LA FORZA...SIA CON TE!

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LA FORZA...SIA CON TE!"

Transcript

1 LA FORZA...SIA CON TE!

2 CHE COS'E' LA FORZA? E' UNA GRANDEZZA FISICA VETTORIALE. L'UNITA' DI MISURA NEL S.I. E' IL "NEWTON" ( N ), DAL CELEBRE SCIENZIATO INGLESE ISAAC NEWTON, CHE NE HA STUDIATO LE LEGGI, PUBBLICATE NEI "PRINCIPIA". SI DICE CHE: UNA FORZA APPLICATA AD UN CORPO PUO' PROVOCARNE UNA VARIAZIONE DELLO STATO, SIA ESSO DI QUIETE O DI MOTO.

3 SCALARE evettoriale SI DICE SCALARE UNA GRANDEZZA FISICA RAPPRESENTATA SOLO DA UN NUMERO, IL VALORE DELLA GRANDEZZA, ACCOMPAGNATO DALL'UNITA' DI MISURA SI DICE VETTORIALE UNA GRANDEZZA FISICA RAPPRESENTATA DA UN VETTORE, IN CUI OLTRE AL VALORE DELLA GRANDEZZA SONO IMPORTANTI DIREZIONE E VERSO NE ABBIAMO GIA' PARLATO QUANDO ABBIAMO CONFRONTATO MASSA (SCALARE) E PESO ( VETTORIALE). PER INDICARE CHE UNA GRANDEZZA VETTORIALE SI DISEGNA UNA FRECCIA SOPRA IL SUO SIMBOLO : F

4 VETTORI IN MATEMATICA E IN FISICA UN VETTORE E' RAPPRESENTATO DA UNA FRECCIA. SI DISTINGUONO 3 CARATTERISTICHE FONDAMENTALI: INTENSITA' O MODULO : E' IL NUMERO ASSOCIATO AL VETTORE; LA LUNGHEZZA DELLA FRECCIA E' PROPORZIONALE A QUESTO VALORE. DIREZIONE : E' DATA DALLA RETTA A CUI APPARTIENE IL VETTORE; VERSO : E' INDICATO DALLA FRECCIA

5 RISULTANTE DELLE FORZE SE SU UN CORPO AGISCONO PIU' FORZE, L'EFFETTO SULLO STATO DEL CORPO SARA' DATO DALL' INSIEME DEGLI EFFETTI DELLE SINGOLE FORZE. LA SOMMA (VETTORIALE) DELLE FORZE CHE AGISCONO SU UN CORPO E' DETTA RISULTANTE DELLE FORZE : R = Ʃ F LA SOMMA VETTORIALE NON E' LA SEMPLICE SOMMA DEI VALORI DELLE FORZE: DIPENDE ANCHE DA DIREZIONE E VERSO. DOBBIAMO QUINDI SAPERE COME SI ESEGUE LA SOMMA DI DUE VETTORI.

6 SOMMA DI VETTORI (1) CONSIDERIAMO DUE FORZE F1 ED F2 APPLICATE AD UNO STESSO CORPO, AVENTI STESSA DIREZIONE E STESSO VERSO. + = = LA RISULTANTE E' UNA FORZA CON STESSA DIREZIONE E VERSO, AVENTE PER MODULO LA SOMMA DEI MODULI.

7 SOMMA DI VETTORI (2) CONSIDERIAMO ORA DUE FORZE F1 ED F2 APPLICATE AD UNO STESSO CORPO, AVENTI STESSA DIREZIONE MA VERSO OPPOSTO. + = = LA RISULTANTE E' UNA FORZA CON STESSA DIREZIONE, VERSO UGUALE AL VETTORE MAGGIORE, MODULO UGUALE ALLA DIFFERENZA DEI MODULI.

8 OSSERVAZIONE SITUAZIONE PARTICOLARE DELLA SOMMA PRECEDENTE : DUE FORZE APPLICATE AD UNO STESSO CORPO, AVENTI STESSA DIREZIONE, VERSO OPPOSTO E STESSO MODULO. + = = 0 LA RISULTANTE DELLE FORZE E' UN VETTORE NULLO! VEDREMO TRA POCO CHE QUESTO CASO PARTICOLARE HA UN SIGNIFICATO FISICO MOLTO IMPORTANTE.

