Le equazioni di Maxwell.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le equazioni di Maxwell."

Transcript

1 Le equazioni di Maxwell. Campi elettici indotti. Pe la legge di Faady, in una spia conduttice dove c è una vaiazione di Φ concatenato si osseva una coente indotta i. Ricodando che una coente è un flusso di caiche povocato da un campo, possiamo scivee le seguenti implicazioni (in blu) che possono potae all intoduzione di un campo elettico (campo elettico indotto) nasce una ε cicola una i si instaua un moto di caiche q È necessaia una foza elettica F q Nasce un campo elettico indotto Possiamo pensae ad una intepetazione divesa (dovuta a Maxwell) (in osso) pe spiegae l insogee di i nella spia. Questa intepetazione dice che se in una egione di spazio si ha, si cea una nuova popietà dello spazio che chiamiamo campo elettico indotto. Questa popietà dello spazio poi si manifesta, su una eventuale spia conduttice pesente nella egione, con una coente indotta i. L espessione del campo elettico indotto si può ottenee ossevando che le due intepetazioni devono potae a isultati compatibili: ad esempio il lavoo W fatto pe spostae una caica q lungo una spia deve essee lo stesso in entambe le intepetazioni. 1

2 spia ntepetazione di Faaday: ε W q ε ntepetazione di Maxwell: dw q W q q ε q ε Se intepetiamo l induzione elettomagnetica in temini di campo elettico indotto possiamo scivee la legge di Faaday come: (1) Si noti, popio gazie alla pecedente elazione, che il campo elettico indotto non è consevativo. nolte se ( t ) cost Φ ( t ) cost elettico è consevativo ma non è più un campo elettico indotto! ossia quando il campo Quindi l equazione (1) automaticamente include il caso stazionaio, ovveo il campo elettostatico, petanto possiamo scivee genealizzando: () d Φ (genealizzazione del teoema della cicuitazione) dove è il campo elettostatico pe casi stazionati e il campo elettico indotto pe casi non stazionai. L equazione di Ampee-Maxwell. L equazione, dice che in una egione di spazio dove c è un campo ( t ) si cea un campo ( t ). Questa intepetazione della legge di Faaday, fa sogee una natuale domanda: è veo anche la situazione simmetica? Se in una egione di spazio c è un campo ( t ) si cea un campo ( t )?

3 Dopo l intepetazione di Maxwell della legge di Faaday, si cecaono evidente speimentali diette cica la possibilità di ceae un campo ( t ) da un campo ( t ), ma i isultati sono stati tutti negativi. Maxwell, non si aese all evidenza speimentale e sviluppò una teoia, qui di seguito accennata, che pativa dalla evidenziae i limiti della legge di Ampee scitta come d l μ. nfatti questa espessione, valida in casi stazionai ( i i C cost linee di coenti chiuse), non è valida in casi non stazionai quando i i(t) e le linee di coenti sono apete (e quindi i C ). Se colleghiamo due punti a potenziale V(A) e V() (inizialmente V(A)>V()) con un filo conduttoe, in esso si instaua una coente non stazionaia i(t). i C ΔVV(A) V() ΔV(t) A (t) Fig. 1 i(t) (t) Se i(t) (t) scelta la cuva, si ha che val. Mente la linea di coente (essendo apeta) non isulta concatenata con e si ha i c. Quindi in casi non stazionai il teoema di Ampee ci pota ad un inconguenza: val ( ) μ i ( ) val C Pe isolvee questa inconguenza, dobbiamo pensae di aggiungee (potesi di Maxwell) al teoema di Ampee, così come scitto pe casi stazionai, un temine che tenga conto dei casi non stazionai, ovveo di aggiungee un temine di coente i S scivendo: μ + ( i ) C is tale che: i S e i C in casi stazionai i S e i C in casi non-stazionai Dobbiamo tovae l espessione di i S. Osseviamo (vedi fig. 1) che se i è non-stazionaia, ossia cicola su una linea apeta, nella zona dove la linea è inteotta deve esseci un campo elettico (t) in quanto esiste un ΔV(t) dove manca i(t) esiste un (t) e quindi vaiazioni di i(t) con tempo potebbeo essee equivalenti a vaiazioni di (t). Analizziamo meglio questa situazione, facendo ifeimento al pocesso di caica di un condensatoe piano C con amatue di aea S distanti d (fig. ). 3

