valutazione della possibilità che accada (o sia accaduto) r = 1 (c è un asso di cuori nel mazzo) Probabilità: valutazione della possibilità che accada (o sia accaduto) un evento. Probabilità di un evento P = r/n dove r = frequenza dell evento N = Numero di possibili eventi Esempio: Evento = estrazione

Dettagli

Soluzioni degli esercizi proposti

Soluzioni degli esercizi proposti Soluzioni degli esercizi proposti.9 a La cardinalità dell insieme dei numeri,..., 0 n che sono multipli di 5 è 0n 5. Dunque, poiché siamo in una condizione di equiprobabilità, la probabilità richiesta

Dettagli

Teoria della probabilità

Teoria della probabilità Introduzione alla teoria della probabilità Teoria della probabilità Primi sviluppi nel XVII secolo (Pascal( Pascal, Fermat, Bernoulli); Nasce nell ambito dei giochi d azzardo; d La prima formalizzazione

Dettagli

PROBABILITA. Nella costruzione dello spazio degli eventi la difficoltà aumenta notevolmente laddove sia necessario fare uso del prodotto cartesiano.

PROBABILITA. Nella costruzione dello spazio degli eventi la difficoltà aumenta notevolmente laddove sia necessario fare uso del prodotto cartesiano. Nella costruzione dello spazio degli eventi la difficoltà aumenta notevolmente laddove sia necessario fare uso del prodotto cartesiano. La costruzione dello spazio cartesiano richiede un grado di astrazione

Dettagli

Esercitazione del 13/03/2018 Istituzioni di Calcolo delle Probabilità

Esercitazione del 13/03/2018 Istituzioni di Calcolo delle Probabilità Esercitazione del /0/08 Istituzioni di Calcolo delle Probabilità David Barbato I quesiti con asterisco saranno accessibili dalla quinta settimana di lezione. Esercizio Vengono lanciati due dadi a 6 facce

Dettagli

Lezione 8. La Statistica Inferenziale

Lezione 8. La Statistica Inferenziale Lezione 8 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Probabilità. 2) Vengono estratte 5 carte; quale è la probabilità che ci siano esattamente 2 denari? ª 0,278. k fattori. n - k +1 ) k!

Probabilità. 2) Vengono estratte 5 carte; quale è la probabilità che ci siano esattamente 2 denari? ª 0,278. k fattori. n - k +1 ) k! Definizione classica = P A Probabilità numero esiti favorevoli numero esiti possibili Esempi 1) Da un mazzo di 40 carte (bastoni, coppe, denari, spade) ne viene estratta una; quale è la probabilità che

Dettagli

F.1 EVENTI E PROBABILITA

F.1 EVENTI E PROBABILITA F.1 EVENTI E PROBABILITA Breve storia del Calcolo delle probabilità Le origini del (moderno) Calcolo delle probabilità si fanno tradizionalmente risalire alla corrispondenza tra Pascal e Fermat su un problema

Dettagli

Lezione 1. La Statistica Inferenziale

Lezione 1. La Statistica Inferenziale Lezione 1 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica Capitolo 4 Probabilità Insegnamento: Statistica (gruppo C) Corso di Laurea Triennale in Economia Università degli Studi di Ferrara Docente: Dott.ssa A. Grassi Si ringrazia

Dettagli

Esercizi di Probabilità

Esercizi di Probabilità Esercizi di Probabilità Grazia Corvaia, Patrizio Lattanzio, Alessandra Nardi February 0, 09 L urna colorata In un urna si trovano 0 palline, 5 viola e 5 arancioni. Calcolare la probabilità che, in due

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

prima urna seconda urna

prima urna seconda urna Un po di fortuna Considera il seguente gioco: ci sono due urne contenenti delle palline perfettamente uguali tra loro, ma colorate diversamente, alcune bianche, altre nere. Nella prima urna ci sono una

Dettagli

TEST DI AUTOVALUTAZIONE PROBABILITÀ

TEST DI AUTOVALUTAZIONE PROBABILITÀ TEST DI AUTOVALUTAZIONE PROBABILITÀ Statistica 1 Parte A 1.1 Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale

Dettagli

Georia della probabilità

Georia della probabilità Georia della probabilità Definizione classica della probabilità La probabilità di un dato evento (E) è il rapporto fra il numero (s) dei casi favorevoli all'evento stesso e il numero (n) dei casi possibili,

Dettagli

6.2 La probabilità e gli assiomi della probabilità

6.2 La probabilità e gli assiomi della probabilità 6.2 La probabilità e gli assiomi della probabilità L introduzione alla teoria della probabilità può essere vista come un applicazione della teoria degli insiemi. Essa si occupa degli esperimenti il cui

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

CP110 Probabilità: Esonero 1. Testo e soluzione

CP110 Probabilità: Esonero 1. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 1 aprile, 2010 CP110 Probabilità: Esonero 1 Testo e soluzione 1. (7 pt Una scatola contiene 15 palle numerate da 1 a 15. Le palle

Dettagli

La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio

La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio Massimo Buzzi, Lucio Alberto Monti 1 Mappe Riassuntive 1.1 Calcolo combinatorio 1.2 Probabilità 1 2 Glossario

Dettagli

Si consideri un mazzo di carte da gioco francesi ed i seguenti eventi elementari:

Si consideri un mazzo di carte da gioco francesi ed i seguenti eventi elementari: ESERCIZIO 1.1 * Si consideri un mazzo di carte da gioco francesi ed i seguenti eventi elementari: A = {figura} B = {carta nera} C = {carta di fiori} D = {carta di cuori} Si determini la probabilità che,

Dettagli

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Università Roma Tre - Dipartimento di Matematica e Fisica 3 novembre 2016 Introduzione La probabilità nel linguaggio comune I E probabile

Dettagli

Introduzione al calcolo delle probabilità

Introduzione al calcolo delle probabilità Introduzione al calcolo delle probabilità Eventi certi, impossibili, aleatori Supponiamo di lanciare un dado e consideriamo i seguenti eventi : E ={ esce un numero compreso tra e 6 (estremi inclusi) }

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

DOMANDA 1: mettere una croce sulla affermazione esatta (90 89)

DOMANDA 1: mettere una croce sulla affermazione esatta (90 89) PROVA D ESAME - 0 marzo 00 nome: cognome: SSIS-INDIRIZZO MATEMATICA E MATEMATICA APPLICATA (primo anno MATEMATICA APPLICATA B: CALCOLO DELLE PROBABILITÀ Per le domande a risposta aperta il punteggio varia

Dettagli

ELABORAZIONI STATISTICHE Conoscenze (tutti)

ELABORAZIONI STATISTICHE Conoscenze (tutti) Scegli il completamento corretto. ELABORAZIONI STATISTICHE Conoscenze (tutti) 1. Una variabile statistica è di tipo qualitativo se: a. fa riferimento ad una qualità b. viene espressa mediante un dato numerico

Dettagli