9 SOMMA DI VETTORI (3) CONSIDERIAMO INFINE DUE FORZE APPLICATE AD UNO STESSO CORPO, MA AVENTI DIVERSA DIREZIONE. + = = LA RISULTANTE DELLE FORZE E' LA DIAGONALE DEL PARALLELOGRAMMA AVENTE PER LATI LE DUE FORZE.

10 STATO DI UN CORPO SE UN CORPO E' FERMO, OVVERO SE LA SUA VELOCITA' E' ZERO, SI DICE CHE IL CORPO SI TROVA IN UNO STATO DI QUIETE. SE UN CORPO E' IN MOVIMENTO, ALLORA SI TROVA IN UNO STATO DI MOTO. IN PARTICOLARE SI PARLA DI : MOTO RETTILINEO : SE IL MOTO AVVIENE LUNGO UNA RETTA MOTO UNIFORME : SE LA VELOCITA' E' COSTANTE OSSERVAZIONE: PER STABILIRE LO STATO DI UN CORPO E' IMPORTANTISSIMO SCEGLIERE CHI OSSERVA IL CORPO, OVVERO IL SISTEMA DI RIFERIMENTO. OSSERVATORI DIVERSI POTREBBERO DESCRIVERE IL CORPO IN MODO PARZIALMENTE DIVERSO (ES. : IL PASSEGGERO DI UN TRENO IN VIAGGIO...)

11 EFFETTI DELLE FORZE CONSIDERIAMO FINALMENTE COSA ACCADE AD UN CORPO SE SU DI ESSO SI ESERCITANO DELLE FORZE. DUE SONO I CASI POSSIBILI: SE LA RISULTANTE DELLE FORZE E' ZERO, IL CORPO MANTIENE IL SUO STATO INIZIALE. IN QUESTO CASO SI PARLA DI EQUILIBRO. ALTRIMENTI CAMBIA LO STATO DEL CORPO, E PRECISAMENTE CAMBIA LA SUA VELOCITA': SE E' FERMO PUO' METTERSI IN MOTO, SE E' IN MOTO LA SUA VELOCITA' PUO' AUMENTARE O DIMINUIRE. LA FORZA APPLICATA CAUSA UN'ACCELERAZIONE DEL CORPO (= VARIAZIONE DELLA SUA VELOCITA').

12 PUNTO MATERIALE IN TUTTE LE RIFLESSIONI PRECEDENTI "DIMENTICATO" LA FORMA DEL CORPO A CUI SI APPLICANO LE FORZE. SAREBBE TROPPO COMPLICATO STUDIARE COSA ACCADE AD OGNI PUNTO DEL CORPO! IN FISICA SI PARLA DI "APPROSSIMAZIONE DI PUNTO MATERIALE" : IL CORPO VIENE IDENTIFICATO CON UN PUNTO DOTATO DELLA MASSA DEL CORPO. IN GENERE QUESTO PUNTO SI IDENTIFICA CON QUELLO CHE E' CHIAMATO BARICENTRO DEL CORPO.

13 MOMENTO DI UNA FORZA (cenno) IN TUTTE LE CONSIDERAZIONI FATTE, QUINDI, ABBIAMO CONSIDERATO SOLO FORZE APPLICATE AL BARICENTRO DI UN CORPO. E SE NON E' COSI'? PENSIAMO AD UNA PORTA, O AD UNA BILANCIA A DUE BRACCI O AD UNA STADERA... BISOGNA TENER CONTO ANCHE DELLA DISTANZA TRA IL BARICENTRO E IL PUNTO IN CUI E' APPLICATA LA FORZA. L'EFFETTO E' QUELLO DI UNA ROTAZIONE.

14 MOMENTO DI UNA FORZA (cenno) CONSIDERIAMO IL CASO SEMPLICE DI UN'ASTA, CON BARICENTRO B, E DI UNA FORZA F APPLICATA IN A E PERPENDICOLARE ALL'ASTA. B b A F LA DISTANZA "AB" E' CHIAMATA BRACCIO b. SI DEFINISCE MOMENTO M DELLA FORZA F IL PRODOTTO TRA LA FORZA E IL BRACCIO: M = F b IL MOMENTO HA VALORE POSITIVO SE DETERMINA UNA ROTAZIONE ORARIA; ALTRIMENTI E' NEGATIVO.