4 Ad un istante t, sulla singola amatua del condensatoe abbiamo una caica q(t) e una diffeenza di potenziale fa le amatue V(t) con V(t) C q(t). Fig. Sappiamo che: εs εs V( t ) ( t )d e C q( t ) CV( t ) d d dq( t ) d( εs( t )) ds( t ) ( t ) ε ε ( t )d ε S( t ) q( t ) ε S( t ) dove Φ S è il flusso del campo attaveso una supeficie pai all aea delle amatue. ( ) ) l temine ( t C N C m ε ha le dimensioni di una coente ( m N s chiamato, pe motivi stoici, coente di spostamento indicato con i S. C N NCs C s A) ed è dq( t ) ) La vaiazione di caica sull amatua è quindi equivalente al temine ( t ε associato dq( t ) alla vaiazione di è la vaiazione di caica sull amatua duante il pocesso di caica, ma queste caiche tansitano sul filo poducendo la coente i(t) in esso dq( t ) i(t) ) ( t ε i S. n casi non stazionai, nelle zone dove (t) il temine i S nello spazio è equivalente a i(t) nei fili conduttoi. Possiamo quindi scivee l equazione di Ampee-Maxwell: μ i C + ε che nel caso di i C diviene: d Φ d l με. 4

5 L equazione di Ampee-Maxwell è completamente simmetica alla legge di Faaday a pate: il fattoe μ ε, che dipende dal sistema di unità di misua scelto, il segno meno, che indica che i vesi dei campi ed sono in questo caso legati dalla egola della mano desta. Ossevazione: μ ε 4π s m - e quindi il temine μ ε è estemamente piccolo e quindi i suoi effetti difficilmente misuabili diettamente in un espeimento! sempi 1): Campo indotto geneato da campo (t) a simmetia cilindica. Assumiamo un campo, pependicolae ed entante nel foglio, con modulo vaiabile nel tempo d confinato in una egione cilindica infinita di aggio R. Sia cost >. Pe la legge di Faaday, si ceeà un campo. Questo deve avee linee di campo chiuse e dovà consevae la simmetia cilindica: le linee di campo devono essee delle ciconfeenze concentiche con l asse del cilindo e punti equidistanti dall asse del cilindo devono avee lo stesso valoe del campo. l veso delle linee di campo è fissato dalla legge di Lentz. ( aumenta essendo cost > ) Applichiamo la legge di Faaday, scegliendo un linea di aggio coincidente con una linea di campo con: a) < R d l d( π ) cosθ π π π d d b) > R d l d( πr ) cosθ π π πr d R d c) R, R d 5

6 sempi ): Campo geneato da un campo (t) a simmetia cilindica. Assumiamo un campo, pependicolae ed entante nel foglio, con modulo vaiabile nel tempo d confinato in una egione cilindica infinita di aggio R. Sia cost >. Pe la legge di Ampee Maxwell, si ceeà un campo. Questo deve avee linee di campo chiuse e dovà consevae la simmetia cilindica e quindi valgono le consideazioni pecedente. l veso delle linee di campo è fissato dalla egola della mano desta. ( aumenta, essendo cost > ) Confontae i vesi dei campi nelle due figue! Applichiamo la suddetta legge, scegliendo un linea di aggio coincidente con una linea di campo con: a) < R με d με b) > R cos π μ ε d( π ) π μεπ d με μεr d cos d( πr ) π με π μεπr d c) R μ d ε R. 6