15 RISULTANTE DEI MOMENTI LA RISULTANTE DEI MOMENTI AGENTI SULLA BARRA E' LA SOMMA DI TUTTI I MOMENTI DELLE FORZE APPLICATE. COME PER LE FORZE, SI HA CHE: SE LA RISULTANTE DEI MOMENTI E' ZERO, IL CORPO NON CAMBIA IL SUO STATO. SI PARLA DI EQUILIBRIO. ALTRIMENTI IL CORPO CAMBIA IL SUO STATO, PRECISAMENTE VARIA LA SUA VELOCITA'.

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

4 FORZE FONDAMENTALI

4 FORZE FONDAMENTALI FORZA 4! QUANTE FORZE? IN NATURA POSSONO ESSERE OSSERVATE TANTE TIPOLOGIE DI FORZE DIVERSE: GRAVITA' O PESO, LA FORZA CHE SI ESERCITA TRA DUE MAGNETI O TRA DUE CORPI CARICHI, LA FORZA DEL VENTO O DELL'ACQUA

Dettagli

L EQUILIBRIO DEL PUNTO MATERIALE

L EQUILIBRIO DEL PUNTO MATERIALE 1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione

Dettagli

FISICA: Le Forze. Giancarlo Zancanella (2014)

FISICA: Le Forze. Giancarlo Zancanella (2014) FISICA: Le Forze Giancarlo Zancanella (2014) 1 Cos è una forza 2 Il Principio D inerzia Un corpo mantiene inalterato il suo stato di quiete o di moto fino a quando non si gli applica una forza che ne cambia

Dettagli

LE FORZE. Grandezze Vettoriali.

LE FORZE. Grandezze Vettoriali. 1 LE FORZE Grandezze Vettoriali. Grandezze vettoriali sono quelle determinate dall'insieme di un numero, una direzione, un verso. Gli spostamenti sono esempi di grandezze vettoriali. Le grandezze come

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_)

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Energia meccanica Lavoro Energia meccanica Concetto di campo in Fisica Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro potete

Dettagli

COMPOSIZIONE E SCOMPOSIZIONE DI FORZE COMPLANARI (Distillazione verticale)

COMPOSIZIONE E SCOMPOSIZIONE DI FORZE COMPLANARI (Distillazione verticale) OMPOSIZIONE E SOMPOSIZIONE DI OZE OMPLNI (Distillazione verticale) OIETTIVO: SPEE OPEE ON GNDEZZE VETTOILI. Grandezza fisica (def.) PEEQUISITI: isoluzione triangolo rettangolo (appl.) teorema di Pitagora

Dettagli

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B 1 ENERGI PTENZILE 1 Energia potenziale 1.1 orze conservative Se un punto materiale è sottoposto a una forza costante, cioè che non cambia qualunque sia la posizione che il punto materiale assume nello

Dettagli

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche.

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Campo elettrico E Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Il concetto di campo elettrico venne introdotto da Michael

Dettagli

2 Vettori applicati. 2.1 Nozione di vettore applicato

2 Vettori applicati. 2.1 Nozione di vettore applicato 2 Vettori applicati 2 Vettori applicati 2.1 Nozione di vettore applicato Numerose grandezze fisiche sono descritte da vettori (spostamento, velocità, forza, campo elettrico, ecc.). Per alcune di esse e,

Dettagli

Corso di Fisica. Laurea in Scienze Infermieristiche Sede di Cassino

Corso di Fisica. Laurea in Scienze Infermieristiche Sede di Cassino Corso di Fisica Laurea in Scienze Infermieristiche Sede di Cassino Docente: Deborah Lacitignola Dipartimento di Scienze Motorie e della Salute Università di Cassino Email: d.lacitignola@unicas.it LEZIONE

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

IIS Moro Dipartimento di matematica e fisica

IIS Moro Dipartimento di matematica e fisica IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi prime - Fisica Poiché la disciplina Fisica è parte dell Asse Scientifico Tecnologico, essa concorre, attraverso lo studio dei

Dettagli

Corso di Fisica Generale 1

Corso di Fisica Generale 1 Corso di Fisica Generale 1 corso di laurea in Ingegneria dell'automazione ed Ingegneria Informatica (A-C) 9 lezione (23 / 10 /2015) Dr. Laura VALORE Email : laura.valore@na.infn.it / laura.valore@unina.it

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA NOTAZIONE ESPONENZIALE 1. Scrivi i seguenti numeri usando la notazione scientifica esponenziale 147 25,42 0,0001 0,00326

Dettagli

23.2 Il campo elettrico

23.2 Il campo elettrico N.Giglietto A.A. 2005/06-23.3-Linee di forza del campo elettrico - 1 Cap 23- Campi Se mettiamo una carica in una regione dove c è un altra carica essa risentirà della sua presenza manifestando una forza

Dettagli

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento

Questo simbolo significa che è disponibile una scheda preparata per presentare l esperimento IL CAMPO ELETTRICO Questo simbolo significa che l esperimento si può realizzare con materiali o strumenti presenti nel nostro laboratorio Questo simbolo significa che l esperimento si può realizzare anche

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 14.10.2015 Applicazioni della legge di Gauss Anno Accademico 2015/2016 Campo di un guscio sferico cavo Abbiamo già

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

!!!! E quella parte della meccanica che studia il movimento di un corpo indagandone le cause che l hanno prodotto

!!!! E quella parte della meccanica che studia il movimento di un corpo indagandone le cause che l hanno prodotto E quella parte della meccanica che studia il movimento di un corpo indagandone le cause che l hanno prodotto La dinamica è fondata su tre princìpi fondamentali: Il PRIMO PRINCIPIO, o principio di inerzia;

Dettagli

15/aprile 2013. Esercizi

15/aprile 2013. Esercizi 15/aprile 2013 Esercizi ESEMPIO: Si consideri un punto materiale 1. posto ad un altezza h dal suolo, 2. posto su un piano ilinato liscio di altezza h, 3. attaccato ad un filo di lunghezza h il cui altro

Dettagli

CORSO DI LAUREA IN SCIENZE GEOLOGICHE A.A Corso di GEOLOGIA STRUTTURALE Docente: Antonio Funedda. Cenni di Meccanica delle rocce:

CORSO DI LAUREA IN SCIENZE GEOLOGICHE A.A Corso di GEOLOGIA STRUTTURALE Docente: Antonio Funedda. Cenni di Meccanica delle rocce: CORSO DI LURE IN SCIENZE GEOLOGICHE.. 01-013 Corso di GEOLOGI STRUTTURLE Docente: ntonio Funedda Cenni di Meccanica delle rocce: LO SFORZO (STRESS) STRESS = SFORZO Lo Stress è la causa della deformazione

Dettagli

STUDIO DEL MOTO DI UN CORPO SU CUI AGISCE UNA FORZA COSTANTE. 2 Principio della Dinamica

STUDIO DEL MOTO DI UN CORPO SU CUI AGISCE UNA FORZA COSTANTE. 2 Principio della Dinamica STUDIO DEL MOTO DI UN CORPO SU CUI AGISCE UNA FORZA COSTANTE 2 Principio della Dinamica 1) Considerazione teoriche: il secondo principio della dinamica dice: se ad un corpo in assenza d attrito si applica

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia 1. La forza e il lavoro Che cos è il lavoro in Fisica Ogni lavoro richiede uno sforzo e quindi l impegno di una forza. Il lavoro fisico e quello intellettuale richiedono il primo

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE IL BARICENTRO GENERALITA' GEOMETRIA DELLE MASSE Un corpo può essere immaginato come se fosse costituito da tante piccole particelle dotate di massa (masse puntiformi); a causa della forza di gravità queste

Dettagli

La Forza. Quando sei al banco, una forza chiamata gravità ti mantiene seduto sulla sedia.