7 Le quatto equazioni di Maxwell. La teoia di Maxwell, pecedentemente descitta, pemise la sintesi di tutti i fenomeni elettici e magnetici, stazionai e non, con 4 equazioni note come le equazioni di Maxwell. 1) ds q int ε S Teoema di Gauss (L oigine di sono le caiche elettiche) ) Legge di Faaday ( è ceato anche da ( t )) 3) ds Teoema di Gauss pe (Non esistono caiche magnetiche) S 4) μ ic + ε Teoema di Ampee-Maxwell (l oigine di sono le coenti ma è ceato anche da ( t ) ) Questa teoia lasciò subito intavedee l esistenza di fenomeni non ancoa ossevati! Se sciviamo le quatto equazioni pecedenti pe uno spazio vuoto dove non ci sono nè caiche elettiche (q ) nè coenti (i ) otteniamo delle equazioni completamente simmetiche : 1) ds S ) S 3) ds 4) S d Φ d l με sse dicono che: a) un campo ( t ) genea, tamite l equazione, un campo ( t ) l equazione tamite 4, un campo ( t )) ecc, ecc, che genea, tamite Legge di Faaday (t) (t) campi si autogeneano e autosostengono Teoema di Ampee-Maxxwell b) campi e hanno entambi linee chiuse. 7

8 l segno è fondamentale pe il sostentamento dei campi (vedi fig.) (t) aumenta (t) aumenta (t) diminuisce (t) diminuisce (t) aumenta (t) aumenta (t) diminuisce (t) diminuisce Legge di Faaday Legge di Ampee-Maxwell i(t) cescente ecc,ecc,. (t) (t) (t) (t) Questo nuova ealtà fatta di campi e che esistono nello spazio vuoto, che si autogeneano e autosostengono sono le onde elettomagnetiche. L esistenza delle onde elettomagnetiche è la veifica speimentale della teoia di Maxwell. 8

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Campo elettrico e potenziale di un disco uniformemente carico

Campo elettrico e potenziale di un disco uniformemente carico Campo elettico e poteniale di un disco unifomemente caico q S densità supeficiale di caica Consideo l anello di aggio e spessoe d calcolo l anello sommo sugli anelli ho due integaioni dq da πd d Σ anello

Dettagli

Concetto di capacità

Concetto di capacità oncetto di capacità Il teoema di Gauss stabilisce che, posta una caica su un conduttoe isolato, il campo elettico E da essa podotto nello spazio cicostante è diettamente popozionale alla caica stessa:

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+ica Condensatoi Condensatoi Il sistema più semplice pe immagazzinae enegia elettostatica è caicae un condensatoe. Genealmente il condensatoe è costituito da due piani metallici sepaati da

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r )

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r ) Flusso del campo elettico e legge di Gauss. - Si definisce supeficie gaussiana una ipotetica supeficie S chiusa, che contiene un volume V. - La legge di Gauss mette in elazione i valoi dei campi elettici

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

7. Campo magnetostatico

7. Campo magnetostatico 7. Campo magnetostatico 7.1 Aspetti fenomenologici Inteazioni (attattive e epulsive) ta magneti (magnetite) In ogni magnete si possono individuae due poli che chiamiamo polo + (nod) e polo - (sud) Due

Dettagli

A.A. 2009/ Appello del 15 giugno 2010

A.A. 2009/ Appello del 15 giugno 2010 Fisica I pe Ing. Elettonica e Fisica pe Ing. Infomatica A.A. 29/21 - Appello del 15 giugno 21 Soluzione del poblema n. 1a 1. All uscita della guida, nel punto D, il copo compie un moto paabolico con velocità

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica Il campo magnetico caica genea campo elettico campo elettico impime foza su caica e allo stesso modo caica in moto genea campo magnetico campo magnetico impime foza su caica in moto campo magnetico (si

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

La forza di Lorentz: Una carica che si muove in un campo magnetico risente una forza F (forza di Lorentz) data da : r =

La forza di Lorentz: Una carica che si muove in un campo magnetico risente una forza F (forza di Lorentz) data da : r = INDUTTANZA RIASSUNTO: Richiami su campo magnetico, foza di oentz egge di Faaday Autoinduzione (dimensioni ) induttanza come elemento di cicuito Cicuito R: extacoente di apetua Enegia immagazzinata in una