La Forza. Quando sei al banco, una forza chiamata gravità ti mantiene seduto sulla sedia. Le Forze La Forza Quando sei al banco, una forza chiamata gravità ti mantiene seduto sulla sedia. La Forza Le gocce d acqua sono tenute insieme da una forza detta tensione superficiale. La Forza L attrito

Dettagli

Cinematica Angolare! FONDAMENTI DI BIOINGEGNERIA - ING.FRANCESCO SGRO!

Cinematica Angolare! FONDAMENTI DI BIOINGEGNERIA - ING.FRANCESCO SGRO! Cinematica Angolare! Movimento angolare! ü Si definisce movimento angolare qualsiasi movimento di rotazione che avviene rispetto ad un asse immaginario! ü In un movimento angolare tutto il corpo/soggetto

Dettagli

Lezioni di Microeconomia

Lezioni di Microeconomia Lezioni di Microeconomia Lezione 6 La domanda Lezione 6: La domanda Slide 1 La domanda Obiettivi di questa lezione: 1. Svolgendo una analisi di statica comparata, per analizzare come varia la quantità

Dettagli

Lezione 3: Il problema del consumatore:

Lezione 3: Il problema del consumatore: Corso di Economica Politica prof. S.Papa Lezione 3: Il problema del consumatore: scelta ottimale Facoltà di Economia Università di Roma La Sapienza Lucidi liberamente tratti dai lucidi del prof. Rodano

Dettagli

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari Lezione 4 L artimetica binaria: I numeri relativi e frazionari Sommario I numeri relativi I numeri frazionari I numeri in virgola fissa I numeri in virgola mobile 1 Cosa sono inumeri relativi? I numeri

Dettagli

Lezione 39: la legge di Ohm e i circuiti elettrici

Lezione 39: la legge di Ohm e i circuiti elettrici Lezione 39 - pag.1 Lezione 39: la legge di Ohm e i circuiti elettrici 39.1. Il circuito elementare Nella scorsa lezione abbiamo rappresentato in modo più o meno realistico alcuni circuiti elettrici particolarmente

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

4. LE FORZE E LA LORO MISURA

4. LE FORZE E LA LORO MISURA 4. LE FORZE E LA LORO MISURA 4.1 - Le forze e i loro effetti Tante azioni che facciamo o vediamo non sono altro che il risultato di una o più forze. Le forze non si vedono e ci accorgiamo della loro presenza

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

URTI: Collisioni fra particelle (e/o corpi) libere e vincolate.

URTI: Collisioni fra particelle (e/o corpi) libere e vincolate. URTI: Collisioni fra particelle (e/o corpi) libere e vincolate. Approssimazione di impulso: l interazione fra le due particelle e/o corpi è istantanea e l azione delle forze esterne durante l urto non

Dettagli

Verifica della conservazione dell energia meccanica mediante rotaia a cuscino d aria

Verifica della conservazione dell energia meccanica mediante rotaia a cuscino d aria Verifica della conservazione dell energia meccanica mediante rotaia a cuscino d aria Lo scopo dell esperimento L esperimento serve a verificare il principio di conservazione dell energia meccanica, secondo

Dettagli

LA LEGGE DI COULOMB PER I MAGNETI

LA LEGGE DI COULOMB PER I MAGNETI 1 LA LEGGE DI COULOMB PER I MAGNETI Lo scopo di questo esperimento è quello di riprodurre quello storico e importante ormai scomparso dai testi scolastici perché ritenuto non attinente alla realtà. È noto,

Dettagli

Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale:

Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale: Raddrizzatore a doppia semionda: caso ideale Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale: Questa particolare struttura di collegamento di quattro diodi

Dettagli

FORZE E MOTO esercizi risolti Classi seconde e terze L.S.