Dettagli

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15 Leione V Campo magnetico B 1/15 Polo Nod N S S N Tea Sole Polo Sud Alcuni mineali (es. magnetite, da Magnesia Tessaglia) attiano il feo. Aghi calamitati si oientano nel campo magnetico teeste. Leione V

Dettagli

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI SECONDA LEZIONE (4 oe): CONDUTTORI e DIELETTRICI Conduttoi in campo elettico Polaizzazione della mateia Vettoe polaizzazione Vettoe spostamento elettico Suscettività elettica Capacità Condensatoi Enegia

Dettagli

Docente Francesco Benzi

Docente Francesco Benzi MACCHINE ELETTRICHE Coso di Lauea in Ingegneia Industiale Anno Accademico 015-016 MACCHINE ELEMENTARI Docente Fancesco Benzi Univesità di Pavia e-mail: fbenzi@unipv.it Dispense in collaboazione con Giovanni

Dettagli

Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8

Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8 isultati esame scitto Fisica 7//4 oali: 4 alle oe. pesso aula G8 gli studenti inteessati a visionae lo scitto sono pegati di pesentasi il giono dell'oale; Nuovo odinamento voto AMATO MATTIA CASLLA ALSSANDO

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

Utilizzando la forma complessa della legge di Ohm calcoliamo la corrente che scorre nel circuito r r

Utilizzando la forma complessa della legge di Ohm calcoliamo la corrente che scorre nel circuito r r Yui Geelli, uca Fontanesi, Riccado Campai ab. Elettomagnetismo INDUZIONE Scopo dell espeimento è duplice: dappima la misuazione dell induttanza di un solenoide, poi del coefficiente di mutua induzione

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTROTECNICA Ingegneia Industiale CAMPI ELETTROMAGNETICI Stefano Pastoe Dipatimento di Ingegneia e Achitettua Coso di Elettotecnica (43IN) a.a. 15-16 Foza di Coulomb Nel 1785, Chales Coulomb fece degli

Dettagli

Sulla carica viene esercitata la forza magnetica. traiettoria circolare.

Sulla carica viene esercitata la forza magnetica. traiettoria circolare. Moto di caiche in Campo Magnetico Consideiamo una paticella di massa m e caica puntifome +q in moto con velocità v pependicolae ad un campo B unifome. B α v + F F v Nel piano α, B veso l alto Sulla caica

Dettagli

Fisica II Secondo Appello - 7/2/2008

Fisica II Secondo Appello - 7/2/2008 Fisica II Secondo Appello - 7/2/2008 Chi ecupea il pimo compitino fa il pimo esecizio in due oe Chi ecupea il secondo compitino fa gli ultimi due esecizi in due oe Chi non ecupea fa le pime 4 domande del

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010 LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-7/05/010 Ogni quesito va oppotunamente motivato, pena la sua esclusione dalla valutazione.

Dettagli

Campo magnetico: concetti introduttivi

Campo magnetico: concetti introduttivi Appunti di Fisica II Campo magnetico: concetti intoduttivi Intoduzione ai fenomeni magnetici...1 Azione dei magneti su caiche elettiche in moto... Foza di Loentz...5 Selettoe di velocità...5 Invaianza

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano lettomagnetismo Pof. Fancesco agsa Univesità degli Stdi di Milano Lezione n. 6 4..5 Applicazioni della legge di Gass Anno Accademico 5/6 Campo di n gscio sfeico cavo Abbiamo già calcolato mediante n calcolo

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

Fisica II CdL Chimica. Magnetismo

Fisica II CdL Chimica. Magnetismo Magnetismo Magnetismo gli effetti magnetici da magneti natuali sono noti da molto tempo. Sono ipotate ossevazioni degli antichi Geci sin dall 800 A.C. la paola magnetismo deiva dalla paola geca pe un ceto

Dettagli

Il campo magnetico. Gauss (G) Tale che 1 T = 10 4 G. Prof. Sergio Catalanotti Corso di Fisica - Magnetismo 3

Il campo magnetico. Gauss (G) Tale che 1 T = 10 4 G. Prof. Sergio Catalanotti Corso di Fisica - Magnetismo 3 Magnetismo La magnetite In natua esiste un mateiale dalla caatteistiche peculiai, la magnetite. Si tatta di un mineale ad alto contenuto feoso noto sin dall antichità e che ea pesente in gosse quantità

Dettagli

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005 MT, MTT Appunti di Fisica pe Scienze iologiche Ves 4 /9/5 L Elettostatica costituenti elementai della mateia possiedono, olte alla massa, la caica elettica La caica elettica si misua in oulomb () ed il

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s.

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s. Potenziale elettostatico e lavoo Potenziale elettostatico Enegia potenziale elettostatica Esempi Moto di una caica in un potenziale e.s. Potenziale elettostatico Campo e.s. geneato da una caica puntifome

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

La parabola come luogo geometrico

La parabola come luogo geometrico La paabola come luogo geometico Definizioni e pime popietà Definizioni. Si chiama paabola il luogo ei punti equiistanti a un punto, etto fuoco, e a una etta etta iettice.. Il punto ella paabola che ha

Dettagli

Risultati esame scritto Fisica 2-16/02/2015 orali: alle ore presso aula M

Risultati esame scritto Fisica 2-16/02/2015 orali: alle ore presso aula M isultati esame scitto Fisica - 6//5 oali: 3--5 alle oe 4. pesso aula M gli studenti inteessati a visionae lo scitto sono pegati di pesentasi il giono dell'oale Nuovo odinamento maticola voto 4866 7 ammesso

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso Il volano 1 Dinamica del copo igido Il poblema dello studio del moto di un copo igido libeo è il seguente: data una ceta sollecitazione F e del copo, cioè cete foze estene F i applicate nei punti del copo

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

v t V o cos t Re r v t

v t V o cos t Re r v t Metodo Simbolico, o metodo dei Fasoi Questo metodo applicato a eti lineai pemanenti consente di deteminae la soluzione in egime sinusoidale solamente pe quanto attiene il egime stazionaio. idea di appesentae

Dettagli

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002 G.P. Maggi - Lezioni di Fisica Geneale AA 2001/2002 Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e quella di gavitazione univesale deivano

Dettagli

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte)

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte) A. Chiodoni esecizi di Fisica II SECONDA LEZIONE: lavoo elettico, potenziale elettostatico, teoea di Gauss (pia pate) Esecizio Te caiche sono poste ai vetici di un tiangolo euilateo di lato l, calcolae

Dettagli

1 Potenziale elettrostatico e seconda equazione di Maxwell per E

1 Potenziale elettrostatico e seconda equazione di Maxwell per E 1 Potenziale elettostatico e seconda equazione di Maxwell pe E Consideiamo il campo elettico oiginato da una caica puntifome q che ipotizziamo fissa nell oigine degli assi: E( ) = q ˆ 2 = q 3 (1) Pe definizione,

Dettagli

Richiami di Fisica Generale

Richiami di Fisica Generale Richiami di Fisica Geneale Slide 1 Caica elettica (I) La caica elettica (q) è la popietà delle paticelle sensibili alla foza (inteazione) elettomagnetica, così come la massa (o caica) gavitazionale (m)

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

Il campo magnetico generato da correnti

Il campo magnetico generato da correnti Il campo magnetico geneato da coenti Hans Chistian Østed (1777 1851) Siamo in Danimaca nel 180: duante alcuni espeimenti all Univesità di Copenhagen, il fisico danese Hans Chistian Oested si accoge che

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

E1.2 Velocità della luce in un cavo coassiale

E1.2 Velocità della luce in un cavo coassiale E1.2 Velocità della luce in un cavo coassiale Obiettivo Misuae la velocità di popagazione di un segnale elettomagnetico (velocità della luce) in un cavo coassiale. Mateiali e stumenti Un cavo coassiale

Dettagli

Sommario: Campo elettrico

Sommario: Campo elettrico Sommaio: ampo elettico ampo elettico: se F è la foza sulla caica q, il campo elettico è: F q Linee di foza: il campo si appesenta figuativamente mediante le sue linee di foza: in ogni punto il campo è