FORZE E MOTO esercizi risolti Classi seconde e terze L.S. FORZE E MOTO esercizi risolti Classi seconde e terze L.S. In questa dispensa verrà riportato lo svolgimento di alcuni esercizi inerenti la dinamica dei sistemi materiali, nei quali vengono discusse le

Dettagli

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando

Dettagli

FISICA Corso di laurea in Informatica e Informatica applicata

FISICA Corso di laurea in Informatica e Informatica applicata FISICA Corso di laurea in Informatica e Informatica applicata I semestre AA 2004-2005 G. Carapella Generalita Programma di massima Testi di riferimento Halliday Resnick Walker CEA Resnick Halliday Krane

Dettagli

Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1

Corso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 orso di meccanica, macchine e disegno VD 2013/2014 Modulo UD Lez. Esercizi svolti di statica pag. 1 1) Un triangolo rettangolo presenta l ipotenusa lunga 5m mentre l angolo formato con uno dei due cateti

Dettagli

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010 IIS MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO AS 2009-2010 Modulo A Grandezze fisiche e misure Le basi dell algebra e dei numeri relativi Proporzionalità tra grandezze Calcolo di equivalenze tra

Dettagli

quadrilatero generico parallelogramma rombo rettangolo quadrato

quadrilatero generico parallelogramma rombo rettangolo quadrato Pavimentare 1. Quali forme di quadrilateri puoi costruire? Schizza tutte le forme possibili e scrivi il loro nome. 2. Cosa rappresentano i piccoli punti rossi sui lati del quadrilatero? 3. a) Costruisci

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008 LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento

Dettagli

CONDUTTORI IN EQUILIBRIO ELETTROSTATICO

CONDUTTORI IN EQUILIBRIO ELETTROSTATICO CONDUTTORI IN EQUILIBRIO ELETTROSTATICO Un insieme di conduttori si dice in equilibrio elettrostatico quando: Non vi è movimento di carica elettrica nel sistema Non vi è variazione nel campo elettrico

Dettagli

Punto d intersezione delle altezze nel triangolo

Punto d intersezione delle altezze nel triangolo Punto d intersezione delle altezze nel triangolo 1. Osserva la posizione del punto d intersezione H. Dove si trova H a) in un triangolo acutangolo? b) in un triangolo rettangolo? c) in un triangolo ottusangolo?

Dettagli

Andamento e periodo delle funzioni goniometriche

Andamento e periodo delle funzioni goniometriche Andamento e periodo delle funzioni goniometriche In questa dispensa ricaviamo gli andamenti delle funzioni goniometriche seno, coseno, tangente e cotangente tra 0 e 360, detti, rispettivamente, sinusoide,

Dettagli

DIODO. La freccia del simbolo indica il verso della corrente.

DIODO. La freccia del simbolo indica il verso della corrente. DIODO Si dice diodo un componente a due morsetti al cui interno vi è una giunzione P-N. Il terminale del diodo collegato alla zona P si dice anodo; il terminale collegato alla zona N si dice catodo. Il

Dettagli

Riassunto fisica. Introduzione: La seconda legge di Newton =m a

Riassunto fisica. Introduzione: La seconda legge di Newton =m a Statica Introduzione: La seconda legge di Newton =m a F =0 F =0 M ) fissare un riferimento (assi x e y) ) scoporre ogni forza in x e y 3) scegliere il punto in cui calcolare il Movimento (punto + complicato)

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL 27-03-2014 ESERCIZIO 1 Un ragazzo, in un parco divertimenti, entra in un rotor. Il rotor è una stanza cilindrica che può essere messa in rotazione attorno al

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione Capacità La capacità è una misura di quanta carica debba possedere un certo tipo di condensatore

Dettagli

SITITUTO SUPERIORE A. SOBRERO A.S. 2012/2013

SITITUTO SUPERIORE A. SOBRERO A.S. 2012/2013 Incontro n 1. Non fate caso alla data della lezione la fisica non cambia per ora e Difficilmente si è consapevoli di ciò che è significativo nella propria esistenza 1. Come si chiama il docente che tiene

Dettagli

1 Indipendendenza dal percorso per forze conservative

1 Indipendendenza dal percorso per forze conservative Nicola GigliettoA.A. 12013/14 INDIPENDENDENZA DAL PERCORSO PER FORZE CONSERVATIVE Parte I 4.5 - Forze conservative 4.5 - Forze conservative In generale il lavoro L = f i F ds dipende dal percorso effettuato.