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica Potenziale Elettico Q V 4pe 0 R Q 4pe 0 C R R R q independenza dal cammino Supefici Equipotenziali Due modi pe analizzae i poblemi Con le foze o i campi (vettoi) pe deteminae posizione e velocità di un

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

Fondamenti di Gravitazione

Fondamenti di Gravitazione Fondamenti di Gavitazione Intoduzione all Astofisica AA 205/206 Pof. Alessando Maconi Dipatimento di Fisica e Astonomia Univesità di Fienze Dispense e pesentazioni disponibili all indiizzo http://www.aceti.asto.it/

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Elettrostatica m. Il nucleo è a sua volta composto da altri

Elettrostatica m. Il nucleo è a sua volta composto da altri Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e uella di gavitazione univesale deivano dalla popietà delle masse di attiae alte masse. Tutte

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

Effetto delle Punte e problema dell elettrostatica

Effetto delle Punte e problema dell elettrostatica Effetto delle Punte e poblema dell elettostatica 4 4 R Q R Q πε πε / / R R R R E E Effetto delle punte E L effetto paafulmine E E E R R Nel caso del paafulmine, R 6 Km è il aggio di cuvatua della supeficie

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

Sorgenti del campo magnetico.

Sorgenti del campo magnetico. Sogenti del campo magnetico. n Campo magnetico podotto da una coente n ima legge elementae di Laplace n Legame campo elettico e magnetico Campo magnetico podotto da una coente n ima legge elementae di

Dettagli

Misura della componente orizzontale del campo magnetico terrestre

Misura della componente orizzontale del campo magnetico terrestre Misua della componente oizzontale del campo magnetico teeste Pemessa teoica In tale pemessa vengono sintetizzati i peequisiti che si itengono indispensabili pe l'esecuzione e la compensione dell'espeienza

Dettagli

Massa è governata dalla legge di Newton: mm R. Q è governata invece dalla legge di Coulomb: R 1

Massa è governata dalla legge di Newton: mm R. Q è governata invece dalla legge di Coulomb: R 1 LTTROSTTIC Studia le inteazioni ta caiche elettiche feme ispetto all ossevatoe. Deiva dal nome geco dell amba (elekton) che, una volta stofinata, acuista la popietà di attae copi leggei. L inteazione implica

Dettagli

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I.

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. SIMULAZINE DELLA PRVA D ESAME DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. Risolvi uno dei due poblemi e 5 dei quesiti del questionaio. PRBLEMA In un piano è data la ciconfeenza di cento e aggio A ; conduci

Dettagli

Vista dall alto. Vista laterale. a n. Centro della traiettoria

Vista dall alto. Vista laterale. a n. Centro della traiettoria I poblema Un ciclista pedala su una pista cicolae di aggio 5 m alla velocità costante di 3.4 km/h. La massa complessiva del ciclista e della bicicletta è 85.0 kg. Tascuando la esistenza dell aia calcolae

Dettagli

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi Le 5 espessioni del Q nel campo dei vapoi satui A C K B Consideiamo la tasfomazione AB che si svolge tutta all inteno della campana dei vapoi satui di una sostanza qualsiasi. Supponiamo quindi di andae

Dettagli

CORRENTE ELETTRICA ed elementi di CIRCUITI ELETTRICI

CORRENTE ELETTRICA ed elementi di CIRCUITI ELETTRICI FSA GENEAE ev.. OENTE EETTA ed elementi di UT EETT --- queste note sono epeibili sul sito http://people.na.infn.it/~bloisi --- FSA GENEAE OENTE / UT ev.. oente elettica e esistenza elettica icuiti e leggi

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

Momento magnetico di un atomo.

Momento magnetico di un atomo. L Espeienza di Sten e Gelach. L espeienza di Sten e Gelach fu compiuta nel 1922 pe iuscie a misuae il momento magnetico di un atomo. Momento magnetico di un atomo. Un atomo possiede un momento magnetico:

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

Equazioni e disequazioni irrazionali

Equazioni e disequazioni irrazionali Equazioni e disequazioni iazionali 8 81 Equazioni iazionali con un solo adicale Definizione 81 Un equazione si dice iazionale quando l incognita compae sotto il segno di adice Analizziamo le seguenti equazioni:

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

Fisica Generale II con Laboratorio. Lezione - 3

Fisica Generale II con Laboratorio. Lezione - 3 Fisica Geneale II con Laboatoio Lezione - 3 Richiami - I Riassunto leggi della meccanica: Leggi di Newton 1) Pincipio di inezia Esistono sistemi di ifeimento ineziali (nei quali un copo non soggetto a

Dettagli

Nazaio Magnaelli ELETTROMAGNETISMO WWW.MATEMATICAMENTE.IT Foto: Electomagnetic di jjjohn N. Magnaelli Elettomagnetismo MATEMATICAMENTE.IT Ringazio l amico Pof. Calo Sintini pe i suoi utili consigli, pe

Dettagli

Galvanometro (D Arsonval)

Galvanometro (D Arsonval) Galvanometo (D sonval) Stumento base pe misue di coenti, d.d.p. e esistenze: quando ta i 2 teminali di questo passa coente, un indice si sposta popozionalmente alla coente. Se nelle spie della bobina immesa

Dettagli

Potenza in alternata

Potenza in alternata otenza in altenata sin t 0 ( ) ω +φ i [ ( )] sin ω t + φ ( ω + φ) 0 0 sin t E significativo consideae la potenza media dissipata sulla esistenza andando a calcolae l integale su un peiodo 1 T T 0 sin sin

Dettagli

CAPACITA' Capacità pag 11 A. Scimone

CAPACITA' Capacità pag 11 A. Scimone Capacità pag 11 A. Scimone CAPACITA' Ci occupiamo aesso elle popietà ei conensatoi, ispositivi che accumulano la caica elettica. I conensatoi vengono usati in vai tipi i cicuiti. Un conensatoe è un insieme

Dettagli

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n.

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n. Univesità degli Studi di Milano Coso di Lauea in Infomatica Anno accademico 3/4, Lauea Tiennale FISICA Lezione n. (4 oe) Foze elettiche, campi e potenziale elettostatico Flavia Maia Goppi (A-G) & Calo

Dettagli

Università degli Studi di Roma La Sapienza Ingegneria Elettrotecnica

Università degli Studi di Roma La Sapienza Ingegneria Elettrotecnica Pova scitta di Fisica 2-14 Gennaio 2013 Esecizio 1 (8 punti) Una caica statica nel vuoto distibuita su un aco di ciconfeenza di aggio a con densità lineae λ = λ 0 sinα dove 0 < α < 3π/2. Calcolae il potenziale

Dettagli

Docente Francesco Benzi

Docente Francesco Benzi MACCHINE ELETTRICHE Coso di Lauea in Ingegneia Industiale Anno Accademico 2015-2016 CONVERSIONE ELETTROMECCANICA - PRINCIPI Docente Fancesco Benzi Univesità di Pavia e-mail: fbenzi@unipv.it Dispense in

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

L INDETERMINAZIONE DEL CAMPO MAGNETOSTATICO

L INDETERMINAZIONE DEL CAMPO MAGNETOSTATICO L INDETERMINAZIONE DEL CAMPO MAGNETOSTATICO d.ing. Albeto Sacchi Sviluppo Pogetti Avanzati sl- R&D Dept. ing.sacchi@alice.it SINTESI (Abstact) La misua della Intensità di Campo (Induzione magnetica) ento

Dettagli

FONDAMENTI DI FISICA GENERALE

FONDAMENTI DI FISICA GENERALE FONDAMENTI DI FISICA GENERALE Ingegneia Meccanica Roma Te AA/- APPUNTI PER IL CORSO (Ripesi integalmente e da me assemblati dai testi di bibliogafia) Robeto Renzetti Bibliogafia: Paul J. Tiple, Gene Mosca

Dettagli

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude Legge di Ohm. Obiettivi didattici: Veifica della elazione ta coente e d.d.p. pe un conduttoe metallico. Veifica della elazione ta la esistenza di un conduttoe e le sue dimensioni (lunghezza, sezione) Misua

Dettagli