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

17. Elettromagnetismo

17. Elettromagnetismo 1 quaioni di Mawell 17. lettromagnetismo Nelle leioni precedenti abbiamo considerato i campi elettrico e magnetico statici, cioè abbiamo considerato fenomeni indipendenti dal tempo. I campi elettrico e

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

Prof. Angelo Angeletti I VETTORI

Prof. Angelo Angeletti I VETTORI I VETTORI Si consideri la seguente situazione: in un prato due ragazzi stano giocando e uno dice all altro spostati di 5 passi. È chiaro che il comando non è completo in quanto non viene detto in quale

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

IL CONSUMATORE E LA DOMANDA

IL CONSUMATORE E LA DOMANDA IL CONSUMATORE E LA DOMANDA AA 2013-2014 Prof. Anna Carbone- DAFNE acarbone@unitus.it Il comportamento del consumatore. La teoria della domanda Iniziamo con qualche interrogativo: -Perchè compriamo alcuni

Dettagli

I seguenti grafici rappresentano istantanee dell onda di equazione:

I seguenti grafici rappresentano istantanee dell onda di equazione: Descrizione matematica di un onda armonica La descrizione matematica di un onda è data dalla seguente formula : Y ; t) A cos( k ω t + ϕ ) () ( ove ω e k, dette rispettivamente pulsazione e numero d onda,

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Che cos'è il caos? Caos Dove comincia il caos si arresta la scienza classica (1987) L'aspetto irregolare della natura sono stati dei veri rompicapo

Che cos'è il caos? Caos Dove comincia il caos si arresta la scienza classica (1987) L'aspetto irregolare della natura sono stati dei veri rompicapo Poincarè nel 1903 afferma che : una causa piccolissima che sfugga alla nostra attenzione determina un effetto considerevole che non possiamo mancare di vedere, e allora diciamo che l'effetto è dovuto al

Dettagli

Luca Dubbini Marco Tito Bordogna

Luca Dubbini Marco Tito Bordogna Luca Dubbini Marco Tito Bordogna Prima di iniziare a veleggiare è importante capire come funziona una vela e i principi secondo i quali viene generata la sua forza propulsiva. La conoscenza di alcune nozioni

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

Economia Politica e Istituzioni Economiche. Barbara Pancino Lezione 4

Economia Politica e Istituzioni Economiche. Barbara Pancino Lezione 4 Economia Politica e Istituzioni Economiche Barbara Pancino Lezione 4 La domanda di moneta Come allocare la ricchezza finanziaria risparmiata? La moneta può essere usata per transazioni, ma non paga interessi.

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori :

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori : NOTA 1 VETTOI LIBEI e VETTOI APPLICATI Negli esempi visti sono stati considerati due tipi di vettori : 1) Vettori liberi, quando non è specificato il punto di applicazione. Di conseguenza ad uno stesso

Dettagli

IL PRINCIPIO DELLA LEVA IL PRINCIPIO DEL PIANO INCLINATO IL CONCETTO DI FORZA LA REGOLA DEL PARALLELOGRAMMA

IL PRINCIPIO DELLA LEVA IL PRINCIPIO DEL PIANO INCLINATO IL CONCETTO DI FORZA LA REGOLA DEL PARALLELOGRAMMA Lucidi integrativi relativi a: IL PRINCIPIO DELLA LEVA IL PRINCIPIO DEL PIANO INCLINATO IL CONCETTO DI FORZA LA REGOLA DEL PARALLELOGRAMMA Sparacio Renato, La scienza e i tempi del costruire, UTET Libreria,

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria 1. Percentuale Si dice percentuale di una somma di denaro o di un altra grandezza, una parte di questa, calcolata in base ad un tanto per cento, che si chiama tasso percentuale.

Dettagli

descrivere le caratteristiche della sfera utilizzare le formule inerenti. Introduzione

descrivere le caratteristiche della sfera utilizzare le formule inerenti. Introduzione Anno 4 Sfera 1 Introduzione In questa lezione parleremo di un importante solido di rotazione detto sfera. Ne daremo la definizione, ne studieremo le caratteristiche e le formule a essa inerenti. Al termine

Dettagli

Prodotto Multimediale

Prodotto Multimediale Prodotto Multimediale Relativo al Laboratorio 2: "Multimedialità e Didattica" Autore: Zumbo Francesco Breve presentazione del Moto Rettilineo Uniforme e Uniformemente Accelerato I moti, a seconda della

Dettagli

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA BILANCIO DEI VINCOLI ED ANALISI CINEMATICA ESERCIZIO 1 Data la struttura piana rappresentata in Figura 1, sono richieste: - la classificazione della struttura in base alla condizione di vincolo; - la classificazione

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3)

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) Consideriamo un agente che deve scegliere un paniere di consumo fra quelli economicamente ammissibili, posto che i beni di consumo disponibili sono solo

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

Trigonometria angoli e misure

Trigonometria angoli e misure Trigonometria angoli e misure ITIS Feltrinelli anno scolastico 27-28 R. Folgieri 27-28 1 Angoli e gradi Due semirette che condividono la stessa origine danno luogo ad un angolo. Le due semirette (che si

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica

Dettagli

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o A A 2 0 11-2 0 1 2 U N I V E R S I TA D E G L I S T U D I D I R O M A T O R V E R G ATA FA C O LTA D I M E D I C I N A E C H I R U R G I A L A U R E A T R I E N N A L E I N S C I E N Z E M O T O R I E

Dettagli

Centro di massa e momento di inerzia. di Claudio Cigognetti Lezioni d'autore

Centro di massa e momento di inerzia. di Claudio Cigognetti Lezioni d'autore Centro di massa e momento di inerzia di Claudio Cigognetti Lezioni d'autore VIDEO Il centro di massa (I) Un oggetto lanciato in prossimità della superficie terrestre può essere schematizzato come un punto

Dettagli

Occupazione e disoccupazione

Occupazione e disoccupazione Lezione 20 1 Occupazione e disoccupazione L occupazione ha una fortissima importanza sociale, e pone molti problemi di rilevazione. In questa lezione vediamo come la definizione di occupazione fa emergere

Dettagli

7 Cenni di ottica per la fotografia

7 Cenni di ottica per la fotografia 7 Cenni di ottica per la fotografia 7.1 Schematizzazione di un obiettivo fotografico Gli obiettivi fotografici sono generalmente composti da un numero elevato di lenti. Tuttavia per semplicità possiamo

Dettagli

CAPITOLO II. Il Vantaggio Assoluto

CAPITOLO II. Il Vantaggio Assoluto CAPITOLO II Il Vantaggio Assoluto Ragionare di commercio internazionale facendo uso del modello Domanda-Offerta: le esportazioni (importazioni) corrispondono ad un eccesso di offerta (domanda), ai prezzi

Dettagli

Università degli Studi di Pavia Facoltà di Medicina e Chirurgia

Università degli Studi di Pavia Facoltà di Medicina e Chirurgia Università degli Studi di Pavia Facoltà di Medicina e Chirurgia CORSO DI LAUREA TRIENNALE CLASSE DELLLE LAUREE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE CLASSE 2 Corso Integrato di Fisica, Statistica,

Dettagli

ISIS LE FILANDIERE, A.S. 2015/2016 PIANO DI LAVORO DELLA CLASSE: II B (LS) DISCIPLINA: FISICA Docente: Costantini Gianni

ISIS LE FILANDIERE, A.S. 2015/2016 PIANO DI LAVORO DELLA CLASSE: II B (LS) DISCIPLINA: FISICA Docente: Costantini Gianni ISIS LE FILANDIERE, A.S. 2015/2016 PIANO DI LAVORO DELLA CLASSE: II B (LS) Programmazione per competenze: DISCIPLINA: FISICA Docente: Costantini Gianni Le competenze specifiche che l insegnamento di questa

Dettagli

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi Somma di numeri floating point Algoritmi di moltiplicazione e divisione per numeri interi Standard IEEE754 " Standard IEEE754: Singola precisione (32 bit) si riescono a rappresentare numeri 2.0 10 2-38

Dettagli

Lezione 6: Utilità marginale. Effetto reddito e Effetto sostituzione

Lezione 6: Utilità marginale. Effetto reddito e Effetto sostituzione Corso di Economica Politica prof. S. Papa Lezione 6: Utilità marginale. Effetto reddito e Effetto sostituzione Facoltà di Economia Università di Roma La Sapienza Lucidi liberamente tratti dai lucidi del

Dettagli